JP7073162B2 - Vertical continuous annealing furnace and annealing method - Google Patents

Vertical continuous annealing furnace and annealing method Download PDF

Info

Publication number
JP7073162B2
JP7073162B2 JP2018065840A JP2018065840A JP7073162B2 JP 7073162 B2 JP7073162 B2 JP 7073162B2 JP 2018065840 A JP2018065840 A JP 2018065840A JP 2018065840 A JP2018065840 A JP 2018065840A JP 7073162 B2 JP7073162 B2 JP 7073162B2
Authority
JP
Japan
Prior art keywords
dew point
furnace
amount
water vapor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018065840A
Other languages
Japanese (ja)
Other versions
JP2019173144A (en
Inventor
良太 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018065840A priority Critical patent/JP7073162B2/en
Publication of JP2019173144A publication Critical patent/JP2019173144A/en
Application granted granted Critical
Publication of JP7073162B2 publication Critical patent/JP7073162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、竪型連続焼鈍炉及び焼鈍方法に関する。 The present invention relates to a vertical continuous annealing furnace and an annealing method.

鋼板中の炭素分を除去して所望の品質を得る上で、炉内の雰囲気ガス中に水蒸気を含ませるとともに、その湿度を適当な値に管理する露点制御は重要である。 In order to remove the carbon content in the steel sheet and obtain the desired quality, it is important to contain water vapor in the atmospheric gas in the furnace and to control the dew point to control the humidity to an appropriate value.

露点制御方法としては、例えば鋼板を焼鈍する熱処理中に加熱炉に非酸化性ガスを連続して供給し、加熱炉内の露点を低下させる方法が提案されている(特開平9-256074号公報参照)。この公報に記載の方法では、加熱炉内の雰囲気の露点を測定し、この露点が目標範囲内となるよう非酸化性ガスの供給量を調節する。 As a dew point control method, for example, a method of continuously supplying a non-oxidizing gas to a heating furnace during a heat treatment for annealing a steel sheet to lower the dew point in the heating furnace has been proposed (Japanese Unexamined Patent Publication No. 9-257044). reference). In the method described in this publication, the dew point of the atmosphere in the heating furnace is measured, and the supply amount of the non-oxidizing gas is adjusted so that the dew point is within the target range.

特開平9-256074号公報Japanese Unexamined Patent Publication No. 9-256074

しかしながら、炉内には露点分布や酸素濃度分布があり、測定値に基づいて制御しても、測定点の代表性や、応答遅れなどがあり、炉内の露点温度が均一にならないおそれがある。特に竪型炉の場合、炉内に循環流れがあるために、炉内の露点分布を調整することがより困難となる。 However, there is a dew point distribution and an oxygen concentration distribution in the furnace, and even if controlled based on the measured values, there is a possibility that the dew point temperature in the furnace will not be uniform due to the representativeness of the measurement points and the response delay. .. Especially in the case of a vertical furnace, it is more difficult to adjust the dew point distribution in the furnace because there is a circulating flow in the furnace.

また、焼鈍炉における脱炭反応の制御の場合、低露点雰囲気下の炉内では水蒸気分圧が低く、炉内の雰囲気の調整が難しく、脱炭反応の制御はより困難となる。そのため、鋼板の組成の違いや板厚により、通板速度に大きな変化が生じた場合、脱炭反応を精度よく制御できないおそれがある。 Further, in the case of controlling the decarburization reaction in the annealing furnace, the partial pressure of water vapor is low in the furnace under a low dew point atmosphere, it is difficult to adjust the atmosphere in the furnace, and it is more difficult to control the decarburization reaction. Therefore, if the plate passing speed changes significantly due to the difference in the composition of the steel plate or the plate thickness, the decarburization reaction may not be controlled accurately.

本発明は、このような事情に鑑みてなされたものであり、炉内の露点制御性を向上し、脱炭反応を精度よく制御できる鋼板の焼鈍方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for annealing a steel sheet, which can improve the dew point controllability in a furnace and can accurately control the decarburization reaction.

本発明者らは、焼鈍炉における脱炭反応で消費される水蒸気量を検討した結果、炉内の雰囲気ガスの露点を調整するために投入する水蒸気量は、脱炭反応で消費される水蒸気量を考慮することが必要であることを知見した。 As a result of examining the amount of water vapor consumed in the decarburization reaction in the bleaching furnace, the present inventors have found that the amount of water vapor input to adjust the dew point of the atmospheric gas in the furnace is the amount of water vapor consumed in the decarburization reaction. It was found that it is necessary to consider.

上記課題を解決するためになされた本発明の一態様は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成される竪型連続焼鈍炉であって、内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板と、上記複数の区画毎に配設される複数の露点測定器と、上記複数の区画の露点を調整するため高露点ガス(水蒸気含む)を吹き込む機構と、上記雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、上記吹込機構の高露点ガス吹込量を制御する機構とを備える竪型連続焼鈍炉である。 One aspect of the present invention made to solve the above problems includes a plurality of top rolls and a plurality of bottom rolls arranged inside, and a strip-shaped steel plate between the plurality of top rolls and the plurality of bottom rolls. This is a vertical continuous incinerator that is configured to meander in the vertical direction and heat the steel plate while transporting it in a specific horizontal direction. The inside is divided into a plurality of sections along the specific horizontal direction. One or a plurality of partition plates having openings so that the atmospheric gas flowing in the furnace so as to face the steel plate in the vertical direction, and a plurality of dew point measuring instruments arranged in each of the plurality of compartments. Predicted by the mechanism that blows high dew point gas (including water vapor) to adjust the dew point of the plurality of sections, the required amount of water vapor calculated from the composition of the atmospheric gas, the history of the dew point by the dew point measuring device, and the temperature of the steel plate. It is a vertical continuous bleaching furnace equipped with a mechanism for controlling the high dew point gas blowing amount of the blowing mechanism based on the amount of water vapor consumed by the decarburization reaction.

当該竪型連続焼鈍炉は、内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板を備えることで、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、吹込機構の高露点ガス吹込量を制御する機構を備えることにより、炉内の露点を精度よく上昇できるので、炉内の露点制御性を向上し、脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。 The vertical continuous annealing furnace is divided into a plurality of sections along the specific horizontal direction, and one or a plurality of openings are provided so that the atmospheric gas flowing in the furnace so as to face the steel plate is meandered up and down. By providing the partition plate, the circulation of the atmospheric gas in the furnace can be improved. Further, based on the required water vapor amount calculated from the composition of the atmospheric gas, the history of the dew point by the dew point measuring device, and the water vapor consumption amount due to the decarburization reaction predicted by the temperature of the steel plate, the high dew point gas blowing amount of the blowing mechanism is determined. By providing a control mechanism, the dew point in the furnace can be raised accurately, so that the dew point controllability in the furnace can be improved and the decarburization reaction can be controlled accurately, and as a result, the desired quality of the steel plate such as bendability can be obtained. Can be obtained.

通板方向上流側の区画の露点が通板方向下流側の区画の露点よりも高いとよい。通板方向上流側の区画の露点が通板方向下流側の区画の露点よりも高いことで、通板方向下流側の区画(後段)で消費された水蒸気を通板方向上流側の区画(前段)で補填できるので、炉内の露点の制御性を向上できる。 It is preferable that the dew point of the section on the upstream side in the plate-passing direction is higher than the dew point of the section on the downstream side in the plate-passing direction. Since the dew point of the section on the upstream side in the plate-passing direction is higher than the dew point of the section on the downstream side in the plate-passing direction, the water vapor consumed in the section on the downstream side in the plate-passing direction (rear stage) is on the upstream side in the plate-passing direction (front stage). ), So the controllability of the dew point in the furnace can be improved.

上記仕切板の位置における鉛直方向炉断面の炉内面積に対する上記仕切板の開口の面積比が1/10以上1/4以下が好ましい。上記仕切板の開口の面積比が上記範囲であることで、雰囲気ガスの流量を良好な範囲に維持し、炉内の露点制御性を向上できる。 It is preferable that the area ratio of the opening of the partition plate to the area inside the furnace of the vertical furnace cross section at the position of the partition plate is 1/10 or more and 1/4 or less. When the area ratio of the openings of the partition plate is in the above range, the flow rate of the atmospheric gas can be maintained in a good range and the dew point controllability in the furnace can be improved.

上記課題を解決するためになされた本発明の別の一態様は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成され、炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板により内部を上記特定水平方向に沿って複数の区画に分割する竪型連続焼鈍炉を用いた焼鈍方法であって、上記雰囲気ガスの組成から必要水蒸気量を算出する工程と、上記1又は複数の区画の露点の履歴及び上記鋼板の温度から脱炭反応による消費水蒸気量を予測する工程と、上記必要水蒸気量及び上記消費水蒸気量により上記1又は複数の区画の高露点ガス吹込量を制御する工程とを備える焼鈍方法である。 Another aspect of the present invention made to solve the above problems includes a plurality of top rolls and a plurality of bottom rolls arranged inside, and a band shape between the plurality of top rolls and the plurality of bottom rolls. One or more having openings so that the atmospheric gas flowing in the furnace can meander up and down, which is configured to be constructed so that the steel plate of the above means meandering in the vertical direction and the steel plate is conveyed in a specific horizontal direction while being heat-treated. It is an annealing method using a vertical continuous annealing furnace that divides the inside into a plurality of sections along the specific horizontal direction by a partition plate, and is a step of calculating the required water vapor amount from the composition of the atmospheric gas, and the above 1 or The step of predicting the amount of water vapor consumed by the decarburization reaction from the history of dew points in a plurality of sections and the temperature of the steel plate, and the amount of high dew point gas blown into the above one or more sections are controlled by the required amount of water vapor and the amount of water consumed. It is an annealing method including a step of performing.

当該焼鈍方法は、内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板を備える竪型連続焼鈍炉を用いることで、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づいて高露点ガス吹込量を制御することにより炉内露点を精度よく上昇できるので、炉内の露点制御性を向上し、脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。 In the annealing method, the inside is divided into a plurality of sections along the specific horizontal direction, and one or a plurality of partition plates having openings so that the atmospheric gas flowing in the furnace so as to face the steel plate in the vertical direction meanders up and down. By using a vertical continuous annealing furnace equipped with the above, the circulation of atmospheric gas in the furnace can be improved. In addition, the dew point in the furnace is controlled by controlling the high dew point gas injection amount based on the required steam amount calculated from the composition of the atmospheric gas, the history of the dew point, and the water vapor consumption due to the decarburization reaction predicted by the temperature of the steel plate. Since it can be raised with high accuracy, the dew point controllability in the furnace can be improved and the decarburization reaction can be controlled with high accuracy, and as a result, the desired quality of the steel plate such as bendability can be obtained.

本発明の焼鈍方法は、炉内の露点制御性を向上し、脱炭反応を精度よく制御できる。 The annealing method of the present invention improves the dew point controllability in the furnace and can accurately control the decarburization reaction.

