JP2019173144A - Vertical continuous annealing furnace and annealing method - Google Patents

Vertical continuous annealing furnace and annealing method Download PDF

Info

Publication number
JP2019173144A
JP2019173144A JP2018065840A JP2018065840A JP2019173144A JP 2019173144 A JP2019173144 A JP 2019173144A JP 2018065840 A JP2018065840 A JP 2018065840A JP 2018065840 A JP2018065840 A JP 2018065840A JP 2019173144 A JP2019173144 A JP 2019173144A
Authority
JP
Japan
Prior art keywords
dew point
furnace
water vapor
amount
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018065840A
Other languages
Japanese (ja)
Other versions
JP7073162B2 (en
Inventor
中西 良太
Ryota Nakanishi
良太 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018065840A priority Critical patent/JP7073162B2/en
Publication of JP2019173144A publication Critical patent/JP2019173144A/en
Application granted granted Critical
Publication of JP7073162B2 publication Critical patent/JP7073162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

To provide a vertical continuous annealing furnace and an annealing method capable of accurately controlling decarburization reaction by improving dew point controllability in the furnace.SOLUTION: The vertical continuous annealing furnace according to the present invention that is configured to heat-treat a steel strip while conveying it in a specific horizontal direction by looping the steel strip between a plurality of top rolls and a plurality of bottom rolls so as to meander in a vertical direction includes: the inside being divided into a plurality of sections along the specific horizontal direction and one or more partition plates having an opening so that an atmospheric gas in the furnace flows so as to counter flow of the steel strip meandering up and down; a plurality of dew point measuring devices arranged in each of the plurality of the sections; an injection mechanism of a high dew point gas (including water vapor) to adjust the dew point in each of the plurality of sections; a mechanism to control an amount of high dew point gas injection by the injection mechanism based on a required water vapor amount calculated from composition of the atmospheric gas and a water vapor amount to be consumed by the decarburization reaction which is predicted according to history of the dew point by the dew point measuring device and the temperature of the steel strip.SELECTED DRAWING: Figure 1

Description

本発明は、竪型連続焼鈍炉及び焼鈍方法に関する。   The present invention relates to a vertical continuous annealing furnace and an annealing method.

鋼板中の炭素分を除去して所望の品質を得る上で、炉内の雰囲気ガス中に水蒸気を含ませるとともに、その湿度を適当な値に管理する露点制御は重要である。   In order to obtain the desired quality by removing the carbon content in the steel sheet, it is important to control the dew point so that the atmospheric gas in the furnace contains water vapor and the humidity is controlled to an appropriate value.

露点制御方法としては、例えば鋼板を焼鈍する熱処理中に加熱炉に非酸化性ガスを連続して供給し、加熱炉内の露点を低下させる方法が提案されている(特開平9−256074号公報参照)。この公報に記載の方法では、加熱炉内の雰囲気の露点を測定し、この露点が目標範囲内となるよう非酸化性ガスの供給量を調節する。   As a dew point control method, for example, a method of continuously supplying a non-oxidizing gas to a heating furnace during a heat treatment for annealing a steel sheet to reduce the dew point in the heating furnace has been proposed (Japanese Patent Laid-Open No. 9-256074). reference). In the method described in this publication, the dew point of the atmosphere in the heating furnace is measured, and the supply amount of the non-oxidizing gas is adjusted so that the dew point is within the target range.

特開平9−256074号公報Japanese Patent Laid-Open No. 9-256074

しかしながら、炉内には露点分布や酸素濃度分布があり、測定値に基づいて制御しても、測定点の代表性や、応答遅れなどがあり、炉内の露点温度が均一にならないおそれがある。特に竪型炉の場合、炉内に循環流れがあるために、炉内の露点分布を調整することがより困難となる。   However, there are dew point distributions and oxygen concentration distributions in the furnace, and even if controlled based on measured values, there is a possibility that the dew point temperature in the furnace will not be uniform due to the representativeness of the measurement points and response delays. . In particular, in the case of a vertical furnace, since there is a circulation flow in the furnace, it becomes more difficult to adjust the dew point distribution in the furnace.

また、焼鈍炉における脱炭反応の制御の場合、低露点雰囲気下の炉内では水蒸気分圧が低く、炉内の雰囲気の調整が難しく、脱炭反応の制御はより困難となる。そのため、鋼板の組成の違いや板厚により、通板速度に大きな変化が生じた場合、脱炭反応を精度よく制御できないおそれがある。   Further, in the case of controlling the decarburization reaction in the annealing furnace, the partial pressure of water vapor is low in the furnace under a low dew point atmosphere, and it is difficult to adjust the atmosphere in the furnace, and the control of the decarburization reaction becomes more difficult. Therefore, there is a possibility that the decarburization reaction cannot be accurately controlled when a large change occurs in the sheet passing speed due to the difference in the composition of the steel plates or the plate thickness.

本発明は、このような事情に鑑みてなされたものであり、炉内の露点制御性を向上し、脱炭反応を精度よく制御できる鋼板の焼鈍方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the annealing method of the steel plate which improves the dew point controllability in a furnace and can control a decarburization reaction accurately.

本発明者らは、焼鈍炉における脱炭反応で消費される水蒸気量を検討した結果、炉内の雰囲気ガスの露点を調整するために投入する水蒸気量は、脱炭反応で消費される水蒸気量を考慮することが必要であることを知見した。   As a result of studying the amount of water vapor consumed in the decarburization reaction in the annealing furnace, the present inventors have determined that the amount of water vapor input to adjust the dew point of the atmospheric gas in the furnace is the amount of water vapor consumed in the decarburization reaction. It was found that it is necessary to consider.

上記課題を解決するためになされた本発明の一態様は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成される竪型連続焼鈍炉であって、内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板と、上記複数の区画毎に配設される複数の露点測定器と、上記複数の区画の露点を調整するため高露点ガス(水蒸気含む)を吹き込む機構と、上記雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、上記吹込機構の高露点ガス吹込量を制御する機構とを備える竪型連続焼鈍炉である。   One embodiment of the present invention made to solve the above problems includes a plurality of top rolls and a plurality of bottom rolls disposed therein, and a strip-shaped steel plate between the plurality of top rolls and the plurality of bottom rolls. Is a vertical continuous annealing furnace constructed so as to meander in the vertical direction and heat-treat while conveying the steel plate in a specific horizontal direction, and the interior is divided into a plurality of sections along the specific horizontal direction. And one or a plurality of partition plates having an opening so that the atmospheric gas flowing in the furnace so as to face the steel plate meanders up and down, a plurality of dew point measuring devices arranged for each of the plurality of sections, A mechanism for injecting a high dew point gas (including water vapor) to adjust the dew point of the plurality of compartments, a required water vapor amount calculated from the composition of the atmospheric gas, a history of the dew point by the dew point measuring instrument, and the steel sheet Based on the consumption amount of water vapor by decarburization predicted by degrees, a vertical continuous annealing furnace and a mechanism for controlling the high dew point gas injection amount of the blow mechanism.

当該竪型連続焼鈍炉は、内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板を備えることで、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、吹込機構の高露点ガス吹込量を制御する機構を備えることにより、炉内の露点を精度よく上昇できるので、炉内の露点制御性を向上し、脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。   The vertical continuous annealing furnace is divided into a plurality of sections along the specific horizontal direction, and has one or more openings so that the atmospheric gas flowing in the furnace faces up and down to face the steel plate By providing this partition plate, the circulation property of the atmospheric gas in the furnace can be improved. Also, based on the required water vapor amount calculated from the composition of the atmospheric gas, the dew point history by the dew point measuring instrument, and the amount of water vapor consumed by the decarburization reaction predicted by the temperature of the steel sheet, the high dew point gas blowing amount of the blowing mechanism is By providing a mechanism to control, the dew point in the furnace can be raised with high accuracy, so that the dew point controllability in the furnace can be improved and the decarburization reaction can be controlled with high precision. As a result, the desired quality of the steel sheet such as bendability Can be obtained.

通板方向上流側の区画の露点が通板方向下流側の区画の露点よりも高いとよい。通板方向上流側の区画の露点が通板方向下流側の区画の露点よりも高いことで、通板方向下流側の区画(後段)で消費された水蒸気を通板方向上流側の区画(前段)で補填できるので、炉内の露点の制御性を向上できる。   It is preferable that the dew point of the section upstream in the sheet passing direction is higher than the dew point of the section downstream in the sheet passing direction. The dew point of the upstream section in the sheet passing direction is higher than the dew point in the downstream section in the sheet passing direction, so that the water vapor consumed in the downstream section (the latter stage) in the passing direction is the upstream section (the previous stage). ) Can improve the controllability of the dew point in the furnace.

上記仕切板の位置における鉛直方向炉断面の炉内面積に対する上記仕切板の開口の面積比が1/10以上1/4以下が好ましい。上記仕切板の開口の面積比が上記範囲であることで、雰囲気ガスの流量を良好な範囲に維持し、炉内の露点制御性を向上できる。   The area ratio of the opening of the partition plate to the area in the furnace of the vertical furnace cross section at the position of the partition plate is preferably 1/10 or more and 1/4 or less. When the area ratio of the opening of the partition plate is in the above range, the flow rate of the atmospheric gas can be maintained in a favorable range, and the dew point controllability in the furnace can be improved.

上記課題を解決するためになされた本発明の別の一態様は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成され、炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板により内部を上記特定水平方向に沿って複数の区画に分割する竪型連続焼鈍炉を用いた焼鈍方法であって、上記雰囲気ガスの組成から必要水蒸気量を算出する工程と、上記1又は複数の区画の露点の履歴及び上記鋼板の温度から脱炭反応による消費水蒸気量を予測する工程と、上記必要水蒸気量及び上記消費水蒸気量により上記1又は複数の区画の高露点ガス吹込量を制御する工程とを備える焼鈍方法である。   Another aspect of the present invention, which has been made to solve the above problems, includes a plurality of top rolls and a plurality of bottom rolls disposed therein, and a belt-like shape between the plurality of top rolls and the plurality of bottom rolls. One or a plurality of steel plates are arranged so as to meander in the vertical direction, and are heat-treated while transporting the steel plates in a specific horizontal direction, and have an opening so that the atmospheric gas flowing in the furnace meanders up and down An annealing method using a vertical continuous annealing furnace that divides the interior into a plurality of sections along the specific horizontal direction by a partition plate, the step of calculating a required water vapor amount from the composition of the atmospheric gas, Predicting the amount of water vapor consumed by decarburization reaction from the dew point history of the plurality of compartments and the temperature of the steel sheet, and the high dew of the one or more compartments depending on the required water vapor amount and the consumed water vapor amount. I.e., an annealing process and a step of controlling the gas blowing amount.

当該焼鈍方法は、内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板を備える竪型連続焼鈍炉を用いることで、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づいて高露点ガス吹込量を制御することにより炉内露点を精度よく上昇できるので、炉内の露点制御性を向上し、脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。   In the annealing method, the interior is divided into a plurality of sections along the specific horizontal direction, and one or a plurality of partition plates having openings so that the atmospheric gas flowing in the furnace faces up and down to face the steel plate By using a vertical continuous annealing furnace provided with the above, it is possible to improve the circulation of the atmospheric gas in the furnace. Moreover, the dew point in the furnace is controlled by controlling the high dew point gas injection amount based on the required water vapor amount calculated from the composition of the atmospheric gas and the dew point history and the water vapor consumption due to the decarburization reaction predicted by the temperature of the steel sheet. Since it can raise accurately, the dew point controllability in a furnace can be improved and a decarburization reaction can be controlled accurately, As a result, desired quality of steel plates, such as bendability, can be obtained.

本発明の焼鈍方法は、炉内の露点制御性を向上し、脱炭反応を精度よく制御できる。   The annealing method of the present invention improves the dew point controllability in the furnace and can accurately control the decarburization reaction.

本発明の第1実施形態の竪型連続焼鈍炉の構成を示す模式図である。It is a schematic diagram which shows the structure of the vertical type continuous annealing furnace of 1st Embodiment of this invention. 本発明の第2実施形態の竪型連続焼鈍炉の一部の構成を示す模式図である。It is a schematic diagram which shows a part of structure of the vertical continuous annealing furnace of 2nd Embodiment of this invention. 本発明の第3実施形態の竪型連続焼鈍炉の一部の構成を示す模式図である。It is a schematic diagram which shows a partial structure of the vertical continuous annealing furnace of 3rd Embodiment of this invention. 均熱帯の昇温速度、鋼板温度及び脱炭速度と炉の長手方向の位置との関係を示すグラフである。It is a graph which shows the relationship between the temperature rising rate of soaking zone, steel plate temperature, decarburization rate, and the position of the longitudinal direction of a furnace. 均熱帯の昇温速度、鋼板温度及び脱炭速度と炉の長手方向の位置との関係を示すグラフである。It is a graph which shows the relationship between the temperature rising rate of soaking zone, steel plate temperature, decarburization rate, and the position of the longitudinal direction of a furnace. ガス供給ノズルの配置のその他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of arrangement | positioning of a gas supply nozzle. 実施例における竪型連続焼鈍炉の構成を示す模式図である。It is a schematic diagram which shows the structure of the vertical type continuous annealing furnace in an Example. 実施例における露点と脱炭深さとの関係を示すグラフである。It is a graph which shows the relationship between the dew point and the decarburization depth in an Example.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

<竪型連続焼鈍炉>
[第1実施形態]
本発明は、溶融亜鉛めっき設備などで、炉内の露点を上昇させて鋼板の脱炭反応を進める高露点操業に適した竪型連続焼鈍炉に関するものである。当該竪型連続焼鈍炉は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成される。当該竪型連続焼鈍炉は、例えば自動車、船舶、建材、家電等に用いられる溶融亜鉛めっき鋼板の製造の一工程として行うことができる。
<Vertical continuous annealing furnace>
[First Embodiment]
The present invention relates to a vertical continuous annealing furnace suitable for a high dew point operation in which a decarburization in a furnace is increased to promote a decarburization reaction of a steel sheet in a hot dip galvanizing facility or the like. The vertical continuous annealing furnace includes a plurality of top rolls and a plurality of bottom rolls disposed therein, and a belt-shaped steel plate is interposed between the plurality of top rolls and the plurality of bottom rolls so as to meander in the vertical direction. It is configured to carry out heat treatment while conveying the steel sheet in a specific horizontal direction. The vertical continuous annealing furnace can be performed as one step of manufacturing a hot-dip galvanized steel sheet used for automobiles, ships, building materials, home appliances, and the like.

当該竪型連続焼鈍炉の第1実施形態の構成を、図1を参照して説明する。竪型連続焼鈍炉1は、加熱帯5、均熱帯10及び冷却帯7を備え、この順に並置され、均熱帯10で鋼板の脱炭を行う。加熱帯5は、第1加熱帯5A(加熱帯前段)及び第2加熱帯5B(加熱帯後段)を有する。竪型連続焼鈍炉1の冷却帯7には、例えば溶融亜鉛めっき浴が接続される。   The configuration of the first embodiment of the vertical continuous annealing furnace will be described with reference to FIG. The vertical continuous annealing furnace 1 includes a heating zone 5, a soaking zone 10, and a cooling zone 7, which are juxtaposed in this order, and decarburize steel sheets in the soaking zone 10. The heating zone 5 has a first heating zone 5A (front stage of the heating zone) and a second heating zone 5B (back stage of the heating zone). For example, a hot dip galvanizing bath is connected to the cooling zone 7 of the vertical continuous annealing furnace 1.

竪型連続焼鈍炉1は、炉内上部に複数のトップロール3が配設され、炉内下部に複数のボトムロール4が配設される。鋼板2は、第1加熱帯5Aの下部の鋼帯導入口から第1加熱帯5A内に導入され、矢印Pで示す通板方向に搬送される。竪型連続焼鈍炉1は、複数のトップロール3及び複数のボトムロール4間に鋼板2を上下方向に蛇行するよう架け渡し、鋼板2を特定の水平方向に搬送しつつ熱処理するよう構成される。   In the vertical continuous annealing furnace 1, a plurality of top rolls 3 are arranged in the upper part of the furnace, and a plurality of bottom rolls 4 are arranged in the lower part of the furnace. The steel plate 2 is introduced into the first heating zone 5A from the steel strip inlet at the lower part of the first heating zone 5A, and is conveyed in the sheet passing direction indicated by the arrow P. The vertical continuous annealing furnace 1 is constructed such that a steel plate 2 is meandered between a plurality of top rolls 3 and a plurality of bottom rolls 4 so as to meander in a vertical direction, and the steel plate 2 is heat-treated while being conveyed in a specific horizontal direction. .

トップロール3及びボトムロール4を起点に鋼板2が180度に折り返される場合、鋼板2は竪型連続焼鈍炉1の所定の帯の内部で上下方向に複数回搬送され、複数パスを形成する。パス数は、処理条件に応じて適宜設定可能である。また、一部のトップロール3及びボトムロール4では、鋼板2を折り返すことなく直角に方向転換させて、鋼板2を次の帯へと移動させる。鋼板2は、竪型連続焼鈍炉1の内部で、加熱帯5、均熱帯10及び冷却帯7の順に搬送され、鋼板2に対して焼鈍が行われる。   When the steel plate 2 is folded back at 180 degrees starting from the top roll 3 and the bottom roll 4, the steel plate 2 is conveyed a plurality of times in the vertical direction within a predetermined band of the vertical continuous annealing furnace 1 to form a plurality of passes. The number of passes can be appropriately set according to the processing conditions. Moreover, in some top rolls 3 and bottom rolls 4, the direction of the steel plate 2 is changed to a right angle without folding back, and the steel plate 2 is moved to the next band. The steel plate 2 is conveyed in the order of the heating zone 5, the soaking zone 10 and the cooling zone 7 in the vertical continuous annealing furnace 1, and the steel plate 2 is annealed.

竪型連続焼鈍炉1において、隣接する帯は、それぞれの帯の上部同士または下部同士を接続する連通部を介して連通している。第1加熱帯5Aと第2加熱帯5Bとは、それぞれの帯の上部同士を接続するスロート27を介して連通する。第2加熱帯5Bと均熱帯10とは、それぞれの帯の下部同士を接続するスロート26を介して連通する。均熱帯10と冷却帯7とは、それぞれの帯の下部同士を接続するスロート25を介して連通する。   In the vertical continuous annealing furnace 1, adjacent bands communicate with each other via a communication portion that connects the upper parts or the lower parts of each band. The first heating zone 5A and the second heating zone 5B communicate with each other via a throat 27 that connects the upper portions of the respective zones. The second heating zone 5B and the soaking zone 10 communicate with each other via a throat 26 that connects the lower portions of each zone. The soaking zone 10 and the cooling zone 7 communicate with each other via a throat 25 that connects the lower portions of each zone.

(加熱帯)
本実施形態において、第2加熱帯5Bは、直火型加熱炉である。第2加熱帯5Bにおける直火型加熱炉の内壁には、複数のバーナが鋼板2に対向して分散配置される。また、第1加熱帯5Aの内部には、第2加熱帯5Bの燃焼排ガスが供給され、その熱で鋼板2を予熱する。第2加熱帯5Bの内部の温度は、鋼板2の種類や使用目的に応じて選択されるが、例えば800〜1200℃とすることが好ましい。
(Heating zone)
In the present embodiment, the second heating zone 5B is a direct-fired heating furnace. On the inner wall of the direct-fired heating furnace in the second heating zone 5B, a plurality of burners are arranged in a distributed manner facing the steel plate 2. Moreover, the combustion exhaust gas of the 2nd heating zone 5B is supplied inside the 1st heating zone 5A, and the steel plate 2 is preheated with the heat. Although the temperature inside the 2nd heating zone 5B is selected according to the kind and intended purpose of the steel plate 2, it is preferable to set it as 800-1200 degreeC, for example.

(冷却帯)
冷却帯7では、加熱後の鋼板2が冷却される。冷却帯7には、一定の流量で低露点の雰囲気ガスがガス導入口G1から供給され、炉内温度を徐々に低下させる。供給される雰囲気ガスとしては、例えばNおよび不可避的不純物からなる組成を有する露点が−60℃程度のガスが挙げられる。
(Cooling zone)
In the cooling zone 7, the heated steel plate 2 is cooled. The cooling zone 7 is supplied with an atmospheric gas having a constant flow rate and a low dew point from the gas inlet G1 to gradually lower the furnace temperature. Examples of the atmospheric gas to be supplied include a gas having a composition composed of N 2 and inevitable impurities and having a dew point of about −60 ° C.