本発明の第1実施形態の竪型連続焼鈍炉の構成を示す模式図である。It is a schematic diagram which shows the structure of the vertical continuous annealing furnace of 1st Embodiment of this invention. 本発明の第2実施形態の竪型連続焼鈍炉の一部の構成を示す模式図である。It is a schematic diagram which shows the structure of a part of the vertical continuous annealing furnace of the 2nd Embodiment of this invention. 本発明の第3実施形態の竪型連続焼鈍炉の一部の構成を示す模式図である。It is a schematic diagram which shows the structure of a part of the vertical continuous annealing furnace of the 3rd Embodiment of this invention. 均熱帯の昇温速度、鋼板温度及び脱炭速度と炉の長手方向の位置との関係を示すグラフである。It is a graph which shows the relationship between the temperature rise rate of the soothing tropics, the steel plate temperature and the decarburization rate, and the position in the longitudinal direction of the furnace. 均熱帯の昇温速度、鋼板温度及び脱炭速度と炉の長手方向の位置との関係を示すグラフである。It is a graph which shows the relationship between the temperature rise rate of the soothing tropics, the steel plate temperature and the decarburization rate, and the position in the longitudinal direction of the furnace. ガス供給ノズルの配置のその他の実施形態を示す模式図である。It is a schematic diagram which shows the other embodiment of the arrangement of a gas supply nozzle. 実施例における竪型連続焼鈍炉の構成を示す模式図である。It is a schematic diagram which shows the structure of the vertical continuous annealing furnace in an Example. 実施例における露点と脱炭深さとの関係を示すグラフである。It is a graph which shows the relationship between the dew point and the decarburization depth in an Example.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

<竪型連続焼鈍炉>
[第1実施形態]
本発明は、溶融亜鉛めっき設備などで、炉内の露点を上昇させて鋼板の脱炭反応を進める高露点操業に適した竪型連続焼鈍炉に関するものである。当該竪型連続焼鈍炉は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成される。当該竪型連続焼鈍炉は、例えば自動車、船舶、建材、家電等に用いられる溶融亜鉛めっき鋼板の製造の一工程として行うことができる。
<Vertical continuous annealing furnace>
[First Embodiment]
The present invention relates to a vertical continuous annealing furnace suitable for high dew point operation in which a dew point in a furnace is raised to promote a dew point reaction of a steel sheet in a hot dip galvanizing facility or the like. The vertical continuous annealing furnace is provided with a plurality of top rolls and a plurality of bottom rolls arranged inside, and a strip-shaped steel plate is laid between the plurality of top rolls and the plurality of bottom rolls so as to meander in the vertical direction. It is configured to be passed and heat treated while transporting this steel sheet in a specific horizontal direction. The vertical continuous annealing furnace can be performed as one step of manufacturing a hot-dip galvanized steel sheet used for, for example, automobiles, ships, building materials, home appliances and the like.

当該竪型連続焼鈍炉の第1実施形態の構成を、図1を参照して説明する。竪型連続焼鈍炉1は、加熱帯5、均熱帯10及び冷却帯7を備え、この順に並置され、均熱帯10で鋼板の脱炭を行う。加熱帯5は、第1加熱帯5A(加熱帯前段)及び第2加熱帯5B(加熱帯後段)を有する。竪型連続焼鈍炉1の冷却帯7には、例えば溶融亜鉛めっき浴が接続される。 The configuration of the first embodiment of the vertical continuous annealing furnace will be described with reference to FIG. The vertical continuous annealing furnace 1 is provided with a heating zone 5, a soaking zone 10 and a cooling zone 7, and is juxtaposed in this order, and the steel plate is decarburized in the soaking zone 10. The heating zone 5 has a first heating zone 5A (first stage of the heating zone) and a second heating zone 5B (second stage of the heating zone). For example, a hot-dip galvanizing bath is connected to the cooling zone 7 of the vertical continuous annealing furnace 1.

竪型連続焼鈍炉1は、炉内上部に複数のトップロール3が配設され、炉内下部に複数のボトムロール4が配設される。鋼板2は、第1加熱帯5Aの下部の鋼帯導入口から第1加熱帯5A内に導入され、矢印Pで示す通板方向に搬送される。竪型連続焼鈍炉1は、複数のトップロール3及び複数のボトムロール4間に鋼板2を上下方向に蛇行するよう架け渡し、鋼板2を特定の水平方向に搬送しつつ熱処理するよう構成される。 In the vertical continuous annealing furnace 1, a plurality of top rolls 3 are arranged in the upper part of the furnace, and a plurality of bottom rolls 4 are arranged in the lower part of the furnace. The steel plate 2 is introduced into the first heating zone 5A from the steel strip introduction port at the lower part of the first heating zone 5A, and is conveyed in the plate passing direction indicated by the arrow P. The vertical continuous annealing furnace 1 is configured to bridge a steel plate 2 between a plurality of top rolls 3 and a plurality of bottom rolls 4 so as to meander in the vertical direction, and heat-treat the steel plate 2 while transporting the steel plate 2 in a specific horizontal direction. ..

トップロール3及びボトムロール4を起点に鋼板2が180度に折り返される場合、鋼板2は竪型連続焼鈍炉1の所定の帯の内部で上下方向に複数回搬送され、複数パスを形成する。パス数は、処理条件に応じて適宜設定可能である。また、一部のトップロール3及びボトムロール4では、鋼板2を折り返すことなく直角に方向転換させて、鋼板2を次の帯へと移動させる。鋼板2は、竪型連続焼鈍炉1の内部で、加熱帯5、均熱帯10及び冷却帯7の順に搬送され、鋼板2に対して焼鈍が行われる。 When the steel plate 2 is folded back at 180 degrees from the top roll 3 and the bottom roll 4, the steel plate 2 is conveyed in the predetermined band of the vertical continuous annealing furnace 1 a plurality of times in the vertical direction to form a plurality of paths. The number of paths can be appropriately set according to the processing conditions. Further, in some of the top rolls 3 and the bottom roll 4, the steel plate 2 is turned at a right angle without being folded back, and the steel plate 2 is moved to the next band. The steel plate 2 is conveyed in the order of the heating zone 5, the soaking zone 10 and the cooling zone 7 inside the vertical continuous annealing furnace 1, and the steel sheet 2 is annealed.

竪型連続焼鈍炉1において、隣接する帯は、それぞれの帯の上部同士または下部同士を接続する連通部を介して連通している。第1加熱帯5Aと第2加熱帯5Bとは、それぞれの帯の上部同士を接続するスロート27を介して連通する。第2加熱帯5Bと均熱帯10とは、それぞれの帯の下部同士を接続するスロート26を介して連通する。均熱帯10と冷却帯7とは、それぞれの帯の下部同士を接続するスロート25を介して連通する。 In the vertical continuous annealing furnace 1, adjacent bands communicate with each other via a communication portion connecting the upper portions or the lower portions of the respective bands. The first heating zone 5A and the second heating zone 5B communicate with each other via a throat 27 connecting the upper portions of the respective bands. The second heating zone 5B and the tropics 10 communicate with each other via a throat 26 connecting the lower portions of the respective zones. The solitary tropics 10 and the cooling zone 7 communicate with each other via a throat 25 connecting the lower portions of the respective zones.

(加熱帯)
本実施形態において、第2加熱帯5Bは、直火型加熱炉である。第2加熱帯5Bにおける直火型加熱炉の内壁には、複数のバーナが鋼板2に対向して分散配置される。また、第1加熱帯5Aの内部には、第2加熱帯5Bの燃焼排ガスが供給され、その熱で鋼板2を予熱する。第2加熱帯5Bの内部の温度は、鋼板2の種類や使用目的に応じて選択されるが、例えば800~1200℃とすることが好ましい。
(Heating zone)
In the present embodiment, the second heating zone 5B is a direct-fired heating furnace. On the inner wall of the direct-fired heating furnace in the second heating zone 5B, a plurality of burners are dispersedly arranged facing the steel plate 2. Further, the combustion exhaust gas of the second heating zone 5B is supplied to the inside of the first heating zone 5A, and the heat of the combustion exhaust gas preheats the steel sheet 2. The temperature inside the second heating zone 5B is selected according to the type of the steel sheet 2 and the purpose of use, but is preferably 800 to 1200 ° C., for example.

(冷却帯)
冷却帯7では、加熱後の鋼板2が冷却される。冷却帯7には、一定の流量で低露点の雰囲気ガスがガス導入口G1から供給され、炉内温度を徐々に低下させる。供給される雰囲気ガスとしては、例えばNおよび不可避的不純物からなる組成を有する露点が-60℃程度のガスが挙げられる。
(Cooling zone)
In the cooling zone 7, the heated steel sheet 2 is cooled. Atmospheric gas having a low dew point is supplied to the cooling zone 7 from the gas inlet G1 at a constant flow rate, and the temperature inside the furnace is gradually lowered. Examples of the supplied atmospheric gas include a gas having a composition consisting of N 2 and unavoidable impurities and having a dew point of about −60 ° C.

(均熱帯)
均熱帯10では、炉内の雰囲気温度を所定の焼鈍温度に保持することで、鋼板2の内部まで焼鈍温度に加熱しつつ下記の反応式に従い鋼板の脱炭反応が行われる。
O+C→CO+H
(Tropical)
In the soaking tropic 10, by keeping the ambient temperature in the furnace at a predetermined annealing temperature, the decarburization reaction of the steel sheet is performed according to the following reaction formula while heating the inside of the steel sheet 2 to the annealing temperature.
H 2 O + C → CO + H 2

均熱帯10では、加熱手段として例えば電気ヒーター、ラジアントチューブ(RT)を用いて、鋼板2を間接加熱することができる。均熱帯10の内部の平均温度は鋼板2の種類や使用目的に応じて選択されるが、例えば700~900℃とすることが好ましい。 In the average tropics 10, the steel plate 2 can be indirectly heated by using, for example, an electric heater or a radiant tube (RT) as a heating means. The average temperature inside the tropics 10 is selected according to the type of the steel sheet 2 and the purpose of use, but is preferably 700 to 900 ° C., for example.

均熱帯10には、均熱帯10と冷却帯7とは、それぞれの帯の下部同士を接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G2からも一定の流量でN等の低露点の雰囲気ガスが供給される。なお、雰囲気ガス供給量及び冷却帯からのガス量は、配管に設けられたガス流量計により測定する。 In the tropics 10, the tropics 10 and the cooling zone 7 are supplied with a low dew point atmosphere gas from the cooling zone 7 via a throat 25 connecting the lower portions of the zones. Further, the atmospheric gas having a low dew point such as N2 is supplied from the gas inlet G2 at a constant flow rate. The amount of atmospheric gas supplied and the amount of gas from the cooling zone are measured by a gas flow meter provided in the piping.

均熱帯10には仕切板14が備えられ、仕切板14は炉内を水平方向に沿って複数の区画に分割する。具体的には、均熱帯10は通板方向の上流側の前段12及び下流側の後段11の2区画に分割されている。仕切板14は、一端が炉底壁に固定され、他端が、炉底壁とトップロール3の鋼板2が巻きかけられていない側のロール下端部との間に開放された状態で備えられ、仕切板14は鋼板2と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する。 The solitary tropics 10 is provided with a partition plate 14, and the partition plate 14 divides the inside of the furnace into a plurality of sections along the horizontal direction. Specifically, the solitary tropic 10 is divided into two sections, a front stage 12 on the upstream side in the plate-passing direction and a rear stage 11 on the downstream side. One end of the partition plate 14 is fixed to the bottom wall of the furnace, and the other end is provided in a state of being open between the bottom wall of the furnace and the lower end of the roll on the side where the steel plate 2 of the top roll 3 is not wound. The partition plate 14 has an opening so that the atmospheric gas flowing in the furnace meanders up and down so as to face the steel plate 2.