(均熱帯)
均熱帯10では、炉内の雰囲気温度を所定の焼鈍温度に保持することで、鋼板2の内部まで焼鈍温度に加熱しつつ下記の反応式に従い鋼板の脱炭反応が行われる。
O+C→CO+H
(Soaking)
In the soaking zone 10, by maintaining the atmospheric temperature in the furnace at a predetermined annealing temperature, the steel plate 2 is decarburized according to the following reaction formula while being heated up to the annealing temperature.
H 2 O + C → CO + H 2

均熱帯10では、加熱手段として例えば電気ヒーター、ラジアントチューブ(RT)を用いて、鋼板2を間接加熱することができる。均熱帯10の内部の平均温度は鋼板2の種類や使用目的に応じて選択されるが、例えば700〜900℃とすることが好ましい。   In the soaking zone 10, the steel plate 2 can be indirectly heated using, for example, an electric heater or a radiant tube (RT) as a heating means. The average temperature inside the soaking zone 10 is selected according to the type and purpose of use of the steel plate 2, but is preferably set to 700 to 900 ° C, for example.

均熱帯10には、均熱帯10と冷却帯7とは、それぞれの帯の下部同士を接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G2からも一定の流量でN等の低露点の雰囲気ガスが供給される。なお、雰囲気ガス供給量及び冷却帯からのガス量は、配管に設けられたガス流量計により測定する。 The soaking zone 10 and the cooling zone 7 are supplied with a low dew point atmospheric gas from the cooling zone 7 through the throat 25 that connects the lower portions of each zone. An atmospheric gas with a low dew point such as N 2 is also supplied from the gas inlet G2 at a constant flow rate. The atmospheric gas supply amount and the gas amount from the cooling zone are measured by a gas flow meter provided in the pipe.

均熱帯10には仕切板14が備えられ、仕切板14は炉内を水平方向に沿って複数の区画に分割する。具体的には、均熱帯10は通板方向の上流側の前段12及び下流側の後段11の2区画に分割されている。仕切板14は、一端が炉底壁に固定され、他端が、炉底壁とトップロール3の鋼板2が巻きかけられていない側のロール下端部との間に開放された状態で備えられ、仕切板14は鋼板2と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する。   The soaking zone 10 is provided with a partition plate 14, which divides the inside of the furnace into a plurality of sections along the horizontal direction. Specifically, the soaking zone 10 is divided into two sections, a front stage 12 on the upstream side in the plate passing direction and a rear stage 11 on the downstream side. The partition plate 14 is provided in a state where one end is fixed to the furnace bottom wall and the other end is opened between the furnace bottom wall and the roll lower end portion on the side where the steel plate 2 of the top roll 3 is not wound. The partition plate 14 has an opening so that the atmospheric gas circulated in the furnace faces the steel plate 2 so as to meander up and down.

本発明者らは、このように炉内の流動シミュレーションなどにより、その開口部の位置も、炉内ガスを均一にするために適正な位置があることを知見した。また、脱炭反応のシミュレーションにより、上記露点制御が区画毎に行われることで、区画ごとの鋼板の通板速度の影響により滞在時間が異なる場合についても、適正に露点を調整できることを知見した。このように、炉内の雰囲気ガスの導入位置と排出位置を規定することで、雰囲気ガスの循環性を向上して雰囲気ガスの均一性を高め、露点制御が区画毎に行われることで、それぞれの区画に応じて適切に露点を制御できる。   As described above, the present inventors have found that the position of the opening has an appropriate position for making the gas in the furnace uniform by the flow simulation in the furnace. In addition, it has been found by simulation of the decarburization reaction that the dew point can be appropriately adjusted even when the stay time varies due to the influence of the sheet passing speed of the steel plate for each section by performing the dew point control for each section. In this way, by defining the introduction and discharge positions of the atmospheric gas in the furnace, the atmospheric gas circulation is improved and the uniformity of the atmospheric gas is improved, and dew point control is performed for each section, The dew point can be controlled appropriately according to the section.

仕切板14は、使用される温度域における耐熱性と、操業で破損しない強度を備え、実質的にガスを遮断できるものであればよく、例えばセラミックボード等、公知の耐熱材料が使用される。   The partition plate 14 has only to have heat resistance in a temperature range to be used and strength not to be damaged by operation, and can substantially block the gas. For example, a known heat-resistant material such as a ceramic board is used.

仕切板の位置における鉛直方向炉断面の炉内面積に対する上記仕切板の開口の面積比としては、1/10以上1/4以下である。ここで、仕切板14の開口の面積比とは、仕切り設置部分における鉛直方向炉断面の炉内面積に対する、上記断面部分において上記断面と直角方向へのガスの流れを規制するものが存在していない部分の面積の比率である。仕切板14の開口の面積比が上記範囲であることで、雰囲気ガスの流量を良好な範囲に維持し、炉内の露点制御性を向上できる。また、上記仕切板の開口の面積比が1/10未満の場合、気体の圧力損失が大きくなり過ぎて、脱炭反応に必要な雰囲気ガスの流量を十分に確保できないおそれがある。一方、上記仕切板の開口の面積比が1/4を超えると、この開口を通って雰囲気ガスが移動し、雰囲気ガスの流れの方向を通板方向と逆方向に規制する作用が低下するおそれがある。   The area ratio of the opening of the partition plate to the area in the furnace of the vertical furnace cross section at the position of the partition plate is 1/10 or more and 1/4 or less. Here, the area ratio of the opening of the partition plate 14 is that which regulates the gas flow in the direction perpendicular to the cross section in the cross section relative to the area in the furnace of the vertical furnace cross section in the partition installation portion. It is the ratio of the area of no part. When the area ratio of the opening of the partition plate 14 is within the above range, the flow rate of the atmospheric gas can be maintained in a favorable range, and the dew point controllability in the furnace can be improved. Moreover, when the area ratio of the opening of the said partition plate is less than 1/10, there exists a possibility that the pressure loss of gas may become large too much and the flow volume of atmospheric gas required for a decarburization reaction cannot fully be ensured. On the other hand, if the area ratio of the opening of the partition plate exceeds 1/4, the atmosphere gas moves through the opening, and the action of restricting the direction of the flow of the atmosphere gas in the direction opposite to the plate direction may be reduced. There is.

当該竪型連続焼鈍炉は、複数の区画毎に配設される複数の露点測定器を備える。均熱帯10では、露点は、区画毎に配設される露点測定器R1及び露点測定器R2により常時測定されている。   The vertical continuous annealing furnace includes a plurality of dew point measuring devices arranged in a plurality of sections. In the soaking zone 10, the dew point is constantly measured by the dew point measuring device R1 and the dew point measuring device R2 arranged for each section.

当該竪型連続焼鈍炉1は、複数の区画の露点を調整するために図示しない高露点ガス(水蒸気含む)を吹き込む機構を備える。具体的には、当該竪型連続焼鈍炉1には、高露点ガス又は水蒸気を供給するための図示しないガス供給装置が付設されている。ガス供給装置は、ガス供給ノズルを備える。そして、均熱帯10の前段12には、雰囲気ガスの流路に沿いかつ鋼板2の表面に向けて高露点ガスを供給するガス供給ノズル6A及び6Bが配設されている。ガス供給ノズル6A及び6Bは、炉上壁から一部のトップロール3間に向けて蒸気が吹き込まれるように配置されている。また、水蒸気を鋼板にぶつけると鋼板が酸化してしまうため、鋼板に直接当てないようにガス供給ノズルを配置とすることが好ましい。そのため、ガス供給ノズルはトップロール3間やボトムロール4間に配置したり、雰囲気ガス導入口G2にガス供給ノズルを配置して雰囲気ガスと混合して高露点ガスを吹き込むようにしてもよい。また、雰囲気露点を0℃に維持しようとすると、吹き込むガスの露点は、水蒸気の消費も考慮して高くする必要がある。   The vertical continuous annealing furnace 1 includes a mechanism for blowing a high dew point gas (including water vapor) (not shown) in order to adjust the dew points of a plurality of sections. Specifically, the vertical continuous annealing furnace 1 is provided with a gas supply device (not shown) for supplying high dew point gas or water vapor. The gas supply device includes a gas supply nozzle. Gas supply nozzles 6 </ b> A and 6 </ b> B that supply high dew point gas along the flow path of the atmospheric gas and toward the surface of the steel plate 2 are disposed in the front stage 12 of the soaking zone 10. The gas supply nozzles 6 </ b> A and 6 </ b> B are arranged so that steam is blown from the upper wall of the furnace toward a part of the top rolls 3. Moreover, since the steel plate is oxidized when water vapor hits the steel plate, it is preferable to arrange the gas supply nozzle so as not to directly hit the steel plate. Therefore, the gas supply nozzles may be arranged between the top rolls 3 and the bottom rolls 4, or may be arranged at the atmospheric gas introduction port G2 to mix with the atmospheric gas and blow high dew point gas. Further, if the atmospheric dew point is maintained at 0 ° C., the dew point of the gas to be blown needs to be increased in consideration of the consumption of water vapor.

また、当該竪型連続焼鈍炉1は、吹込機構の高露点ガス吹込量を制御する図示しない制御機構を備える。制御機構は、従来公知のコンピュータシステムを用いることができる。この制御機構により、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、上記吹込機構の高露点ガス吹込量が設定され、上記吹込量の高露点ガスが吹込機構から炉内に吹き込まれる。この制御機構による制御としては、例えば、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に応じて吹込機構の高露点ガス吹込量を調整する制御や、高露点ガスの吹込位置、吹き込み時間等を調整する制御等が挙げられる。また、目標とする露点については、目的とする鋼板の剛度に応じて最終脱炭深さを検討し、この脱炭深さが達成されるように設定される。   Moreover, the vertical continuous annealing furnace 1 includes a control mechanism (not shown) that controls the high dew point gas blowing amount of the blowing mechanism. As the control mechanism, a conventionally known computer system can be used. With this control mechanism, the high dew point of the blowing mechanism is based on the required water vapor amount calculated from the composition of the atmospheric gas, the dew point history by the dew point measuring instrument, and the amount of water vapor consumed by the decarburization reaction predicted by the temperature of the steel sheet. A gas blowing amount is set, and the above-mentioned blowing amount of high dew point gas is blown into the furnace from the blowing mechanism. Control by this control mechanism includes, for example, blowing according to the required water vapor amount calculated from the composition of the atmospheric gas, the dew point history by the dew point measuring device, and the consumed water vapor amount by the decarburization reaction predicted by the temperature of the steel plate. Examples include control for adjusting the high dew point gas blowing amount of the mechanism and control for adjusting the high dew point gas blowing position, the blowing time, and the like. Further, the target dew point is set so that the final decarburization depth is examined according to the rigidity of the target steel sheet and this decarburization depth is achieved.