本発明者らは、このように炉内の流動シミュレーションなどにより、その開口部の位置も、炉内ガスを均一にするために適正な位置があることを知見した。また、脱炭反応のシミュレーションにより、上記露点制御が区画毎に行われることで、区画ごとの鋼板の通板速度の影響により滞在時間が異なる場合についても、適正に露点を調整できることを知見した。このように、炉内の雰囲気ガスの導入位置と排出位置を規定することで、雰囲気ガスの循環性を向上して雰囲気ガスの均一性を高め、露点制御が区画毎に行われることで、それぞれの区画に応じて適切に露点を制御できる。 The present inventors have found from such a flow simulation in the furnace that the position of the opening also has an appropriate position for making the gas in the furnace uniform. In addition, by simulating the decarburization reaction, it was found that the dew point can be adjusted appropriately even when the staying time differs due to the influence of the plate passing speed of the steel plate in each section by performing the above dew point control for each section. In this way, by defining the introduction position and the discharge position of the atmospheric gas in the furnace, the circulation of the atmospheric gas is improved, the uniformity of the atmospheric gas is improved, and the dew point control is performed for each section. The dew point can be appropriately controlled according to the section of.

仕切板14は、使用される温度域における耐熱性と、操業で破損しない強度を備え、実質的にガスを遮断できるものであればよく、例えばセラミックボード等、公知の耐熱材料が使用される。 The partition plate 14 may be any as long as it has heat resistance in the temperature range used and strength that does not break during operation and can substantially block gas, and a known heat resistant material such as a ceramic board is used.

仕切板の位置における鉛直方向炉断面の炉内面積に対する上記仕切板の開口の面積比としては、1/10以上1/4以下である。ここで、仕切板14の開口の面積比とは、仕切り設置部分における鉛直方向炉断面の炉内面積に対する、上記断面部分において上記断面と直角方向へのガスの流れを規制するものが存在していない部分の面積の比率である。仕切板14の開口の面積比が上記範囲であることで、雰囲気ガスの流量を良好な範囲に維持し、炉内の露点制御性を向上できる。また、上記仕切板の開口の面積比が1/10未満の場合、気体の圧力損失が大きくなり過ぎて、脱炭反応に必要な雰囲気ガスの流量を十分に確保できないおそれがある。一方、上記仕切板の開口の面積比が1/4を超えると、この開口を通って雰囲気ガスが移動し、雰囲気ガスの流れの方向を通板方向と逆方向に規制する作用が低下するおそれがある。 The area ratio of the opening of the partition plate to the area inside the furnace of the vertical furnace cross section at the position of the partition plate is 1/10 or more and 1/4 or less. Here, the area ratio of the opening of the partition plate 14 regulates the flow of gas in the cross section in the direction perpendicular to the cross section with respect to the area inside the furnace in the vertical furnace cross section in the partition installation portion. It is the ratio of the area of the non-existent part. When the area ratio of the openings of the partition plate 14 is in the above range, the flow rate of the atmospheric gas can be maintained in a good range and the dew point controllability in the furnace can be improved. Further, when the area ratio of the openings of the partition plate is less than 1/10, the pressure loss of the gas becomes too large, and there is a possibility that the flow rate of the atmospheric gas required for the decarburization reaction cannot be sufficiently secured. On the other hand, if the area ratio of the opening of the partition plate exceeds 1/4, the atmospheric gas may move through this opening, and the action of restricting the flow direction of the atmospheric gas in the direction opposite to the plate direction may be reduced. There is.

当該竪型連続焼鈍炉は、複数の区画毎に配設される複数の露点測定器を備える。均熱帯10では、露点は、区画毎に配設される露点測定器R1及び露点測定器R2により常時測定されている。 The vertical continuous annealing furnace includes a plurality of dew point measuring instruments arranged in a plurality of sections. In the average tropics 10, the dew point is constantly measured by the dew point measuring device R1 and the dew point measuring device R2 arranged in each section.

当該竪型連続焼鈍炉1は、複数の区画の露点を調整するために図示しない高露点ガス(水蒸気含む)を吹き込む機構を備える。具体的には、当該竪型連続焼鈍炉1には、高露点ガス又は水蒸気を供給するための図示しないガス供給装置が付設されている。ガス供給装置は、ガス供給ノズルを備える。そして、均熱帯10の前段12には、雰囲気ガスの流路に沿いかつ鋼板2の表面に向けて高露点ガスを供給するガス供給ノズル6A及び6Bが配設されている。ガス供給ノズル6A及び6Bは、炉上壁から一部のトップロール3間に向けて蒸気が吹き込まれるように配置されている。また、水蒸気を鋼板にぶつけると鋼板が酸化してしまうため、鋼板に直接当てないようにガス供給ノズルを配置とすることが好ましい。そのため、ガス供給ノズルはトップロール3間やボトムロール4間に配置したり、雰囲気ガス導入口G2にガス供給ノズルを配置して雰囲気ガスと混合して高露点ガスを吹き込むようにしてもよい。また、雰囲気露点を0℃に維持しようとすると、吹き込むガスの露点は、水蒸気の消費も考慮して高くする必要がある。 The vertical continuous annealing furnace 1 includes a mechanism for blowing a high dew point gas (including steam) (not shown) in order to adjust the dew point of a plurality of sections. Specifically, the vertical continuous annealing furnace 1 is provided with a gas supply device (not shown) for supplying high dew point gas or steam. The gas supply device includes a gas supply nozzle. Further, gas supply nozzles 6A and 6B for supplying high dew point gas toward the surface of the steel plate 2 along the flow path of the atmospheric gas are arranged in the front stage 12 of the soothing tropics 10. The gas supply nozzles 6A and 6B are arranged so that steam is blown from the furnace upper wall toward a part of the top rolls 3. Further, since the steel sheet is oxidized when the water vapor hits the steel sheet, it is preferable to arrange the gas supply nozzle so as not to directly hit the steel sheet. Therefore, the gas supply nozzles may be arranged between the top rolls 3 and the bottom rolls 4, or the gas supply nozzles may be arranged at the atmosphere gas introduction port G2 to mix with the atmosphere gas and blow the high dew point gas. Further, when trying to maintain the dew point of the atmosphere at 0 ° C., it is necessary to raise the dew point of the blown gas in consideration of the consumption of water vapor.

また、当該竪型連続焼鈍炉1は、吹込機構の高露点ガス吹込量を制御する図示しない制御機構を備える。制御機構は、従来公知のコンピュータシステムを用いることができる。この制御機構により、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、上記吹込機構の高露点ガス吹込量が設定され、上記吹込量の高露点ガスが吹込機構から炉内に吹き込まれる。この制御機構による制御としては、例えば、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に応じて吹込機構の高露点ガス吹込量を調整する制御や、高露点ガスの吹込位置、吹き込み時間等を調整する制御等が挙げられる。また、目標とする露点については、目的とする鋼板の剛度に応じて最終脱炭深さを検討し、この脱炭深さが達成されるように設定される。 Further, the vertical continuous annealing furnace 1 includes a control mechanism (not shown) for controlling the high dew point gas blowing amount of the blowing mechanism. As the control mechanism, a conventionally known computer system can be used. With this control mechanism, the high dew point of the blowing mechanism is based on the required amount of water vapor calculated from the composition of the atmospheric gas, the history of the dew point by the dew point measuring device, and the amount of water vapor consumed by the decarburization reaction predicted by the temperature of the steel plate. The gas blowing amount is set, and the high dew point gas of the blowing amount is blown into the furnace from the blowing mechanism. The control by this control mechanism is, for example, blown according to the required amount of water vapor calculated from the composition of the atmospheric gas, the history of the dew point by the dew point measuring device, and the amount of water vapor consumed by the decarburization reaction predicted by the temperature of the steel plate. Examples include control for adjusting the amount of high dew point gas blown by the mechanism, control for adjusting the blowing position of high dew point gas, blowing time, and the like. Further, regarding the target dew point, the final decarburization depth is examined according to the rigidity of the target steel sheet, and this dew point is set so as to be achieved.

<利点>
当該竪型連続焼鈍炉は、炉内で雰囲気ガスが均一に循環しにくい竪型構造であるにも係わらず、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、吹込機構の高露点ガス吹込量を制御する機構を備えることにより、炉内露点を精度よく上昇できるので、炉内の露点制御性を向上し、脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。
<Advantage>
Although the vertical continuous annealing furnace has a vertical structure in which it is difficult for the atmospheric gas to circulate uniformly in the furnace, the circulation of the atmospheric gas in the furnace can be improved. Further, based on the required water vapor amount calculated from the composition of the atmospheric gas, the history of the dew point by the dew point measuring device, and the water vapor consumption amount due to the decarburization reaction predicted by the temperature of the steel plate, the high dew point gas blowing amount of the blowing mechanism is determined. By providing a control mechanism, the dew point in the furnace can be raised accurately, so that the dew point controllability in the furnace can be improved and the decarburization reaction can be controlled accurately, and as a result, the desired quality of the steel plate such as bendability can be obtained. Obtainable.

[第2実施形態]
図2は、本発明の第2実施形態の竪型連続焼鈍炉の一部である均熱帯20の構成を示す模式図である。なお、第1実施形態と同様の構成は同じ参照符号のみを記載し、説明を省略する。
[Second Embodiment]
FIG. 2 is a schematic view showing the configuration of the soothing tropics 20 which is a part of the vertical continuous annealing furnace of the second embodiment of the present invention. In the same configuration as in the first embodiment, only the same reference numerals will be described, and the description thereof will be omitted.

第2実施形態に係る竪型連続焼鈍炉では、均熱帯20の雰囲気ガスの流入口となるスロート25及び流出口となるスロート26の双方が炉上部に配設される。均熱帯20には、均熱帯20と冷却帯7とを接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G4からも一定の流量でN等の低露点の雰囲気ガスが供給される。均熱帯20は、通板方向の上流側の前段22及び下流側の後段21の2区画に分割され、仕切板24の一端が上記均熱帯の炉上壁に固定され、他端が、炉底壁とボトムロール4の鋼板2が巻きかけられていない側のロール上端部との間に開放された状態で備えられている。 In the vertical continuous annealing furnace according to the second embodiment, both the throat 25 as the inlet and the throat 26 as the outlet of the atmospheric gas of the solitary tropics 20 are arranged in the upper part of the furnace. Atmospheric gas having a low dew point is supplied from the cooling zone 7 to the tropics 20 via a throat 25 connecting the tropics 20 and the cooling zone 7. Further, the atmospheric gas having a low dew point such as N2 is supplied from the gas inlet G4 at a constant flow rate. The solitary tropic 20 is divided into two sections, a front stage 22 on the upstream side in the through plate direction and a rear stage 21 on the downstream side. The steel plate 2 of the bottom roll 4 is provided in an open state between the wall and the upper end of the roll on the side where the bottom roll 4 is not wound.

第2実施形態においては、露点を調整するため高露点ガス(水蒸気含む)を吹き込む均熱帯20が仕切板24により複数の区画に分割され、高露点ガスの吹込みと露点制御が区画毎に行われる。従って、雰囲気ガスと吹き込まれた高露点ガスとの混合が促進され、炉内露点がより均一になる。また、第1実施形態と同様、雰囲気ガスの流路に沿い、かつ鋼板2の表面に向けて高露点ガスを供給するガス供給ノズルが配設されているので、他の区画の雰囲気ガスに影響を与えることなく、区画毎に露点を制御できる。 In the second embodiment, the solitary tropic 20 that blows high dew point gas (including steam) to adjust the dew point is divided into a plurality of sections by the partition plate 24, and the high dew point gas is blown and the dew point control is performed for each section. Will be. Therefore, the mixing of the atmospheric gas and the blown high dew point gas is promoted, and the dew point in the furnace becomes more uniform. Further, as in the first embodiment, since the gas supply nozzle for supplying the high dew point gas is arranged along the flow path of the atmospheric gas and toward the surface of the steel plate 2, it affects the atmospheric gas in other sections. The dew point can be controlled for each section without giving.

上述したように、水蒸気の消費量は、鋼板温度により異なることから、本実施形態では、区画毎に鋼板温度を測定し、蒸気の追加投入量を調整することができる。また、焼鈍炉では板厚が厚いほど通板速度が低下し、通板速度が低下すると脱炭深さは大きくなる。このような場合にも区画毎に、水蒸気の投入量を調整することで、脱炭反応の制御性を向上できる。 As described above, since the amount of steam consumed differs depending on the temperature of the steel sheet, in the present embodiment, the temperature of the steel sheet can be measured for each section and the amount of additional steam input can be adjusted. Further, in the annealing furnace, the thicker the plate thickness, the lower the plate passing speed, and when the plate passing speed decreases, the decarburization depth increases. Even in such a case, the controllability of the decarburization reaction can be improved by adjusting the amount of water vapor input for each section.

通板方向上流側の区画である前段22の露点が通板方向下流側の区画である後段21の露点よりも高いとよい。通板方向上流側の前段22の露点が通板方向下流側の後段21の露点よりも高いことで、通板方向下流側の後段で消費された水蒸気を通板方向上流側の前段で補填できるので、炉内の露点の制御性を向上できる。また、通板速度の変更により均熱帯の滞在時間が変動する場合においても、露点を精度よく制御することで、適正な脱炭深さに調整できる。 It is preferable that the dew point of the front stage 22 which is the section on the upstream side in the through plate direction is higher than the dew point of the rear stage 21 which is the section on the downstream side in the through plate direction. Since the dew point of the front stage 22 on the upstream side in the plate-passing direction is higher than the dew point of the rear stage 21 on the downstream side in the plate-passing direction, the water vapor consumed in the rear stage on the downstream side in the plate-passing direction can be compensated by the front stage on the upstream side in the plate-passing direction. Therefore, the controllability of the dew point in the furnace can be improved. In addition, even when the staying time in the tropics fluctuates due to the change in the plate passing speed, the dew point can be controlled accurately to adjust the decarburization depth to an appropriate level.

<利点>
上記第2実施形態によれば、雰囲気ガスの流れが仕切板で区画毎に蒸気を投入する混合が促進され、炉内露点がより均一になり、炉内の水蒸気分布の制御の精度をより向上できる。また、露点の制御が区画毎に行われることで、均熱帯の通板方向下流側の前段で行われた脱炭反応により下降した雰囲気ガスの露点を精度よく修正することができる。
<Advantage>
According to the second embodiment, the flow of the atmospheric gas is promoted by injecting steam into each section by the partition plate, the dew point in the furnace becomes more uniform, and the accuracy of controlling the water vapor distribution in the furnace is further improved. can. In addition, by controlling the dew point for each section, it is possible to accurately correct the dew point of the atmospheric gas that has fallen due to the decarburization reaction performed in the front stage on the downstream side in the plate-passing direction of the tropics.

[第3実施形態]
図3は、本発明の第3実施形態の竪型連続焼鈍炉の一部である均熱帯30の構成を示す模式図である。なお、第1実施形態と同様の構成は同じ参照符号のみを記載し、説明を省略する。
[Third Embodiment]
FIG. 3 is a schematic view showing the configuration of the soothing tropics 30 which is a part of the vertical continuous annealing furnace of the third embodiment of the present invention. In the same configuration as in the first embodiment, only the same reference numerals will be described, and the description thereof will be omitted.

第3実施形態に係る竪型連続焼鈍炉では、均熱帯30の雰囲気ガスの流入口となるスロート25及び流出口となるスロート26の双方が炉底部に配設される。均熱帯30には、均熱帯30と冷却帯7とを接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G6からも一定の流量でN等の低露点の雰囲気ガスが供給される。均熱帯30は、通板方向の上流側の前段32及び下流側の後段31の2区画に分割され、仕切板34の一端が上記均熱帯30の炉底壁に固定され、他端が、炉底壁とトップロール3の鋼板2が巻きかけられていない側のロール下端部との間に開放された状態で備えられている。 In the vertical continuous annealing furnace according to the third embodiment, both the throat 25 as the inlet and the throat 26 as the outlet of the atmospheric gas of the soothing tropics 30 are arranged at the bottom of the furnace. Atmospheric gas having a low dew point is supplied from the cooling zone 7 to the tropics 30 via a throat 25 connecting the tropics 30 and the cooling zone 7. Further, an atmospheric gas having a low dew point such as N2 is supplied from the gas inlet G6 at a constant flow rate. The solitary tropics 30 is divided into two sections, a front stage 32 on the upstream side in the through plate direction and a rear stage 31 on the downstream side, one end of the partition plate 34 is fixed to the bottom wall of the solitary tropics 30, and the other end is a furnace. The steel plate 2 of the top roll 3 is provided in an open state between the bottom wall and the lower end of the roll on the side where the steel plate 2 of the top roll 3 is not wound.

露点を調整するため高露点ガス(水蒸気含む)を吹き込む均熱帯30が仕切板34により複数の区画に分割され、高露点ガスの吹込みと露点制御が区画毎に行われる。従って、雰囲気ガスと吹き込まれた高露点ガスとの混合が促進され、炉内露点がより均一になる。また、第1実施形態と同様、雰囲気ガスの流路に沿いかつ鋼板2の表面に向けて高露点ガスを供給するガス供給ノズルが配設されているので、他の区画の雰囲気ガスに影響を与えることなく、区画毎に露点を制御できる。 The solitary tropic 30 that blows high dew point gas (including steam) to adjust the dew point is divided into a plurality of sections by the partition plate 34, and the high dew point gas is blown and the dew point control is performed for each section. Therefore, the mixing of the atmospheric gas and the blown high dew point gas is promoted, and the dew point in the furnace becomes more uniform. Further, as in the first embodiment, since the gas supply nozzle that supplies the high dew point gas along the flow path of the atmospheric gas and toward the surface of the steel plate 2 is arranged, it affects the atmospheric gas in other sections. The dew point can be controlled for each section without giving.

第3実施形態においても、通板方向上流側の区画である前段32の露点が通板方向下流側の区画である後段31の露点よりも高いとよい。通板方向上流側の前段32の露点が通板方向下流側の後段31の露点よりも高いことで、通板方向下流側の後段で消費された水蒸気を通板方向上流側の前段で補填できるので、炉内の露点の制御性を向上できる。また、通板速度の変更により均熱帯の滞在時間が変動する場合においても、露点を精度よく制御することで、適正な脱炭深さに調整できる。 Also in the third embodiment, it is preferable that the dew point of the front stage 32, which is the section on the upstream side in the plate-passing direction, is higher than the dew point of the rear stage 31, which is the section on the downstream side in the plate-passing direction. Since the dew point of the front stage 32 on the upstream side in the plate-passing direction is higher than the dew point of the rear stage 31 on the downstream side in the plate-passing direction, the water vapor consumed in the rear stage on the downstream side in the plate-passing direction can be compensated by the front stage on the upstream side in the plate-passing direction. Therefore, the controllability of the dew point in the furnace can be improved. In addition, even when the staying time in the tropics fluctuates due to the change in the plate passing speed, the dew point can be controlled accurately to adjust the decarburization depth to an appropriate level.

<利点>
上記第3実施形態によれば、雰囲気ガスの流れが仕切板で区画毎に蒸気を投入する混合が促進され、炉内露点がより均一になり、炉内の水蒸気分布の制御の精度をより向上できる。また、露点の制御が区画毎に行われることで、均熱帯の通板方向下流側の前段で行われた脱炭反応により下降した雰囲気ガスの露点を精度よく修正することができる。
<Advantage>
According to the third embodiment, the flow of the atmospheric gas is promoted by injecting steam into each section by the partition plate, the dew point in the furnace becomes more uniform, and the accuracy of controlling the steam distribution in the furnace is further improved. can. In addition, by controlling the dew point for each section, it is possible to accurately correct the dew point of the atmospheric gas that has fallen due to the decarburization reaction performed in the front stage on the downstream side in the plate-passing direction of the tropics.

<焼鈍方法>
当該焼鈍方法は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成され、炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板により内部を上記特定水平方向に沿って複数の区画に分割する竪型連続焼鈍炉を用いた焼鈍方法である。当該焼鈍方法は、溶融亜鉛めっき設備などで、炉内露点を上昇させて、鋼板の脱炭反応を進める高露点操業を行うための雰囲気ガスの供給方法と制御方法に関するものである。当該焼鈍方法は、例えば自動車、船舶、建材、家電等に用いられる溶融亜鉛めっき鋼板の製造の一工程として行うことができる。
<Annealing method>
The annealing method includes a plurality of top rolls and a plurality of bottom rolls arranged inside, and a strip-shaped steel plate is bridged between the plurality of top rolls and the plurality of bottom rolls so as to meander in the vertical direction. It is configured to heat-treat the steel plate while transporting it in a specific horizontal direction, and has an opening so that the atmospheric gas flowing in the furnace meanders up and down. This is an annealing method using a vertical continuous annealing furnace that divides into sections. The annealing method relates to an atmosphere gas supply method and a control method for performing a high dew point operation for promoting a dew point reaction of a steel sheet by raising the dew point in the furnace in a hot dip galvanizing facility or the like. The annealing method can be performed as one step of manufacturing a hot-dip galvanized steel sheet used for, for example, automobiles, ships, building materials, home appliances and the like.

当該焼鈍方法は、上記雰囲気ガスの組成から必要水蒸気量を算出する工程と、上記1又は複数の区画の露点の履歴及び上記鋼板の温度から脱炭反応による消費水蒸気量を予測する工程と、上記必要水蒸気量及び上記消費水蒸気量により上記1又は複数の区画の高露点ガス吹込量を制御する工程とを備える。 The annealing method includes a step of calculating the required amount of water vapor from the composition of the atmospheric gas, a step of predicting the amount of water vapor consumed by the decarburization reaction from the history of the dew points of the one or a plurality of sections and the temperature of the steel plate, and the above. The present invention includes a step of controlling the amount of high dew point gas blown into the one or a plurality of sections according to the required amount of steam and the amount of steam consumed.

[必要水蒸気量算出工程]
必要水蒸気量算出は、以下の工程で行なわれる。
(1)最終脱炭深さの設定
初めに、目的とする鋼板の剛度に応じて最終脱炭深さを設定する。なお、当該焼鈍方法においては、脱炭深さは、鋼板の厚み方向にGDOES分析をし、脱炭により表層から欠乏した炭素濃度が厚み方向に上昇して、母材の90%になった位置の深さをいう。
(2)目標露点の設定
脱炭反応は、Cの拡散律速により進行するため、脱炭深さx1は、経過時間(炉での滞在時間)tの1/2乗に比例し、以下の式(1)で表される。
[Required water vapor amount calculation process]
The required water vapor amount is calculated in the following steps.
(1) Setting the final decarburization depth First, set the final decarburization depth according to the rigidity of the target steel sheet. In the annealing method, the decarburization depth was analyzed by GDOES in the thickness direction of the steel sheet, and the carbon concentration deficient from the surface layer due to decarburization increased in the thickness direction to 90% of the base metal. The depth of.
(2) Setting the target dew point Since the decarburization reaction proceeds by the diffusion rate-determining of C, the decarburization depth x1 is proportional to the elapsed time (staying time in the furnace) t to the 1/2 power, and the following equation It is represented by (1).