<利点>
当該竪型連続焼鈍炉は、炉内で雰囲気ガスが均一に循環しにくい竪型構造であるにも係わらず、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、吹込機構の高露点ガス吹込量を制御する機構を備えることにより、炉内露点を精度よく上昇できるので、炉内の露点制御性を向上し、脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。
<Advantages>
Although the vertical continuous annealing furnace has a vertical structure in which the atmospheric gas is difficult to circulate uniformly in the furnace, it can improve the circulation of the atmospheric gas in the furnace. Also, based on the required water vapor amount calculated from the composition of the atmospheric gas, the dew point history by the dew point measuring instrument, and the amount of water vapor consumed by the decarburization reaction predicted by the temperature of the steel sheet, the high dew point gas blowing amount of the blowing mechanism is By providing a control mechanism, the dew point in the furnace can be raised with high precision, so that the dew point controllability in the furnace can be improved and the decarburization reaction can be controlled with high precision, and as a result, the desired quality of the steel sheet such as bendability can be improved. Obtainable.

[第2実施形態]
図2は、本発明の第2実施形態の竪型連続焼鈍炉の一部である均熱帯20の構成を示す模式図である。なお、第1実施形態と同様の構成は同じ参照符号のみを記載し、説明を省略する。
[Second Embodiment]
Drawing 2 is a mimetic diagram showing composition of soaking zone 20 which is a part of a vertical type continuous annealing furnace of a 2nd embodiment of the present invention. In addition, the same structure as 1st Embodiment describes only the same referential mark, and abbreviate | omits description.

第2実施形態に係る竪型連続焼鈍炉では、均熱帯20の雰囲気ガスの流入口となるスロート25及び流出口となるスロート26の双方が炉上部に配設される。均熱帯20には、均熱帯20と冷却帯7とを接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G4からも一定の流量でN等の低露点の雰囲気ガスが供給される。均熱帯20は、通板方向の上流側の前段22及び下流側の後段21の2区画に分割され、仕切板24の一端が上記均熱帯の炉上壁に固定され、他端が、炉底壁とボトムロール4の鋼板2が巻きかけられていない側のロール上端部との間に開放された状態で備えられている。 In the vertical continuous annealing furnace according to the second embodiment, both a throat 25 serving as an inlet for atmospheric gas in the soaking zone 20 and a throat 26 serving as an outlet are disposed in the upper part of the furnace. An atmospheric gas having a low dew point is supplied from the cooling zone 7 to the soaking zone 20 via a throat 25 that connects the soaking zone 20 and the cooling zone 7. Further, an atmospheric gas having a low dew point such as N 2 is also supplied from the gas introduction port G4 at a constant flow rate. The soaking zone 20 is divided into two sections, a upstream stage 22 on the upstream side in the plate passing direction and a downstream stage 21 on the downstream side. One end of the partition plate 24 is fixed to the soaking zone furnace upper wall, and the other end is the bottom of the furnace. It is provided in an open state between the wall and the roll upper end on the side where the steel plate 2 of the bottom roll 4 is not wound.

第2実施形態においては、露点を調整するため高露点ガス(水蒸気含む)を吹き込む均熱帯20が仕切板24により複数の区画に分割され、高露点ガスの吹込みと露点制御が区画毎に行われる。従って、雰囲気ガスと吹き込まれた高露点ガスとの混合が促進され、炉内露点がより均一になる。また、第1実施形態と同様、雰囲気ガスの流路に沿い、かつ鋼板2の表面に向けて高露点ガスを供給するガス供給ノズルが配設されているので、他の区画の雰囲気ガスに影響を与えることなく、区画毎に露点を制御できる。   In the second embodiment, the soaking zone 20 into which high dew point gas (including water vapor) is blown to adjust the dew point is divided into a plurality of sections by the partition plate 24, and high dew point gas blowing and dew point control are performed for each section. Is called. Therefore, mixing of the atmospheric gas and the blown-in high dew point gas is promoted, and the dew point in the furnace becomes more uniform. Further, as in the first embodiment, the gas supply nozzle for supplying the high dew point gas is disposed along the flow path of the atmospheric gas and toward the surface of the steel plate 2, so that it affects the atmospheric gas in other compartments. The dew point can be controlled for each section without giving any value.

上述したように、水蒸気の消費量は、鋼板温度により異なることから、本実施形態では、区画毎に鋼板温度を測定し、蒸気の追加投入量を調整することができる。また、焼鈍炉では板厚が厚いほど通板速度が低下し、通板速度が低下すると脱炭深さは大きくなる。このような場合にも区画毎に、水蒸気の投入量を調整することで、脱炭反応の制御性を向上できる。   As described above, since the consumption amount of water vapor varies depending on the steel plate temperature, in this embodiment, it is possible to measure the steel plate temperature for each section and adjust the additional input amount of steam. In the annealing furnace, the plate passing speed decreases as the plate thickness increases, and the decarburization depth increases as the plate passing rate decreases. Even in such a case, the controllability of the decarburization reaction can be improved by adjusting the input amount of water vapor for each section.

通板方向上流側の区画である前段22の露点が通板方向下流側の区画である後段21の露点よりも高いとよい。通板方向上流側の前段22の露点が通板方向下流側の後段21の露点よりも高いことで、通板方向下流側の後段で消費された水蒸気を通板方向上流側の前段で補填できるので、炉内の露点の制御性を向上できる。また、通板速度の変更により均熱帯の滞在時間が変動する場合においても、露点を精度よく制御することで、適正な脱炭深さに調整できる。   The dew point of the front stage 22 that is a section upstream of the sheet passing direction is preferably higher than the dew point of the rear stage 21 that is a section downstream of the sheet passing direction. Since the dew point of the upstream stage 22 upstream of the sheet passing direction is higher than the dew point of the downstream stage 21 downstream of the sheet passing direction, water consumed in the downstream stage downstream of the sheet passing direction can be compensated by the upstream stage upstream of the sheet passing direction. Therefore, the controllability of the dew point in the furnace can be improved. In addition, even when the soaking zone stay time fluctuates due to changes in the plate passing speed, it is possible to adjust the decarburization depth by controlling the dew point with high accuracy.

<利点>
上記第2実施形態によれば、雰囲気ガスの流れが仕切板で区画毎に蒸気を投入する混合が促進され、炉内露点がより均一になり、炉内の水蒸気分布の制御の精度をより向上できる。また、露点の制御が区画毎に行われることで、均熱帯の通板方向下流側の前段で行われた脱炭反応により下降した雰囲気ガスの露点を精度よく修正することができる。
<Advantages>
According to the second embodiment, the mixing of the flow of the atmospheric gas at the partition with the partition gas is promoted, the dew point in the furnace becomes more uniform, and the control accuracy of the water vapor distribution in the furnace is further improved. it can. Further, by controlling the dew point for each section, it is possible to accurately correct the dew point of the atmospheric gas that has fallen due to the decarburization reaction performed in the preceding stage downstream of the soaking zone in the plate passing direction.

[第3実施形態]
図3は、本発明の第3実施形態の竪型連続焼鈍炉の一部である均熱帯30の構成を示す模式図である。なお、第1実施形態と同様の構成は同じ参照符号のみを記載し、説明を省略する。
[Third Embodiment]
Drawing 3 is a mimetic diagram showing composition of soaking zone 30 which is a part of a vertical type continuous annealing furnace of a 3rd embodiment of the present invention. In addition, the same structure as 1st Embodiment describes only the same referential mark, and abbreviate | omits description.

第3実施形態に係る竪型連続焼鈍炉では、均熱帯30の雰囲気ガスの流入口となるスロート25及び流出口となるスロート26の双方が炉底部に配設される。均熱帯30には、均熱帯30と冷却帯7とを接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G6からも一定の流量でN等の低露点の雰囲気ガスが供給される。均熱帯30は、通板方向の上流側の前段32及び下流側の後段31の2区画に分割され、仕切板34の一端が上記均熱帯30の炉底壁に固定され、他端が、炉底壁とトップロール3の鋼板2が巻きかけられていない側のロール下端部との間に開放された状態で備えられている。 In the vertical continuous annealing furnace according to the third embodiment, both a throat 25 serving as an inlet for atmospheric gas in the soaking zone 30 and a throat 26 serving as an outlet are disposed at the furnace bottom. The soaking zone 30 is supplied with atmospheric gas having a low dew point from the cooling zone 7 through a throat 25 that connects the soaking zone 30 and the cooling zone 7. An atmospheric gas with a low dew point such as N 2 is also supplied from the gas inlet G6 at a constant flow rate. The soaking zone 30 is divided into two sections, a front stage 32 on the upstream side in the plate passing direction and a rear stage 31 on the downstream side. One end of the partition plate 34 is fixed to the furnace bottom wall of the soaking zone 30 and the other end is the furnace. It is provided in an open state between the bottom wall and the lower end of the roll on the side where the steel plate 2 of the top roll 3 is not wound.

露点を調整するため高露点ガス(水蒸気含む)を吹き込む均熱帯30が仕切板34により複数の区画に分割され、高露点ガスの吹込みと露点制御が区画毎に行われる。従って、雰囲気ガスと吹き込まれた高露点ガスとの混合が促進され、炉内露点がより均一になる。また、第1実施形態と同様、雰囲気ガスの流路に沿いかつ鋼板2の表面に向けて高露点ガスを供給するガス供給ノズルが配設されているので、他の区画の雰囲気ガスに影響を与えることなく、区画毎に露点を制御できる。   In order to adjust the dew point, the soaking zone 30 into which high dew point gas (including water vapor) is blown is divided into a plurality of sections by the partition plate 34, and high dew point gas blowing and dew point control are performed for each section. Therefore, mixing of the atmospheric gas and the blown-in high dew point gas is promoted, and the dew point in the furnace becomes more uniform. Moreover, since the gas supply nozzle which supplies high dew point gas along the flow path of atmospheric gas and toward the surface of the steel plate 2 is arrange | positioned similarly to 1st Embodiment, it has influence on the atmospheric gas of another division. The dew point can be controlled for each section without giving.

第3実施形態においても、通板方向上流側の区画である前段32の露点が通板方向下流側の区画である後段31の露点よりも高いとよい。通板方向上流側の前段32の露点が通板方向下流側の後段31の露点よりも高いことで、通板方向下流側の後段で消費された水蒸気を通板方向上流側の前段で補填できるので、炉内の露点の制御性を向上できる。また、通板速度の変更により均熱帯の滞在時間が変動する場合においても、露点を精度よく制御することで、適正な脱炭深さに調整できる。   Also in 3rd Embodiment, it is good for the dew point of the front | former stage 32 which is a division of the sheet | seat direction upstream side to be higher than the dew point of the back | latter stage 31 which is a division of the sheet | seat direction downstream side. Since the dew point of the upstream stage 32 on the upstream side in the sheet passing direction is higher than the dew point on the downstream stage 31 on the downstream side in the sheet passing direction, water consumed in the downstream stage on the downstream side in the sheet passing direction can be compensated in the upstream stage in the upstream direction in the sheet passing direction Therefore, the controllability of the dew point in the furnace can be improved. In addition, even when the soaking zone stay time fluctuates due to changes in the plate passing speed, it is possible to adjust the decarburization depth by controlling the dew point with high accuracy.

<利点>
上記第3実施形態によれば、雰囲気ガスの流れが仕切板で区画毎に蒸気を投入する混合が促進され、炉内露点がより均一になり、炉内の水蒸気分布の制御の精度をより向上できる。また、露点の制御が区画毎に行われることで、均熱帯の通板方向下流側の前段で行われた脱炭反応により下降した雰囲気ガスの露点を精度よく修正することができる。
<Advantages>
According to the said 3rd Embodiment, the mixing which introduce | transduces a vapor | steam for every division with a partition plate with the flow of atmospheric gas is accelerated | stimulated, the dew point in a furnace becomes more uniform, and the precision of control of the water vapor distribution in a furnace is improved more it can. Further, by controlling the dew point for each section, it is possible to accurately correct the dew point of the atmospheric gas that has fallen due to the decarburization reaction performed in the preceding stage downstream of the soaking zone in the plate passing direction.

<焼鈍方法>
当該焼鈍方法は、内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成され、炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板により内部を上記特定水平方向に沿って複数の区画に分割する竪型連続焼鈍炉を用いた焼鈍方法である。当該焼鈍方法は、溶融亜鉛めっき設備などで、炉内露点を上昇させて、鋼板の脱炭反応を進める高露点操業を行うための雰囲気ガスの供給方法と制御方法に関するものである。当該焼鈍方法は、例えば自動車、船舶、建材、家電等に用いられる溶融亜鉛めっき鋼板の製造の一工程として行うことができる。
<Annealing method>
The annealing method includes a plurality of top rolls and a plurality of bottom rolls disposed therein, and a belt-shaped steel plate is bridged between the plurality of top rolls and the plurality of bottom rolls so as to meander in the vertical direction. The steel plate is configured to be heat-treated while being conveyed in a specific horizontal direction, and a plurality of interiors along the specific horizontal direction are formed by one or a plurality of partition plates having openings so that the atmospheric gas flowing in the furnace meanders up and down. It is the annealing method using the vertical continuous annealing furnace divided | segmented into this division. The annealing method relates to an atmospheric gas supply method and a control method for performing a high dew point operation for increasing the dew point in the furnace and advancing the decarburization reaction of the steel sheet in a hot dip galvanizing facility or the like. The said annealing method can be performed as one process of manufacture of the hot dip galvanized steel plate used for a motor vehicle, a ship, a building material, a household appliance, etc., for example.

当該焼鈍方法は、上記雰囲気ガスの組成から必要水蒸気量を算出する工程と、上記1又は複数の区画の露点の履歴及び上記鋼板の温度から脱炭反応による消費水蒸気量を予測する工程と、上記必要水蒸気量及び上記消費水蒸気量により上記1又は複数の区画の高露点ガス吹込量を制御する工程とを備える。   The annealing method includes a step of calculating a required water vapor amount from the composition of the atmospheric gas, a step of predicting a water vapor consumption amount due to a decarburization reaction from the history of the dew point of the one or more sections and the temperature of the steel plate, and And a step of controlling the high dew point gas blowing amount of the one or more sections according to the required water vapor amount and the consumed water vapor amount.

[必要水蒸気量算出工程]
必要水蒸気量算出は、以下の工程で行なわれる。
(1)最終脱炭深さの設定
初めに、目的とする鋼板の剛度に応じて最終脱炭深さを設定する。なお、当該焼鈍方法においては、脱炭深さは、鋼板の厚み方向にGDOES分析をし、脱炭により表層から欠乏した炭素濃度が厚み方向に上昇して、母材の90%になった位置の深さをいう。
(2)目標露点の設定
脱炭反応は、Cの拡散律速により進行するため、脱炭深さx1は、経過時間(炉での滞在時間)tの1/2乗に比例し、以下の式(1)で表される。
[Required water vapor amount calculation process]
The required amount of water vapor is calculated in the following steps.
(1) Setting of final decarburization depth First, the final decarburization depth is set according to the rigidity of the target steel plate. In this annealing method, the decarburization depth was determined by GDOES analysis in the thickness direction of the steel sheet, and the carbon concentration lacking from the surface layer due to decarburization increased in the thickness direction, resulting in 90% of the base material. The depth of the.
(2) Setting of the target dew point Since the decarburization reaction proceeds according to the diffusion-controlled C, the decarburization depth x1 is proportional to the ½ power of the elapsed time (stay time in the furnace) t. It is represented by (1).

Figure 2019173144
Figure 2019173144

また、拡散係数kpは、鋼板温度T1の関数であり、アレニウス型で鋼板温度T1の上昇に伴い大きくなる。拡散係数kpは、以下の式(2)で表される。   Further, the diffusion coefficient kp is a function of the steel plate temperature T1, and increases with an increase in the steel plate temperature T1 in the Arrhenius type. The diffusion coefficient kp is expressed by the following formula (2).

Figure 2019173144
Figure 2019173144

ここで、constは、頻度因子を示す定数である。PH2Oは、飽和水蒸気圧である。nは、定数であり、本発明ではn=1である。 Here, const is a constant indicating a frequency factor. P H2O is the saturated water vapor pressure. n is a constant, and n = 1 in the present invention.

経過時間tに応じた炭素の脱炭深さx1を用いた式では脱炭速度dx1/dtは、以下の式(3)で表される。   In the equation using the decarburization depth x1 of carbon corresponding to the elapsed time t, the decarburization speed dx1 / dt is expressed by the following equation (3).

Figure 2019173144
Figure 2019173144

また、最終脱炭深さx2は、以下の式(4)で表される。   The final decarburization depth x2 is expressed by the following formula (4).

Figure 2019173144
Figure 2019173144

鋼板温度T1の履歴から目標とする最終脱炭深さx2を得るための水蒸気量が決まり、目標露点が設定される。より詳細には、式(1)、式(2)及び式(3)から鋼板温度T1の履歴に対して、PH2Oを任意の一定値とした場合の脱炭速度dx1/dt及び経過時間tに応じた脱炭深さx1を求める。そして式(4)から最終の脱炭深さを計算し、この脱炭深さの計算結果と目標脱炭深さとの比較を行い、脱炭深さの計算結果と目標脱炭深さが一致する水蒸気量が定まるまで、計算が繰り返されることになる。 The amount of water vapor for obtaining the target final decarburization depth x2 is determined from the history of the steel plate temperature T1, and the target dew point is set. More specifically, the decarburization speed dx1 / dt and the elapsed time t when PH 2 O is an arbitrary constant value with respect to the history of the steel plate temperature T1 from the expressions (1), (2), and (3). The decarburization depth x1 according to is obtained. Then, calculate the final decarburization depth from the equation (4), compare the calculated decarburization depth with the target decarburization depth, and the calculated decarburization depth matches the target decarburization depth. The calculation is repeated until the amount of water vapor to be determined is determined.

(3)炉内の露点を目標露点にするための必要水蒸気量の算出
次に、雰囲気ガスの露点から含有水分の濃度(ppm)を算出する。始めに、Tetensの式より露点T2(℃)から飽和水蒸気圧を算出する。そして、算出した飽和水蒸気圧から、含有水分の濃度を算出する。含有水分の濃度HO(ppm)は、以下の式(5)から算出できる。
(3) Calculation of required water vapor amount for setting dew point in furnace to target dew point Next, the concentration (ppm) of contained water is calculated from the dew point of the atmospheric gas. First, the saturated water vapor pressure is calculated from the dew point T2 (° C.) from the Tetens equation. Then, the concentration of the contained water is calculated from the calculated saturated water vapor pressure. The concentration H 2 O (ppm) of the contained water can be calculated from the following equation (5).

Figure 2019173144
Figure 2019173144

脱炭反応進行中の、炉内の露点を目標露点にするための必要水蒸気量は、以下の式(6)で表される。
必要水蒸気量=雰囲気露点を上昇させる水蒸気量+脱炭反応消費量・・・(6)
The amount of water vapor required for making the dew point in the furnace the target dew point during the decarburization reaction is expressed by the following equation (6).
Required amount of water vapor = amount of water vapor to raise the atmospheric dew point + consumption of decarburization reaction (6)

均熱帯に冷却帯からのガス量と追加の雰囲気ガスを供給する場合、上記式(6)の雰囲気露点を上昇させる水蒸気量は、以下の式(7)で表される。
雰囲気露点を上昇させる水蒸気量
=追加の雰囲気ガス供給量×{f(目標露点)−f(供給ガス露点)}
+冷却帯からのガス量×{f(目標露点)−f(ガス冷却帯露点)}・・・(7)
When the gas amount from the cooling zone and the additional atmospheric gas are supplied to the soaking zone, the water vapor amount that raises the atmospheric dew point of the above equation (6) is expressed by the following equation (7).
Amount of water vapor that raises the atmospheric dew point = additional atmospheric gas supply amount × {f (target dew point) −f (supply gas dew point)}
+ Gas amount from cooling zone x {f (target dew point)-f (gas cooling zone dew point)} (7)

[消費水蒸気量予測工程]
消費水蒸気量の予測は、以下の工程で行なわれる。本工程では、1又は複数の区画の露点の履歴及び上記鋼板の温度から脱炭反応による消費水蒸気量を予測する。
[Consumption water vapor amount prediction process]
The prediction of the amount of water vapor consumption is performed in the following steps. In this step, the amount of water vapor consumed by the decarburization reaction is predicted from the history of the dew point of one or more sections and the temperature of the steel sheet.