Figure 0007073162000001
Figure 0007073162000001

また、拡散係数kpは、鋼板温度T1の関数であり、アレニウス型で鋼板温度T1の上昇に伴い大きくなる。拡散係数kpは、以下の式(2)で表される。 Further, the diffusion coefficient kp is a function of the steel plate temperature T1 and becomes larger as the steel plate temperature T1 increases in the Arrhenius type. The diffusion coefficient kp is expressed by the following equation (2).

Figure 0007073162000002
Figure 0007073162000002

ここで、constは、頻度因子を示す定数である。PH2Oは、飽和水蒸気圧である。nは、定数であり、本発明ではn=1である。 Here, const is a constant indicating a frequency factor. PH2O is a saturated water vapor pressure. n is a constant, and in the present invention, n = 1.

経過時間tに応じた炭素の脱炭深さx1を用いた式では脱炭速度dx1/dtは、以下の式(3)で表される。 In the formula using the carbon decarburization depth x1 according to the elapsed time t, the decarburization rate dx1 / dt is expressed by the following formula (3).

Figure 0007073162000003
Figure 0007073162000003

また、最終脱炭深さx2は、以下の式(4)で表される。 The final decarburization depth x2 is represented by the following equation (4).

Figure 0007073162000004
Figure 0007073162000004

鋼板温度T1の履歴から目標とする最終脱炭深さx2を得るための水蒸気量が決まり、目標露点が設定される。より詳細には、式(1)、式(2)及び式(3)から鋼板温度T1の履歴に対して、PH2Oを任意の一定値とした場合の脱炭速度dx1/dt及び経過時間tに応じた脱炭深さx1を求める。そして式(4)から最終の脱炭深さを計算し、この脱炭深さの計算結果と目標脱炭深さとの比較を行い、脱炭深さの計算結果と目標脱炭深さが一致する水蒸気量が定まるまで、計算が繰り返されることになる。 From the history of the steel plate temperature T1, the amount of water vapor for obtaining the target final decarburization depth x2 is determined, and the target dew point is set. More specifically, from the equations (1), (2) and (3), the decarburization rate dx1 / dt and the elapsed time t when PH2O is set to an arbitrary constant value with respect to the history of the steel plate temperature T1. Decarburization depth x1 according to the above is obtained. Then, the final decarburization depth is calculated from the equation (4), the calculation result of this decarburization depth is compared with the target decarburization depth, and the calculation result of the decarburization depth and the target decarburization depth match. The calculation will be repeated until the amount of water vapor to be applied is determined.

(3)炉内の露点を目標露点にするための必要水蒸気量の算出
次に、雰囲気ガスの露点から含有水分の濃度(ppm)を算出する。始めに、Tetensの式より露点T2(℃)から飽和水蒸気圧を算出する。そして、算出した飽和水蒸気圧から、含有水分の濃度を算出する。含有水分の濃度HO(ppm)は、以下の式(5)から算出できる。
(3) Calculation of the amount of water vapor required to set the dew point in the furnace to the target dew point Next, the concentration (ppm) of the contained water is calculated from the dew point of the atmospheric gas. First, the saturated water vapor pressure is calculated from the dew point T2 (° C.) from the Tetens equation. Then, the concentration of the contained water is calculated from the calculated saturated water vapor pressure. The concentration H 2 O (ppm) of the contained water can be calculated from the following formula (5).

Figure 0007073162000005
Figure 0007073162000005

脱炭反応進行中の、炉内の露点を目標露点にするための必要水蒸気量は、以下の式(6)で表される。
必要水蒸気量=雰囲気露点を上昇させる水蒸気量+脱炭反応消費量・・・(6)
The amount of steam required to set the dew point in the furnace as the target dew point during the decarburization reaction is expressed by the following formula (6).
Required water vapor amount = water vapor amount that raises the atmospheric dew point + decarburization reaction consumption ... (6)

均熱帯に冷却帯からのガス量と追加の雰囲気ガスを供給する場合、上記式(6)の雰囲気露点を上昇させる水蒸気量は、以下の式(7)で表される。
雰囲気露点を上昇させる水蒸気量
=追加の雰囲気ガス供給量×{f(目標露点)-f(供給ガス露点)}
+冷却帯からのガス量×{f(目標露点)-f(ガス冷却帯露点)}・・・(7)
When the amount of gas from the cooling zone and the additional atmospheric gas are supplied to the tropics, the amount of water vapor that raises the atmospheric dew point of the above formula (6) is expressed by the following formula (7).
Amount of water vapor that raises the atmospheric dew point = additional atmospheric gas supply amount x {f (target dew point) -f (supply gas dew point)}
+ Gas amount from the cooling zone x {f (target dew point) -f (gas cooling zone dew point)} ... (7)

[消費水蒸気量予測工程]
消費水蒸気量の予測は、以下の工程で行なわれる。本工程では、1又は複数の区画の露点の履歴及び上記鋼板の温度から脱炭反応による消費水蒸気量を予測する。
[Water consumption prediction process]
The amount of water vapor consumed is predicted in the following process. In this step, the amount of water vapor consumed by the decarburization reaction is predicted from the history of the dew points of one or more sections and the temperature of the steel sheet.

脱炭反応による水蒸気量
=通板量×鋼材炭素量×(脱炭深さ÷鋼板厚さ)÷2×2面×0.9×炭素の水蒸気消費量・・・(8)
Amount of water vapor due to decarburization reaction = amount of passing plate x amount of carbon in steel material x (depth of decarburization ÷ thickness of steel plate) ÷ 2 x 2 sides x 0.9 x amount of water vapor consumed by carbon ... (8)

上記式(8)において、2面とは鋼板の表面及び裏面のことである。炭素の水蒸気消費量においては、上述したように脱炭反応ではC(炭素)1モルに対してHO1モルが消費される。また、脱炭された鋼板の厚み方向の炭素濃度分布においては、鋼板表面では略0%であり、厚み方向に向けて略リニアに増加し、母材の濃度まで上昇する。脱炭量とは、母材の炭素濃度から減少した炭素濃度である。上述したように鋼板の厚み方向の炭素濃度分布においては、炭素濃度が略リニアに増加することから、炭素濃度を三角形の面積として算出するため、式(8)では2で除している。 In the above formula (8), the two surfaces are the front surface and the back surface of the steel sheet. Regarding the water vapor consumption of carbon, as described above, 1 mol of H 2 O is consumed for 1 mol of C (carbon) in the decarburization reaction. Further, the carbon concentration distribution in the thickness direction of the decarburized steel sheet is approximately 0% on the surface of the steel sheet, increases substantially linearly in the thickness direction, and increases to the concentration of the base metal. The decarburized amount is the carbon concentration reduced from the carbon concentration of the base metal. As described above, in the carbon concentration distribution in the thickness direction of the steel sheet, the carbon concentration increases substantially linearly, so that the carbon concentration is calculated as the area of the triangle, so that it is divided by 2 in the equation (8).

また、炉内の消費水蒸気量としては、上記脱炭反応による消費水蒸気量に加えて、鋼板の内部酸化による消費水蒸気量を考慮してもよい。内部酸化による消費水蒸気量は、例えば以下のように算出できる。
内部酸化による消費水蒸気量
=内部酸化層の厚み×(鋼材中のSi含有量×1.0×2面×Siの水蒸気消費量+鋼材中のMn含有量×1.0×2面×Mnの水蒸気消費量)×通板量・・・(9)
上述したように、脱炭反応の場合、脱炭された鋼板の厚み方向の炭素濃度分布においては、鋼板表面では略0%であり、厚み方向に向けて略リニアに増加する。当該焼鈍方法においては、脱炭により表層から欠乏した炭素濃度が厚み方向に上昇して、母材の90%になった位置の深さを脱炭深さとしている。一方、内部酸化においては、内部酸化層中に存在するSiやMnは厚み方向に関係なくほぼ全量酸化することから、上記式(9)では脱炭反応の式(8)のような係数はない。
Further, as the amount of water vapor consumed in the furnace, in addition to the amount of water vapor consumed by the decarburization reaction, the amount of water vapor consumed by the internal oxidation of the steel sheet may be taken into consideration. The amount of water vapor consumed by internal oxidation can be calculated, for example, as follows.
Water vapor consumption due to internal oxidation = Thickness of internal oxide layer x (Si content in steel material x 1.0 x 2 surfaces x Water vapor consumption of Si + Mn content in steel material x 1.0 x 2 surfaces x Mn Water vapor consumption) x plate amount ... (9)
As described above, in the case of the decarburization reaction, the carbon concentration distribution in the thickness direction of the decarburized steel sheet is approximately 0% on the surface of the steel sheet, and increases substantially linearly in the thickness direction. In the annealing method, the decarburization depth is defined as the depth at which the carbon concentration depleted from the surface layer due to decarburization increases in the thickness direction and becomes 90% of the base metal. On the other hand, in the internal oxidation, Si and Mn existing in the internal oxide layer are almost completely oxidized regardless of the thickness direction, so that the above formula (9) does not have a coefficient like the decarburization reaction formula (8). ..

[高露点ガス吹込量制御工程]
本工程では、上記必要水蒸気量算出工程により算出された必要水蒸気量と上記消費水蒸気量予測工程により予測された消費水蒸気量に基づいて、水蒸気投入量を決定し、上記吹込機構から炉内に高露点ガスを投入させる。すなわち、水蒸気投入量は、
水蒸気投入量=露点上昇に必要な水蒸気量+目標脱炭深さを達成するために消費された水蒸気量
となる。
[High dew point gas injection amount control process]
In this step, the amount of steam input is determined based on the required amount of steam calculated by the above-mentioned required steam amount calculation step and the amount of steam consumption predicted by the above-mentioned steam consumption prediction step, and the amount is high from the above-mentioned blowing mechanism into the furnace. Inject dew point gas. That is, the amount of steam input is
The amount of steam input = the amount of steam required to raise the dew point + the amount of steam consumed to achieve the target decarburization depth.

なお、脱炭反応は、炉の昇温速度や鋼板温度T1と各点での脱炭深さに影響するため、炉の中央部での脱炭反応が大きくなる。図4は、均熱帯で常温から昇温した場合における昇温速度、鋼板温度及び脱炭速度と均熱帯の長手方向の位置との関係を示すグラフである。均熱帯の長手方向の位置は、通板方向上流側端部を0mとして定める。図4に示すように、水蒸気の消費量は、鋼板温度により異なり、加熱帯で板を低温から加熱する場合は、鋼板温度で600℃以上の範囲で脱炭反応が大きくなっている。水蒸気の消費量は、鋼板温度により異なり、加熱帯で鋼板を低温から加熱する場合は、鋼板温度が600℃以上の部分での脱炭反応が大きく、水蒸気の消費量が多いため、その部分へ水蒸気を添加することが必要である。しかし、雰囲気ガスの流量に合わせて、冷却帯からのガスに水蒸気を投入するだけでは、消費が少ない場所では、露点が上昇しすぎて、鋼板が酸化する場合がある。 Since the decarburization reaction affects the heating rate of the furnace, the steel plate temperature T1, and the decarburization depth at each point, the decarburization reaction at the central portion of the furnace becomes large. FIG. 4 is a graph showing the relationship between the temperature rise rate, the steel plate temperature, and the decarburization rate when the temperature is raised from normal temperature in the tropics and the position in the longitudinal direction of the tropics. The position in the longitudinal direction of the solitary tropics is defined with the upstream end in the through plate direction as 0 m. As shown in FIG. 4, the consumption of water vapor differs depending on the temperature of the steel sheet, and when the plate is heated from a low temperature in the heating zone, the decarburization reaction becomes large in the range of 600 ° C. or higher at the temperature of the steel sheet. The amount of water vapor consumed differs depending on the temperature of the steel sheet. It is necessary to add steam. However, if water vapor is simply added to the gas from the cooling zone according to the flow rate of the atmospheric gas, the dew point may rise too much and the steel sheet may be oxidized in a place where consumption is low.

また、図5は、加熱帯で500℃まで昇温後に、均熱帯で500℃から700℃まで昇温した場合における炉内の昇温速度、鋼板温度及び脱炭速度と均熱帯の長手方向の位置との関係を示すグラフである。炉の長手方向の位置は、通板方向上流側端部を0mとして定める。また、炉の全長は、250mである。あらかじめ加熱帯で500℃まで昇温した場合も同様に、炉中央部で脱炭速度が速くなることがわかる。つまり、脱炭反応は、温度と各点での脱炭深さに影響するため、均熱帯の中央部での脱炭反応が大きくなり、炉の中央部で水蒸気の消費量が大きくなる。当該竪型連続焼鈍炉は、このような鋼板温度、均熱帯での位置等の状況に応じて露点制御ができる。 Further, FIG. 5 shows the heating rate in the furnace, the steel plate temperature and the decarburization rate, and the longitudinal direction of the tropics when the temperature is raised from 500 ° C to 700 ° C in the tropics after the temperature is raised to 500 ° C in the heating zone. It is a graph which shows the relationship with a position. The position in the longitudinal direction of the furnace is determined with the upstream end in the plate-passing direction as 0 m. The total length of the furnace is 250 m. It can be seen that the decarburization rate is similarly increased in the central part of the furnace when the temperature is raised to 500 ° C. in the heating zone in advance. That is, since the decarburization reaction affects the temperature and the decarburization depth at each point, the decarburization reaction in the central part of the tropics becomes large, and the consumption of water vapor in the central part of the furnace becomes large. The vertical continuous annealing furnace can control the dew point according to the conditions such as the temperature of the steel sheet and the position in the tropics.

<利点>
当該焼鈍方法は、上記竪型連続焼鈍炉を用いることで、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づいて高露点ガス吹込量を制御することにより、炉内の露点を精度よく上昇できるので、炉内の露点制御性を向上し、鋼板の脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。
<Advantage>
In the annealing method, the circulation of atmospheric gas in the furnace can be improved by using the above-mentioned vertical continuous annealing furnace. Further, by controlling the amount of high dew point gas blown into the furnace based on the required amount of water vapor calculated from the composition of the atmospheric gas, the history of the dew point, and the amount of water vapor consumed by the decarburization reaction predicted by the temperature of the steel plate. Since the dew point can be raised accurately, the dew point controllability in the furnace can be improved, and the decarburization reaction of the steel plate can be controlled accurately, and as a result, the desired quality of the steel plate such as bendability can be obtained.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other embodiments]
The above embodiment does not limit the configuration of the present invention. Therefore, the above-described embodiment can be omitted, replaced or added with components of each part of the above-described embodiment based on the description of the present specification and the common general technical knowledge, and all of them are construed to belong to the scope of the present invention. Should be.

上記第1実施形態においては、図1に示すように、高露点ガスのガス供給ノズル6A及び6Bが炉上壁に配置されていたが、鋼板に直接蒸気が当たらない他の場所に配置することもできる。図6は、供給ノズルの配置のその他の実施形態を示す模式図である。なお、図1と同様の構成は同じ参照符号のみを記載し、説明を省略する。例えば図6に示すように、均熱帯10のガス供給ノズルの形態として、ガス供給ノズル6C及びガス供給ノズル6Dのように2本のノズル口が対向するように2本のガス供給ノズルを配置し、一か所に2本のガス供給ノズルを用いて高露点ガスを供給するようにしてもよい。 In the first embodiment, as shown in FIG. 1, the gas supply nozzles 6A and 6B for the high dew point gas are arranged on the upper wall of the furnace, but they are arranged in another place where the steel plate is not directly exposed to steam. You can also. FIG. 6 is a schematic diagram showing another embodiment of the arrangement of the supply nozzles. In the same configuration as in FIG. 1, only the same reference numerals are described, and the description thereof will be omitted. For example, as shown in FIG. 6, as a form of the gas supply nozzle of the uniform tropical 10, two gas supply nozzles are arranged so that the two nozzle openings face each other, such as the gas supply nozzle 6C and the gas supply nozzle 6D. , High dew point gas may be supplied by using two gas supply nozzles in one place.

上記実施形態においては、均熱帯に1つの仕切板が備えられていたが、2以上の仕切板が備えられていてもよい。この場合も、複数の仕切板は、それぞれ炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する。従って、例えば上記雰囲気ガスの流入口及び流出口の双方が炉底部又は炉上部に配設される場合には、仕切板は奇数個備えられ、流入口及び流出口が炉底部及び炉上部に互い違いに配設される場合には、仕切板は偶数個備えられることになる。仕切板の固定側または開放側を左右交互に入れ替えて配置することで、均熱帯の流入口と流出口との間に、仕切板によって左右に蛇行する空間を形成する。すなわち、均熱帯の内部には、流入口から左右に蛇行しながら一の仕切板と他の仕切板との間の空間を経由して最終的に流出口までを接続する雰囲気ガスの流路が形成される。これにより、均熱帯における雰囲気ガス及び高露点ガスの循環を向上し、脱炭反応の制御性を向上できる。 In the above embodiment, one partition plate is provided in the tropics, but two or more partition plates may be provided. In this case as well, the plurality of partition plates each have an opening so that the atmospheric gas flowing in the furnace meanders up and down. Therefore, for example, when both the inlet and the outlet of the atmospheric gas are arranged at the bottom or the top of the furnace, an odd number of partition plates are provided, and the inlet and the outlet are staggered at the bottom and the top of the furnace. When arranged in, an even number of partition plates will be provided. By arranging the fixed side or the open side of the partition plate alternately on the left and right, a space meandering to the left and right by the partition plate is formed between the inlet and the outlet of the tropics. That is, inside the tropics, there is a flow path of atmospheric gas that meanders from the inflow port to the left and right, passes through the space between one partition plate and the other partition plate, and finally connects to the outflow port. It is formed. This makes it possible to improve the circulation of atmospheric gas and high dew point gas in the tropics and improve the controllability of the decarburization reaction.

また、均熱帯の区画毎に流出口を設けるようにしてもよい。 In addition, an outlet may be provided for each tropical section.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limitedly interpreted based on the description of this Example.

焼鈍する鋼板として冷間圧延鋼板を作製し、外壁内側に断熱材が配設される加熱炉を用い、非酸化性ガスを吹き込みながら焼鈍する試験として実施例1~実施例3及び比較例1~比較例2を行った。 Examples 1 to 3 and Comparative Examples 1 to 2 are tests in which a cold-rolled steel sheet is produced as a steel sheet to be annealed and annealed while blowing a non-oxidizing gas using a heating furnace in which a heat insulating material is arranged inside the outer wall. Comparative Example 2 was performed.

[実施例1]
(鋼板)
焼鈍する鋼板としては、冷間圧延鋼板を用意した。具体的には、先ず、原料を溶解及び鋳造し、炭素を0.2質量%、シリコンを1.8質量%、マンガンを2.1質量%含み、残部が鉄及び不可避的不純物であるスラブを作製し、このスラブを熱間圧延した。次いで、得られた圧延材を酸洗して表面の酸化スケールを完全に除去し、さらに冷間圧延を行うことで板幅1000mm、板厚1.0mmの薄鋼板を製造した。
[Example 1]
(Steel plate)
As the steel sheet to be annealed, a cold-rolled steel sheet was prepared. Specifically, first, the raw materials are melted and cast, and slabs containing 0.2% by mass of carbon, 1.8% by mass of silicon, 2.1% by mass of manganese, and the balance of iron and unavoidable impurities are added. It was made and this slab was hot rolled. Next, the obtained rolled material was pickled to completely remove the oxide scale on the surface, and cold rolling was further performed to produce a thin steel sheet having a plate width of 1000 mm and a plate thickness of 1.0 mm.

加熱帯では、還元バーナにより、鋼板を酸化させずに加熱する処理を実施した。 In the heating zone, a reduction burner was used to heat the steel sheet without oxidizing it.

実施例1、実施例3及び比較例1~比較例2の均熱帯としては、図7に示す内容積が600mである竪型連続焼鈍炉50を用いた。竪型連続焼鈍炉50の均熱帯40は、均熱帯20の雰囲気ガスの流入口となるスロート25及び流出口となるスロート26の双方が炉底部に配設される。均熱帯40には、均熱帯40と冷却帯7とを接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G9からも一定の流量でN等の低露点の雰囲気ガスが供給される。均熱帯40は、通板方向の上流側の前段42及び下流側の後段41の2区画に分割され、鋼板2が2つのトップロール3にわたって巻きかけられている。仕切板44は、一端が均熱帯40の炉底壁に固定され、他端が、上記2つのトップロール3の鋼板2が巻きかけられていない側に開放された状態で備えられている。 As the tropics of Example 1, Example 3 and Comparative Examples 1 to 2, a vertical continuous annealing furnace 50 having an internal volume of 600 m 3 shown in FIG. 7 was used. In the soaking tropic 40 of the vertical continuous annealing furnace 50, both the throat 25 which is the inlet and the throat 26 which is the outflow port of the atmospheric gas of the soaking tropic 20 are arranged at the bottom of the furnace. Atmospheric gas having a low dew point is supplied to the tropics 40 from the cooling zone 7 via a throat 25 connecting the tropics 40 and the cooling zone 7. Further, an atmospheric gas having a low dew point such as N2 is supplied from the gas inlet G9 at a constant flow rate. The solitary tropics 40 is divided into two sections, a front stage 42 on the upstream side in the plate-passing direction and a rear stage 41 on the downstream side, and the steel plate 2 is wound over two top rolls 3. One end of the partition plate 44 is fixed to the bottom wall of the tropical 40, and the other end is provided in a state of being open to the side where the steel plate 2 of the two top rolls 3 is not wound.

そして、均熱帯40の前段42及び後段41のそれぞれに直接水蒸気を吹き込むノズル(不図示)を設置し、水蒸気流量を調整しながら、炉内の露点を測定し、鋼板2の脱炭反応を進めた。均熱帯40の入り口における鋼板温度は700℃である。通板速度60m/分で通板した。露点測定位置は、R1及びR2で示す。また、冷却帯から導入される雰囲気ガス及びその他の雰囲気ガスの条件を表1に示す。 Then, nozzles (not shown) that directly blow steam into each of the front stage 42 and the rear stage 41 of the soothing tropics 40 are installed, the dew point in the furnace is measured while adjusting the steam flow rate, and the decarburization reaction of the steel plate 2 is advanced. rice field. The temperature of the steel plate at the entrance of the tropics 40 is 700 ° C. The board was passed at a speed of 60 m / min. Dew point measurement positions are indicated by R1 and R2. Table 1 shows the conditions of the atmospheric gas and other atmospheric gases introduced from the cooling zone.