脱炭反応による水蒸気量
=通板量×鋼材炭素量×(脱炭深さ÷鋼板厚さ)÷2×2面×0.9×炭素の水蒸気消費量・・・(8)
Amount of water vapor by decarburization reaction = Amount of plate to be passed x Steel material carbon amount x (Decarburization depth ÷ Steel plate thickness) ÷ 2 x 2 surfaces x 0.9 x Carbon water vapor consumption ... (8)

上記式(8)において、2面とは鋼板の表面及び裏面のことである。炭素の水蒸気消費量においては、上述したように脱炭反応ではC(炭素)1モルに対してHO1モルが消費される。また、脱炭された鋼板の厚み方向の炭素濃度分布においては、鋼板表面では略0%であり、厚み方向に向けて略リニアに増加し、母材の濃度まで上昇する。脱炭量とは、母材の炭素濃度から減少した炭素濃度である。上述したように鋼板の厚み方向の炭素濃度分布においては、炭素濃度が略リニアに増加することから、炭素濃度を三角形の面積として算出するため、式(8)では2で除している。 In said formula (8), 2 sides are the surface and back surface of a steel plate. In the water vapor consumption of carbon, as described above, 1 mol of H 2 O is consumed for 1 mol of C (carbon) in the decarburization reaction. In addition, the carbon concentration distribution in the thickness direction of the decarburized steel sheet is approximately 0% on the steel sheet surface, increases substantially linearly in the thickness direction, and increases to the concentration of the base material. The amount of decarburization is the carbon concentration reduced from the carbon concentration of the base material. As described above, in the carbon concentration distribution in the thickness direction of the steel sheet, since the carbon concentration increases substantially linearly, in order to calculate the carbon concentration as a triangular area, it is divided by 2 in Equation (8).

また、炉内の消費水蒸気量としては、上記脱炭反応による消費水蒸気量に加えて、鋼板の内部酸化による消費水蒸気量を考慮してもよい。内部酸化による消費水蒸気量は、例えば以下のように算出できる。
内部酸化による消費水蒸気量
=内部酸化層の厚み×(鋼材中のSi含有量×1.0×2面×Siの水蒸気消費量+鋼材中のMn含有量×1.0×2面×Mnの水蒸気消費量)×通板量・・・(9)
上述したように、脱炭反応の場合、脱炭された鋼板の厚み方向の炭素濃度分布においては、鋼板表面では略0%であり、厚み方向に向けて略リニアに増加する。当該焼鈍方法においては、脱炭により表層から欠乏した炭素濃度が厚み方向に上昇して、母材の90%になった位置の深さを脱炭深さとしている。一方、内部酸化においては、内部酸化層中に存在するSiやMnは厚み方向に関係なくほぼ全量酸化することから、上記式(9)では脱炭反応の式(8)のような係数はない。
Further, as the amount of water vapor consumed in the furnace, in addition to the amount of water vapor consumed by the decarburization reaction, the amount of water vapor consumed by internal oxidation of the steel sheet may be considered. The amount of water vapor consumed by internal oxidation can be calculated as follows, for example.
Water vapor consumption due to internal oxidation = thickness of internal oxide layer x (Si content in steel material x 1.0 x 2 surface x water vapor consumption of Si + Mn content in steel material x 1.0 x 2 surface x Mn (Water vapor consumption) x Amount of passing plate ... (9)
As described above, in the case of the decarburization reaction, the carbon concentration distribution in the thickness direction of the decarburized steel sheet is approximately 0% on the surface of the steel sheet and increases approximately linearly in the thickness direction. In the annealing method, the carbon concentration deficient from the surface layer due to decarburization increases in the thickness direction, and the depth at the position where it becomes 90% of the base material is defined as the decarburization depth. On the other hand, in the internal oxidation, Si and Mn present in the internal oxide layer are oxidized almost entirely regardless of the thickness direction, so the above equation (9) does not have a coefficient like the equation (8) of the decarburization reaction. .

[高露点ガス吹込量制御工程]
本工程では、上記必要水蒸気量算出工程により算出された必要水蒸気量と上記消費水蒸気量予測工程により予測された消費水蒸気量に基づいて、水蒸気投入量を決定し、上記吹込機構から炉内に高露点ガスを投入させる。すなわち、水蒸気投入量は、
水蒸気投入量=露点上昇に必要な水蒸気量+目標脱炭深さを達成するために消費された水蒸気量
となる。
[High dew point gas injection control process]
In this step, the amount of steam input is determined based on the required water vapor amount calculated in the required water vapor amount calculating step and the consumed water vapor amount predicted in the consumed water vapor amount predicting step. Add dew point gas. That is, the amount of steam input is
Water vapor input amount = water vapor amount required for increasing dew point + water vapor amount consumed to achieve the target decarburization depth.

なお、脱炭反応は、炉の昇温速度や鋼板温度T1と各点での脱炭深さに影響するため、炉の中央部での脱炭反応が大きくなる。図4は、均熱帯で常温から昇温した場合における昇温速度、鋼板温度及び脱炭速度と均熱帯の長手方向の位置との関係を示すグラフである。均熱帯の長手方向の位置は、通板方向上流側端部を0mとして定める。図4に示すように、水蒸気の消費量は、鋼板温度により異なり、加熱帯で板を低温から加熱する場合は、鋼板温度で600℃以上の範囲で脱炭反応が大きくなっている。水蒸気の消費量は、鋼板温度により異なり、加熱帯で鋼板を低温から加熱する場合は、鋼板温度が600℃以上の部分での脱炭反応が大きく、水蒸気の消費量が多いため、その部分へ水蒸気を添加することが必要である。しかし、雰囲気ガスの流量に合わせて、冷却帯からのガスに水蒸気を投入するだけでは、消費が少ない場所では、露点が上昇しすぎて、鋼板が酸化する場合がある。   Note that the decarburization reaction affects the temperature rise rate of the furnace, the steel plate temperature T1, and the decarburization depth at each point, so that the decarburization reaction at the center of the furnace becomes large. FIG. 4 is a graph showing the relationship between the temperature rise rate, the steel plate temperature, the decarburization rate, and the position in the longitudinal direction of the soaking zone when the temperature is raised from room temperature in the soaking zone. The position in the longitudinal direction of the soaking zone is determined by defining the upstream end in the sheet passing direction as 0 m. As shown in FIG. 4, the consumption of water vapor varies depending on the steel plate temperature, and when the plate is heated from a low temperature in the heating zone, the decarburization reaction increases in the range of 600 ° C. or higher at the steel plate temperature. The amount of water vapor consumption varies depending on the steel plate temperature. When the steel plate is heated from a low temperature in the heating zone, the decarburization reaction is large in the portion where the steel plate temperature is 600 ° C. or higher, and the amount of water vapor consumption is large. It is necessary to add water vapor. However, if water vapor is simply added to the gas from the cooling zone in accordance with the flow rate of the atmospheric gas, the dew point may increase excessively in a place where consumption is low, and the steel sheet may be oxidized.

また、図5は、加熱帯で500℃まで昇温後に、均熱帯で500℃から700℃まで昇温した場合における炉内の昇温速度、鋼板温度及び脱炭速度と均熱帯の長手方向の位置との関係を示すグラフである。炉の長手方向の位置は、通板方向上流側端部を0mとして定める。また、炉の全長は、250mである。あらかじめ加熱帯で500℃まで昇温した場合も同様に、炉中央部で脱炭速度が速くなることがわかる。つまり、脱炭反応は、温度と各点での脱炭深さに影響するため、均熱帯の中央部での脱炭反応が大きくなり、炉の中央部で水蒸気の消費量が大きくなる。当該竪型連続焼鈍炉は、このような鋼板温度、均熱帯での位置等の状況に応じて露点制御ができる。   Further, FIG. 5 shows the temperature rise rate in the furnace, the steel plate temperature, the decarburization rate, and the longitudinal direction of the soaking zone when the temperature is raised from 500 ° C. to 700 ° C. in the soaking zone after raising the temperature to 500 ° C. in the heating zone. It is a graph which shows the relationship with a position. The position in the longitudinal direction of the furnace is determined by setting the upstream end in the sheet passing direction to 0 m. The total length of the furnace is 250 m. Similarly, it can be seen that the decarburization rate increases in the center of the furnace even when the temperature is raised to 500 ° C. in the heating zone in advance. That is, since the decarburization reaction affects the temperature and the decarburization depth at each point, the decarburization reaction in the central part of the soaking zone increases, and the consumption of water vapor increases in the central part of the furnace. The vertical continuous annealing furnace can perform dew point control according to the situation such as the temperature of the steel sheet and the position in the soaking zone.

<利点>
当該焼鈍方法は、上記竪型連続焼鈍炉を用いることで、炉内の雰囲気ガスの循環性を向上できる。また、雰囲気ガスの組成から算出される必要水蒸気量並びに露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づいて高露点ガス吹込量を制御することにより、炉内の露点を精度よく上昇できるので、炉内の露点制御性を向上し、鋼板の脱炭反応を精度よく制御でき、その結果、曲げ性等の鋼板の所望の品質を得ることができる。
<Advantages>
The annealing method can improve the circulation of the atmospheric gas in the furnace by using the vertical continuous annealing furnace. Also, by controlling the amount of water vapor consumed by the decarburization reaction predicted by the required water vapor amount and dew point history calculated from the composition of the atmospheric gas and the temperature of the steel sheet, the high dew point gas injection amount is controlled. Since the dew point can be raised with high accuracy, the dew point controllability in the furnace can be improved, and the decarburization reaction of the steel plate can be controlled with high accuracy. As a result, the desired quality of the steel plate such as bendability can be obtained.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.

上記第1実施形態においては、図1に示すように、高露点ガスのガス供給ノズル6A及び6Bが炉上壁に配置されていたが、鋼板に直接蒸気が当たらない他の場所に配置することもできる。図6は、供給ノズルの配置のその他の実施形態を示す模式図である。なお、図1と同様の構成は同じ参照符号のみを記載し、説明を省略する。例えば図6に示すように、均熱帯10のガス供給ノズルの形態として、ガス供給ノズル6C及びガス供給ノズル6Dのように2本のノズル口が対向するように2本のガス供給ノズルを配置し、一か所に2本のガス供給ノズルを用いて高露点ガスを供給するようにしてもよい。   In the first embodiment, as shown in FIG. 1, the gas supply nozzles 6A and 6B for the high dew point gas are arranged on the furnace wall, but they are arranged at other places where the steam is not directly applied to the steel plate. You can also. FIG. 6 is a schematic view showing another embodiment of the arrangement of the supply nozzles. In addition, the same structure as FIG. 1 describes only the same referential mark, and abbreviate | omits description. For example, as shown in FIG. 6, as a form of the gas supply nozzle of the soaking zone 10, two gas supply nozzles are arranged so that the two nozzle ports face each other like the gas supply nozzle 6C and the gas supply nozzle 6D. The high dew point gas may be supplied using two gas supply nozzles in one place.

上記実施形態においては、均熱帯に1つの仕切板が備えられていたが、2以上の仕切板が備えられていてもよい。この場合も、複数の仕切板は、それぞれ炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する。従って、例えば上記雰囲気ガスの流入口及び流出口の双方が炉底部又は炉上部に配設される場合には、仕切板は奇数個備えられ、流入口及び流出口が炉底部及び炉上部に互い違いに配設される場合には、仕切板は偶数個備えられることになる。仕切板の固定側または開放側を左右交互に入れ替えて配置することで、均熱帯の流入口と流出口との間に、仕切板によって左右に蛇行する空間を形成する。すなわち、均熱帯の内部には、流入口から左右に蛇行しながら一の仕切板と他の仕切板との間の空間を経由して最終的に流出口までを接続する雰囲気ガスの流路が形成される。これにより、均熱帯における雰囲気ガス及び高露点ガスの循環を向上し、脱炭反応の制御性を向上できる。   In the above embodiment, one partition plate is provided in the soaking zone, but two or more partition plates may be provided. Also in this case, each of the plurality of partition plates has an opening so that the atmospheric gas flowing in the furnace meanders up and down. Therefore, for example, when both the inlet and outlet of the atmospheric gas are arranged at the furnace bottom or top, an odd number of partition plates are provided, and the inlet and outlet are staggered at the furnace bottom and top. In this case, an even number of partition plates are provided. By arranging the fixed side or the open side of the partition plate alternately on the left and right sides, a space meandering left and right by the partition plate is formed between the soaking zone inlet and the outlet. That is, inside the soaking zone, there is an atmosphere gas flow path that connects to the final outlet through the space between one partition plate and the other partition plate while meandering from the inlet to the left and right. It is formed. Thereby, the circulation of atmospheric gas and high dew point gas in the soaking zone can be improved, and the controllability of the decarburization reaction can be improved.

また、均熱帯の区画毎に流出口を設けるようにしてもよい。   Moreover, you may make it provide an outflow port for every soaking zone.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example.

焼鈍する鋼板として冷間圧延鋼板を作製し、外壁内側に断熱材が配設される加熱炉を用い、非酸化性ガスを吹き込みながら焼鈍する試験として実施例1〜実施例3及び比較例1〜比較例2を行った。   A cold rolled steel sheet is produced as a steel sheet to be annealed, and a heating furnace in which a heat insulating material is disposed on the inner side of the outer wall is used, and Examples 1 to 3 and Comparative Examples 1 to 3 are subjected to annealing while blowing a non-oxidizing gas. Comparative Example 2 was performed.

[実施例1]
(鋼板)
焼鈍する鋼板としては、冷間圧延鋼板を用意した。具体的には、先ず、原料を溶解及び鋳造し、炭素を0.2質量%、シリコンを1.8質量%、マンガンを2.1質量%含み、残部が鉄及び不可避的不純物であるスラブを作製し、このスラブを熱間圧延した。次いで、得られた圧延材を酸洗して表面の酸化スケールを完全に除去し、さらに冷間圧延を行うことで板幅1000mm、板厚1.0mmの薄鋼板を製造した。
[Example 1]
(steel sheet)
A cold rolled steel sheet was prepared as the steel sheet to be annealed. Specifically, first, a raw material is melted and cast, and a slab containing 0.2% by mass of carbon, 1.8% by mass of silicon and 2.1% by mass of manganese, with the balance being iron and inevitable impurities. The slab was produced and hot rolled. Next, the obtained rolled material was pickled to completely remove the oxide scale on the surface, and further cold rolled to produce a thin steel plate having a plate width of 1000 mm and a plate thickness of 1.0 mm.

加熱帯では、還元バーナにより、鋼板を酸化させずに加熱する処理を実施した。   In the heating zone, a reduction burner was used to heat the steel sheet without oxidizing it.

実施例1、実施例3及び比較例1〜比較例2の均熱帯としては、図7に示す内容積が600mである竪型連続焼鈍炉50を用いた。竪型連続焼鈍炉50の均熱帯40は、均熱帯20の雰囲気ガスの流入口となるスロート25及び流出口となるスロート26の双方が炉底部に配設される。均熱帯40には、均熱帯40と冷却帯7とを接続するスロート25を介して冷却帯7から低露点の雰囲気ガスが供給される。また、ガス導入口G9からも一定の流量でN等の低露点の雰囲気ガスが供給される。均熱帯40は、通板方向の上流側の前段42及び下流側の後段41の2区画に分割され、鋼板2が2つのトップロール3にわたって巻きかけられている。仕切板44は、一端が均熱帯40の炉底壁に固定され、他端が、上記2つのトップロール3の鋼板2が巻きかけられていない側に開放された状態で備えられている。 As the soaking zone of Example 1, Example 3, and Comparative Examples 1 and 2, vertical type vertical annealing furnace 50 having an internal volume of 600 m 3 shown in FIG. 7 was used. In the soaking zone 40 of the vertical continuous annealing furnace 50, both a throat 25 serving as an inlet for atmospheric gas in the soaking zone 20 and a throat 26 serving as an outlet are disposed at the bottom of the furnace. An atmospheric gas having a low dew point is supplied from the cooling zone 7 to the soaking zone 40 via a throat 25 that connects the soaking zone 40 and the cooling zone 7. An atmospheric gas with a low dew point such as N 2 is also supplied from the gas inlet G9 at a constant flow rate. The soaking zone 40 is divided into two sections, an upstream front stage 42 and a downstream rear stage 41 in the sheet passing direction, and the steel plate 2 is wound around the two top rolls 3. The partition plate 44 is provided with one end fixed to the furnace bottom wall of the soaking zone 40 and the other end opened to the side on which the steel plate 2 of the two top rolls 3 is not wound.

そして、均熱帯40の前段42及び後段41のそれぞれに直接水蒸気を吹き込むノズル(不図示)を設置し、水蒸気流量を調整しながら、炉内の露点を測定し、鋼板2の脱炭反応を進めた。均熱帯40の入り口における鋼板温度は700℃である。通板速度60m/分で通板した。露点測定位置は、R1及びR2で示す。また、冷却帯から導入される雰囲気ガス及びその他の雰囲気ガスの条件を表1に示す。   Then, a nozzle (not shown) for directly blowing water vapor into each of the front stage 42 and the rear stage 41 of the soaking zone 40 is installed, the dew point in the furnace is measured while adjusting the water vapor flow rate, and the decarburization reaction of the steel plate 2 is advanced. It was. The steel plate temperature at the entrance of the soaking zone 40 is 700 ° C. The sheet was passed at a feeding speed of 60 m / min. Dew point measurement positions are indicated by R1 and R2. Table 1 shows the conditions of the atmospheric gas introduced from the cooling zone and other atmospheric gases.

また、実施例2については、図7に示す竪型連続焼鈍炉50の構成を上記第2実施形態のように、均熱帯の雰囲気ガスの流入口となるスロート及び流出口となるスロートの双方が炉上部に配設するとともに、仕切板の一端が上記均熱帯の炉上壁に固定され、他端が、炉底壁とボトムロールの鋼板が巻きかけられていない側のロール上端部との間に開放された状態で備えられているように変更した。   For Example 2, the configuration of the vertical continuous annealing furnace 50 shown in FIG. 7 includes both a throat that serves as an inlet and a throat that serves as an inlet for atmospheric gas in the soaking zone as in the second embodiment. Arranged in the upper part of the furnace, one end of the partition plate is fixed to the soaking zone furnace upper wall, and the other end is between the furnace bottom wall and the roll upper end on the side where the steel plate of the bottom roll is not wound It has been changed so that it is provided in an open state.