また、実施例2については、図7に示す竪型連続焼鈍炉50の構成を上記第2実施形態のように、均熱帯の雰囲気ガスの流入口となるスロート及び流出口となるスロートの双方が炉上部に配設するとともに、仕切板の一端が上記均熱帯の炉上壁に固定され、他端が、炉底壁とボトムロールの鋼板が巻きかけられていない側のロール上端部との間に開放された状態で備えられているように変更した。 Further, in the second embodiment, as in the second embodiment, the configuration of the vertical continuous annealing furnace 50 shown in FIG. 7 has both a throat serving as an inlet and an outlet for a tropical atmosphere gas. It is arranged in the upper part of the furnace, one end of the partition plate is fixed to the upper wall of the above-mentioned tropical furnace, and the other end is between the bottom wall of the furnace and the upper end of the roll on the side where the steel plate of the bottom roll is not wound. Changed to be provided in an open state.

実施例1における投入水蒸気量の算出手順は以下の通りである。
(1)目標とする最終脱炭深さの設定
目標とする最終脱炭深さを80μmとした。
(2)目標露点の設定
上述した式に基づいて、鋼板温度700℃の条件下で目標とする最終脱炭深さ80μmを得るための目標露点を露点0℃(6028ppm)に設定した。
(3)炉内の露点を目標露点にするための必要水蒸気量の算出
冷却帯からの雰囲気ガス(露点-35℃、水蒸気量304ppm)1200Nm/hと、低露点の投入雰囲気ガス(露点-50℃、水蒸気量60ppm)400Nm/hとからなる雰囲気ガスを露点0℃(6028ppm)にするために必要な水蒸気量は、
2000×6028-(1200×304+800×60)=11.64Nm/h=9.36kg/h
後段は、冷却帯からのガスと投入雰囲気ガスの露点を上げるための水蒸気量が必要であることから、後段の雰囲気ガスの露点を上げるための水蒸気量は、
(1600×6028-(1200×304+400×60))/100/10000/22.4×18=7.44kg/h
となる。
前段は、前段の雰囲気ガスの露点を上げるだけで良いので、前段の雰囲気ガスの露点を上げるための水蒸気量は、
400×6028-60)/100/10000/22.4×18=1.92kg
となる。
(4)消費水蒸気量の算出
実施例1の条件から、
通板量(kg/h)=板厚(mm)×板幅(mm)×通板速度(m/分)×60×密度(kg/m)から、
28260kg/h=1×1000×60×60×7850
となる。
次に、鋼材炭素量0.2質量%、目標脱炭深さ80μm及び
脱炭量(kg/h)=通板量(kg/h)×鋼材炭素量(%)×(脱炭深さ÷鋼板厚さ)÷2×2面(濃度分布)×0.9から、脱炭量は、
28260×0.002×(80/1000)÷1÷2×2÷1×0.9=4.07kg/hとなる。
目標脱炭深さと鋼材炭素量より、脱炭反応で用いられる炭素量が算出される。
脱炭反応は、C+HO=CO+Hであることから、
脱炭反応による水蒸気量=脱炭量/炭素分子量×HO分子量から求められ、脱炭反応による水蒸気量は、
4.07(kg/h)÷12(kg/kmol)×18(kg/kmol)=6.10(kg/h)
となる。
従って、消費される水蒸気量は、内部酸化による消費量も考慮し、脱炭反応による消費量6.10kg/hと内部酸化による消費量3.39kg/hとの合計値である9.49kg/hとなる。
反応量比は別途計算しており、前段が62%、後段が38%と算出できることから、
前段の消費水蒸気量:9.49kg/h×0.62=5.89kg/h
後段の消費水蒸気量:9.49kg/h×0.38=3.60kg/h
となる。
(5)投入水蒸気量の算出
水蒸気投入量は、目標脱炭深さを達成するために消費された水蒸気量と露点上昇に必要な水蒸気量との合計で表されることから、投入水蒸気量は、
9.36+5.89+3.60=18.85kg/h
となる。また、
前段投入水蒸気量:1.91+5.89=7.80kg/h
後段投入水蒸気量:7.44+3.61=11.05kg/h
となる。
The procedure for calculating the input water vapor amount in Example 1 is as follows.
(1) Setting the target final decarburization depth The target final decarburization depth was set to 80 μm.
(2) Setting of target dew point Based on the above formula, the target dew point for obtaining the target final decarburization depth of 80 μm under the condition of the steel plate temperature of 700 ° C. was set to the dew point of 0 ° C. (6028 ppm).
(3) Calculation of the amount of water vapor required to set the dew point in the furnace to the target dew point 1200 Nm 3 / h of atmospheric gas from the cooling zone (dew point -35 ° C, water vapor amount 304 ppm) and low dew point input atmospheric gas (dew point-) The amount of water vapor required to bring the dew point 0 ° C (6028 ppm) to the atmospheric gas consisting of 50 ° C and 60 ppm water vapor) 400 Nm 3 / h is
2000 × 6028- (1200 × 304 + 800 × 60) = 11.64Nm 3 / h = 9.36kg / h
Since the latter stage requires the amount of water vapor to raise the dew point of the gas from the cooling zone and the input atmosphere gas, the amount of water vapor to raise the dew point of the atmosphere gas in the latter stage is
(1600 × 6028- (1200 × 304 + 400 × 60)) / 100/10000 / 22.4 × 18 = 7.44 kg / h
Will be.
In the previous stage, it is only necessary to raise the dew point of the atmospheric gas in the previous stage, so the amount of water vapor for raising the dew point of the atmospheric gas in the previous stage is
400 x ( 6028-60) / 100/10000 / 22.4 x 18 = 1.92 kg
Will be.
(4) Calculation of water consumption from the conditions of Example 1
From the plate amount (kg / h) = plate thickness (mm) x plate width (mm) x plate speed (m / min) x 60 x density (kg / m 3 )
28260 kg / h = 1 x 1000 x 60 x 60 x 7850
Will be.
Next, the carbon content of the steel material is 0.2% by mass, the target decarburization depth is 80 μm, and the decarburization amount (kg / h) = the through plate amount (kg / h) × the carbon content of the steel material (%) × (decarburization depth ÷). Steel plate thickness) ÷ 2 × 2 surfaces (concentration distribution) × 0.9, the amount of decarburization is
28260 × 0.002 × (80/1000) ÷ 1 ÷ 2 × 2 ÷ 1 × 0.9 = 4.07 kg / h.
The carbon content used in the decarburization reaction is calculated from the target decarburization depth and the carbon content of the steel material.
Since the decarburization reaction is C + H 2 O = CO + H 2 ,
The amount of water vapor due to the decarburization reaction = the amount of decarburized / the molecular weight of carbon × the molecular weight of H2O , and the amount of water vapor due to the decarburization reaction is
4.07 (kg / h) ÷ 12 (kg / kmol) x 18 (kg / kmol) = 6.10 (kg / h)
Will be.
Therefore, the amount of water vapor consumed is 9.49 kg / h, which is the total value of the consumption amount of 6.10 kg / h due to the decarburization reaction and the consumption amount of 3.39 kg / h due to the internal oxidation, considering the consumption amount due to internal oxidation. It becomes h.
The reaction amount ratio is calculated separately, and it can be calculated as 62% for the first stage and 38% for the second stage.
Water consumption in the previous stage: 9.49 kg / h x 0.62 = 5.89 kg / h
Water consumption in the latter stage: 9.49 kg / h x 0.38 = 3.60 kg / h
Will be.
(5) Calculation of the amount of steam input The amount of steam input is the sum of the amount of steam consumed to achieve the target decarburization depth and the amount of steam required to raise the dew point. ,
9.36 + 5.89 + 3.60 = 18.85kg / h
Will be. also,
Amount of water vapor input in the previous stage: 1.91 + 5.89 = 7.80 kg / h
Amount of water vapor input in the latter stage: 7.44 + 3.61 = 11.05 kg / h
Will be.

[実施例2~実施例3及び比較例1~比較例2]
板幅1000mm、板厚2.3mmの鋼板を通板速度26m/分又は60m/分で通板した。各実施例及び比較例の条件を表1に示す。なお、比較例1は、投入水蒸気量として露点上昇に必要な水蒸気量のみを投入し、比較例2は、通板速度が低下する板厚2.3mmの条件下において、前段と後段とで同一の目標露点を設定した。
[Examples 2 to 3 and Comparative Examples 1 to 2]
A steel plate having a plate width of 1000 mm and a plate thickness of 2.3 mm was passed at a plate speed of 26 m / min or 60 m / min. Table 1 shows the conditions of each example and comparative example. In Comparative Example 1, only the amount of steam required to raise the dew point is charged as the amount of steam input, and in Comparative Example 2, the first stage and the second stage are the same under the condition of a plate thickness of 2.3 mm in which the plate passing speed decreases. The target dew point of was set.

(評価)
表1に実施例及び比較例における目標脱炭深さと得られた最終脱炭深さを示す。
(evaluation)
Table 1 shows the target decarburization depth and the obtained final decarburization depth in Examples and Comparative Examples.

Figure 0007073162000006
Figure 0007073162000006

表1に示すように、実施例1~実施例3については、目標脱炭深さの80μmに近い範囲の脱炭深さを得ることができた。なお、炉内に吹き込む水蒸気は冷えており、重いことから上から下に流れるが、雰囲気ガスの流入口及び流出口の双方が炉底部に配設される実施例1では、後段の露点及び投入水蒸気量が多い前段の露点は共に均一になりやすい。一方、雰囲気ガスの流入口及び流出口の双方が炉上部に配設される実施例2では、投入水蒸気量が多い前段の露点は均一になりやすいが、後段では水蒸気の循環が少し劣ることになると想定され、後段の露点がばらつきやすくなる。そのため、実施例2の最終脱炭深さが少しばらつく結果と計算される。 As shown in Table 1, for Examples 1 to 3, it was possible to obtain a decarburization depth in a range close to the target decarburization depth of 80 μm. The water vapor blown into the furnace is cold and heavy, so it flows from top to bottom. The dew points in the previous stage, which have a large amount of water vapor, tend to be uniform. On the other hand, in Example 2 in which both the inlet and outlet of the atmospheric gas are arranged in the upper part of the furnace, the dew point in the first stage where the amount of input water vapor is large tends to be uniform, but the circulation of water vapor in the latter stage is slightly inferior. It is assumed that the dew point in the latter stage will easily vary. Therefore, it is calculated that the final decarburization depth of Example 2 varies slightly.

一方、投入水蒸気量として、露点上昇に必要な水蒸気量のみを投入した比較例1、及び板厚2.3mmの鋼板を用いて前段と後段とで同一の目標露点を設定した比較例2の最終脱炭深さは、目標脱炭深さの80μmと大きく異なっていた。比較例1では、脱炭反応で消費された水蒸気量を補う量が投入水蒸気量に含まれていないことから、脱炭反応により水蒸気が消費されることに伴って露点が下がってしまったために、十分脱炭反応が進まなかったと考えられる。また、比較例2は、板厚が2.3mmであることから通板速度が低下したことから、脱炭深さが138μmのように深くなったと考えられる。 On the other hand, as the final amount of steam input, Comparative Example 1 in which only the amount of steam required to raise the dew point is charged, and Comparative Example 2 in which the same target dew point is set in the front stage and the rear stage using a steel plate having a plate thickness of 2.3 mm. The dew point depth was significantly different from the target dew point depth of 80 μm. In Comparative Example 1, since the amount of water vapor input was not included in the amount of water vapor consumed in the decarburization reaction, the dew point was lowered as the water vapor was consumed by the decarburization reaction. It is probable that the decarburization reaction did not proceed sufficiently. Further, in Comparative Example 2, since the plate thickness was 2.3 mm, the plate passing speed was lowered, and it is considered that the decarburization depth was as deep as 138 μm.

図8は、実施例2、実施例3及び比較例1における通板速度毎の露点と脱炭深さとの関係を示すグラフである。炉内の露点分布が同じ条件である板厚が1.0mmの実施例1と板厚が2.3mmの比較例3とを比較すると、通板速度が低下した比較例2の脱炭深さは深くなっている。一方、板厚が2.3mmである実施例3の実線では、後段の露点を-20℃に固定し、前段の露点を変化させた場合における脱炭深さが示されている。実施例3では後段の露点を-20℃にすることにより、板厚が2.3mmであっても目標脱炭深さの80μmとなるように精度よく制御できることが示された。 FIG. 8 is a graph showing the relationship between the dew point and the decarburization depth for each plate passing speed in Example 2, Example 3, and Comparative Example 1. Comparing Example 1 having a plate thickness of 1.0 mm and Comparative Example 3 having a plate thickness of 2.3 mm under the same dew point distribution in the furnace, the decarburization depth of Comparative Example 2 in which the plate passing speed was reduced. Is getting deeper. On the other hand, the solid line of Example 3 having a plate thickness of 2.3 mm shows the decarburization depth when the dew point of the rear stage is fixed at −20 ° C. and the dew point of the front stage is changed. In Example 3, it was shown that by setting the dew point at the latter stage to −20 ° C., it is possible to accurately control the target decarburization depth to 80 μm even if the plate thickness is 2.3 mm.

本発明に係る竪型連続焼鈍炉及び焼鈍方法は、例えば自動車、船舶、建材、家電等に用いられる溶融亜鉛めっき鋼板等に好適に利用することができる。 The vertical continuous annealing furnace and annealing method according to the present invention can be suitably used for, for example, hot-dip galvanized steel sheets used in automobiles, ships, building materials, home appliances and the like.

1、50 竪型連続焼鈍炉
2 帯状鋼板
3 トップロール
4 ボトムロール
5 加熱帯
5A 第1加熱帯
5B 第2加熱帯
6A、6B、6C、6D ガス供給ノズル
7 冷却帯
10、20、30、40 均熱帯
11、21、31、41 後段
12、22、32、42 前段
14、24、34、44 仕切板
25、26 スロート
G1、G2、G4、G6、G9 ガス導入口
R1、R2 露点測定器
1,50 Vertical continuous annealing furnace 2 Strip-shaped steel plate 3 Top roll 4 Bottom roll 5 Heating zone 5A 1st heating zone 5B 2nd heating zone 6A, 6B, 6C, 6D Gas supply nozzle 7 Cooling zone 10, 20, 30, 40 Normal tropics 11, 21, 31, 41 Rear stage 12, 22, 32, 42 Front stage 14, 24, 34, 44 Partition plate 25, 26 Throat G1, G2, G4, G6, G9 Gas inlet R1, R2 Dew point measuring instrument

Claims (4)

内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成される竪型連続焼鈍炉であって、
内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板と、
上記複数の区画毎に配設され、その区画の露点を測定する複数の露点測定器と、
上記複数の区画の露点を調整するため上記雰囲気ガスより露点が高い高露点ガス又は水蒸気を吹き込む機構と、
上記雰囲気ガスの組成から算出される必要水蒸気量並びに上記区画毎の露点と上記鋼板の滞在時間及び温度により予測される脱炭反応による消費水蒸気量に基づき、上記吹込機構の高露点ガス吹込量を制御する機構と
を備える竪型連続焼鈍炉。
A plurality of top rolls and a plurality of bottom rolls arranged inside are provided, and a strip-shaped steel plate is laid between the plurality of top rolls and the plurality of bottom rolls so as to meander in the vertical direction, and the steel plate is placed in a specific horizontal direction. A vertical continuous annealing furnace configured to heat-treat while transporting in the direction.
The inside is divided into a plurality of sections along the specific horizontal direction, and one or a plurality of partition plates having openings so that the atmospheric gas flowing in the furnace meanders up and down so as to face the steel plate.
A plurality of dew point measuring instruments arranged in each of the above-mentioned plurality of sections and measuring the dew point of the section ,
A mechanism for blowing a high dew point gas or water vapor having a higher dew point than the atmospheric gas in order to adjust the dew points of the plurality of sections.
High dew point gas blowing amount of the blowing mechanism based on the required water vapor amount calculated from the composition of the atmospheric gas and the water vapor consumption amount due to the decarburization reaction predicted by the dew point of each section and the staying time and temperature of the steel plate. A vertical continuous steaming furnace equipped with a mechanism to control.
通板方向上流側の区画の露点が通板方向下流側の区画の露点よりも高い請求項1に記載の竪型連続焼鈍炉。 The vertical continuous annealing furnace according to claim 1, wherein the dew point of the section on the upstream side in the through plate direction is higher than the dew point of the section on the downstream side in the through plate direction. 上記仕切板の位置における鉛直方向炉断面の炉内面積に対する上記仕切板の開口の面積比が1/10以上1/4以下である請求項1又は請求項2に記載の竪型連続焼鈍炉。 The vertical continuous annealing furnace according to claim 1 or 2, wherein the area ratio of the opening of the partition plate to the area inside the furnace in the vertical direction furnace cross section at the position of the partition plate is 1/10 or more and 1/4 or less. 内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成され、炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板により内部を上記特定水平方向に沿って複数の区画に分割する竪型連続焼鈍炉を用いた焼鈍方法であって、
上記雰囲気ガスの組成から必要水蒸気量を算出する工程と、
上記区画毎の露点と上記鋼板の滞在時間及び温度から脱炭反応による消費水蒸気量を予測する工程と、
上記必要水蒸気量及び上記消費水蒸気量により上記複数の区画の上記雰囲気ガスより露点が高い高露点ガス又は水蒸気の吹込量を制御する工程と
を備える焼鈍方法。
It is provided with a plurality of top rolls and a plurality of bottom rolls arranged inside, and a strip-shaped steel plate is laid between the plurality of top rolls and the plurality of bottom rolls in a vertical meandering manner, and the steel plate is placed in a specific horizontal direction. The inside is divided into a plurality of sections along the specific horizontal direction by one or a plurality of partition plates which are configured to be heat-treated while being conveyed in a direction and have openings so that the atmospheric gas flowing in the furnace meanders up and down. It is an annealing method using a vertical continuous annealing furnace.
The process of calculating the required amount of water vapor from the composition of the above atmospheric gas, and
A process of predicting the amount of water vapor consumed by the decarburization reaction from the dew point of each section and the staying time and temperature of the steel sheet, and
A quenching method comprising a step of controlling the amount of high dew point gas or water vapor having a dew point higher than that of the atmospheric gas in the plurality of sections according to the required amount of water vapor and the amount of water consumed.
JP2018065840A 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method Active JP7073162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018065840A JP7073162B2 (en) 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018065840A JP7073162B2 (en) 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method

Publications (2)

Publication Number Publication Date
JP2019173144A JP2019173144A (en) 2019-10-10
JP7073162B2 true JP7073162B2 (en) 2022-05-23

Family

ID=68166587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018065840A Active JP7073162B2 (en) 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method

Country Status (1)

Country Link
JP (1) JP7073162B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826511A (en) * 2020-06-15 2020-10-27 华菱安赛乐米塔尔汽车板有限公司 Method for improving platability of high-strength strip steel in hot dip plating production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146241A (en) 2005-11-29 2007-06-14 Jfe Steel Kk Method for producing high strength hot dip galvanized steel sheet and production equipment for hot dip galvanized steel sheet
WO2013187039A1 (en) 2012-06-13 2013-12-19 Jfeスチール株式会社 Method of continuous annealing of steel strip, device for continuous annealing of steel strip, method of manufacturing hot-dip galvanized steel strip, and device for manufacturing hot-dip galvanized steel strip
KR20160078667A (en) 2014-12-24 2016-07-05 주식회사 포스코 Humidity measuring apparatus and improvement method for measuring degree thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028995B2 (en) * 1992-11-30 2000-04-04 川崎製鉄株式会社 Method for continuous carburization of metal strip and sheet temperature control
JPH1030127A (en) * 1996-07-19 1998-02-03 Nippon Steel Corp Method for controlling strip temperature in continuous annealing furnace
JPH11158559A (en) * 1997-11-27 1999-06-15 Sumitomo Metal Ind Ltd Method for controlling atmosphere in continuous annealing furnace
JPH11241123A (en) * 1998-02-27 1999-09-07 Nisshin Steel Co Ltd Apparatus for controlling decarburizing or bluing annealing of steel strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146241A (en) 2005-11-29 2007-06-14 Jfe Steel Kk Method for producing high strength hot dip galvanized steel sheet and production equipment for hot dip galvanized steel sheet
WO2013187039A1 (en) 2012-06-13 2013-12-19 Jfeスチール株式会社 Method of continuous annealing of steel strip, device for continuous annealing of steel strip, method of manufacturing hot-dip galvanized steel strip, and device for manufacturing hot-dip galvanized steel strip
KR20160078667A (en) 2014-12-24 2016-07-05 주식회사 포스코 Humidity measuring apparatus and improvement method for measuring degree thereof

Also Published As

Publication number Publication date
JP2019173144A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
KR102263798B1 (en) Method for manufacturing hot-dip galvanized steel sheet
JP5884748B2 (en) Steel strip continuous annealing equipment and continuous hot dip galvanizing equipment
CN107109609B (en) The manufacturing method of alloyed hot-dip galvanized steel plate
KR101862206B1 (en) Method of producing galvannealed steel sheet
JP4770428B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
JP5655955B2 (en) Steel strip continuous annealing method, steel strip continuous annealing device, hot dip galvanized steel strip manufacturing method and hot dip galvanized steel strip manufacturing device
US11649520B2 (en) Continuous hot dip galvanizing apparatus
US20140342297A1 (en) Nozzle Device for a Furnace for Heat Treating a Steel Flat Product and Furnace Equipped with such a Nozzle Device
JP6607339B1 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
KR20170117522A (en) Continuous hot-dip galvanization apparatus and hot-dip galvanized steel sheet manufacturing method
JP7073162B2 (en) Vertical continuous annealing furnace and annealing method
US10106867B2 (en) Method for continuously annealing steel strip and method for manufacturing galvanized steel strip
KR102072560B1 (en) Method of producing hot-dip galvanized steel sheet
JP6792561B2 (en) Methods and equipment for reaction control
JP6825593B2 (en) Hot-dip galvanizing equipment and manufacturing method of hot-dip galvanized steel sheet
JP4903073B2 (en) Cooling pattern display method
JP4286544B2 (en) Method and apparatus for forced convection cooling of steel strip in continuous heat treatment equipment
JP2016017192A (en) Method of manufacturing alloyed hot-dip galvanized steel sheet
US12031192B2 (en) Continuous hot-dip galvanizing apparatus
CN117616146A (en) Method for producing hot dip galvanized steel sheet
JPH06158180A (en) Continuous annealing equipment of metallic strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150