実施例1における投入水蒸気量の算出手順は以下の通りである。
(1)目標とする最終脱炭深さの設定
目標とする最終脱炭深さを80μmとした。
(2)目標露点の設定
上述した式に基づいて、鋼板温度700℃の条件下で目標とする最終脱炭深さ80μmを得るための目標露点を露点0℃(6028ppm)に設定した。
(3)炉内の露点を目標露点にするための必要水蒸気量の算出
冷却帯からの雰囲気ガス(露点−35℃、水蒸気量304ppm)1200Nm/hと、低露点の投入雰囲気ガス(露点−50℃、水蒸気量60ppm)400Nm/hとからなる雰囲気ガスを露点0℃(6028ppm)にするために必要な水蒸気量は、
2000×6028−(1200×304+800×60)=11.64Nm/h=9.36kg/h
後段は、冷却帯からのガスと投入雰囲気ガスの露点を上げるための水蒸気量が必要であることから、後段の雰囲気ガスの露点を上げるための水蒸気量は、
(1600×6028−(1200×304+400×60))/100/10000/22.4×18=7.44kg/h
となる。
前段は、前段の雰囲気ガスの露点を上げるだけで良いので、前段の雰囲気ガスの露点を上げるための水蒸気量は、
(400×6028−60)/100/10000/22.4×18=1.92kg
となる。
(4)消費水蒸気量の算出
実施例1の条件から、
通板量(kg/h)=板厚(mm)×板幅(mm)×通板速度(m/分)×60×密度(kg/m)から、
28260kg/h=1×1000×60×60×7850
となる。
次に、鋼材炭素量0.2質量%、目標脱炭深さ80μm及び
脱炭量(kg/h)=通板量(kg/h)×鋼材炭素量(%)×(脱炭深さ÷鋼板厚さ)÷2×2面(濃度分布)×0.9から、脱炭量は、
28260×0.002×(80/1000)÷1÷2×2÷1×0.9=4.07kg/hとなる。
目標脱炭深さと鋼材炭素量より、脱炭反応で用いられる炭素量が算出される。
脱炭反応は、C+HO=CO+Hであることから、
脱炭反応による水蒸気量=脱炭量/炭素分子量×HO分子量から求められ、脱炭反応による水蒸気量は、
4.07(kg/h)÷12(kg/kmol)×18(kg/kmol)=6.10(kg/h)
となる。
従って、消費される水蒸気量は、内部酸化による消費量も考慮し、脱炭反応による消費量6.10kg/hと内部酸化による消費量3.39kg/hとの合計値である9.49kg/hとなる。
反応量比は別途計算しており、前段が62%、後段が38%と算出できることから、
前段の消費水蒸気量:9.49kg/h×0.62=5.89kg/h
後段の消費水蒸気量:9.49kg/h×0.38=3.60kg/h
となる。
(5)投入水蒸気量の算出
水蒸気投入量は、目標脱炭深さを達成するために消費された水蒸気量と露点上昇に必要な水蒸気量との合計で表されることから、投入水蒸気量は、
9.36+5.89+3.60=18.85kg/h
となる。また、
前段投入水蒸気量:1.91+5.89=7.80kg/h
後段投入水蒸気量:7.44+3.61=11.05kg/h
となる。
The calculation procedure of the input water vapor amount in Example 1 is as follows.
(1) Setting of target final decarburization depth The target final decarburization depth was set to 80 μm.
(2) Setting of target dew point Based on the above-described formula, the target dew point for obtaining a target final decarburization depth of 80 µm under the condition of a steel plate temperature of 700 ° C was set to 0 ° C (6028 ppm).
(3) Calculation of the required water vapor amount to make the dew point in the furnace the target dew point Atmospheric gas from the cooling zone (dew point -35 ° C, water vapor amount 304 ppm) 1200 Nm 3 / h and low dew point input atmospheric gas (dew point- 50 ° C., water vapor amount 60 ppm) The amount of water vapor necessary to bring the atmospheric gas consisting of 400 Nm 3 / h to a dew point of 0 ° C. (6028 ppm) is
2000 × 6028− (1200 × 304 + 800 × 60) = 11.64 Nm 3 /h=9.36 kg / h
Since the latter stage requires a water vapor amount for raising the dew point of the gas from the cooling zone and the input atmosphere gas, the water vapor amount for raising the dew point of the latter atmosphere gas is
(1600 × 6028− (1200 × 304 + 400 × 60)) / 100/10000 / 22.4 × 18 = 7.44 kg / h
It becomes.
The first stage only needs to raise the dew point of the previous stage atmospheric gas, so the amount of water vapor to raise the dew point of the previous stage atmospheric gas is:
(400 × 6028-60) /100/10000/22.4×18=1.92 kg
It becomes.
(4) Calculation of water vapor consumption From the conditions of Example 1,
Through plate amount (kg / h) = plate thickness (mm) × plate width (mm) × plate passing speed (m / min) × 60 × density (kg / m 3 )
28260 kg / h = 1 × 1000 × 60 × 60 × 7850
It becomes.
Next, steel material carbon amount 0.2 mass%, target decarburization depth 80 μm and decarburization amount (kg / h) = through plate amount (kg / h) × steel material carbon amount (%) × (decarburization depth ÷ From steel plate thickness) ÷ 2 x 2 surfaces (concentration distribution) x 0.9, the amount of decarburization is
28260 × 0.002 × (80/1000) ÷ 1 ÷ 2 × 2 ÷ 1 × 0.9 = 4.07 kg / h.
The amount of carbon used in the decarburization reaction is calculated from the target decarburization depth and the steel material carbon amount.
Since the decarburization reaction is C + H 2 O═CO + H 2 ,
Water vapor amount by decarburization reaction = decarburization amount / carbon molecular weight × H 2 O molecular weight.
4.07 (kg / h) ÷ 12 (kg / kmol) × 18 (kg / kmol) = 6.10 (kg / h)
It becomes.
Therefore, the amount of water vapor consumed is 9.49 kg / h which is the sum of the consumption of 6.10 kg / h due to decarburization and the consumption due to internal oxidation of 3.39 kg / h in consideration of the consumption due to internal oxidation. h.
The reaction amount ratio is calculated separately, and can be calculated as 62% for the first stage and 38% for the second stage.
Water consumption in the previous stage: 9.49 kg / h × 0.62 = 5.89 kg / h
Subsequent water vapor consumption: 9.49 kg / h × 0.38 = 3.60 kg / h
It becomes.
(5) Calculation of the amount of steam input The amount of steam input is expressed as the sum of the amount of steam consumed to achieve the target decarburization depth and the amount of steam required to raise the dew point. ,
9.36 + 5.89 + 3.60 = 18.85 kg / h
It becomes. Also,
Amount of steam input in the previous stage: 1.91 + 5.89 = 7.80 kg / h
Second stage water vapor input: 7.44 + 3.61 = 11.05 kg / h
It becomes.

[実施例2〜実施例3及び比較例1〜比較例2]
板幅1000mm、板厚2.3mmの鋼板を通板速度26m/分又は60m/分で通板した。各実施例及び比較例の条件を表1に示す。なお、比較例1は、投入水蒸気量として露点上昇に必要な水蒸気量のみを投入し、比較例2は、通板速度が低下する板厚2.3mmの条件下において、前段と後段とで同一の目標露点を設定した。
[Examples 2 to 3 and Comparative Examples 1 to 2]
A steel plate having a plate width of 1000 mm and a plate thickness of 2.3 mm was passed at a plate speed of 26 m / min or 60 m / min. Table 1 shows the conditions of each example and comparative example. In Comparative Example 1, only the amount of water vapor necessary for increasing the dew point is input as the amount of input water vapor, and Comparative Example 2 is the same in the former stage and the latter stage under the condition of a plate thickness of 2.3 mm where the plate passing speed is reduced. Set the target dew point.

(評価)
表1に実施例及び比較例における目標脱炭深さと得られた最終脱炭深さを示す。
(Evaluation)
Table 1 shows the target decarburization depth and the final decarburization depth obtained in Examples and Comparative Examples.

Figure 2019173144
Figure 2019173144

表1に示すように、実施例1〜実施例3については、目標脱炭深さの80μmに近い範囲の脱炭深さを得ることができた。なお、炉内に吹き込む水蒸気は冷えており、重いことから上から下に流れるが、雰囲気ガスの流入口及び流出口の双方が炉底部に配設される実施例1では、後段の露点及び投入水蒸気量が多い前段の露点は共に均一になりやすい。一方、雰囲気ガスの流入口及び流出口の双方が炉上部に配設される実施例2では、投入水蒸気量が多い前段の露点は均一になりやすいが、後段では水蒸気の循環が少し劣ることになると想定され、後段の露点がばらつきやすくなる。そのため、実施例2の最終脱炭深さが少しばらつく結果と計算される。   As shown in Table 1, about Example 1- Example 3, the decarburization depth of the range close | similar to 80 micrometers of target decarburization depth was able to be obtained. Note that the steam blown into the furnace is cold and flows from top to bottom because it is heavy, but in Example 1 in which both the inlet and outlet of the atmospheric gas are arranged at the bottom of the furnace, the dew point and input at the latter stage The dew point in the previous stage with a large amount of water vapor tends to be uniform. On the other hand, in Example 2 in which both the inlet and outlet of the atmospheric gas are arranged in the upper part of the furnace, the dew point in the former stage with a large amount of input water vapor tends to be uniform, but the circulation of water vapor is slightly inferior in the latter stage. It is assumed that the dew point of the latter stage is likely to vary. Therefore, it is calculated that the final decarburization depth of Example 2 varies slightly.

一方、投入水蒸気量として、露点上昇に必要な水蒸気量のみを投入した比較例1、及び板厚2.3mmの鋼板を用いて前段と後段とで同一の目標露点を設定した比較例2の最終脱炭深さは、目標脱炭深さの80μmと大きく異なっていた。比較例1では、脱炭反応で消費された水蒸気量を補う量が投入水蒸気量に含まれていないことから、脱炭反応により水蒸気が消費されることに伴って露点が下がってしまったために、十分脱炭反応が進まなかったと考えられる。また、比較例2は、板厚が2.3mmであることから通板速度が低下したことから、脱炭深さが138μmのように深くなったと考えられる。   On the other hand, in Comparative Example 1 in which only the amount of water vapor necessary for increasing the dew point was input as the input water vapor amount, and in Comparative Example 2 in which the same target dew point was set in the former stage and the latter stage using a steel plate having a plate thickness of 2.3 mm. The decarburization depth was greatly different from the target decarburization depth of 80 μm. In Comparative Example 1, since the amount of water vapor consumed in the decarburization reaction is not included in the input water vapor amount, the dew point has decreased with the consumption of water vapor by the decarburization reaction. It is thought that the decarburization reaction did not progress sufficiently. Further, in Comparative Example 2, it is considered that the decarburization depth became as deep as 138 μm because the plate passing speed decreased because the plate thickness was 2.3 mm.

図8は、実施例2、実施例3及び比較例1における通板速度毎の露点と脱炭深さとの関係を示すグラフである。炉内の露点分布が同じ条件である板厚が1.0mmの実施例1と板厚が2.3mmの比較例3とを比較すると、通板速度が低下した比較例2の脱炭深さは深くなっている。一方、板厚が2.3mmである実施例3の実線では、後段の露点を−20℃に固定し、前段の露点を変化させた場合における脱炭深さが示されている。実施例3では後段の露点を−20℃にすることにより、板厚が2.3mmであっても目標脱炭深さの80μmとなるように精度よく制御できることが示された。   FIG. 8 is a graph showing the relationship between the dew point and the decarburization depth for each plate speed in Example 2, Example 3, and Comparative Example 1. When Example 1 having a plate thickness of 1.0 mm and Comparative Example 3 having a plate thickness of 2.3 mm under the same dew point distribution in the furnace were compared, the decarburization depth of Comparative Example 2 in which the plate passing speed was reduced. Is getting deeper. On the other hand, the solid line of Example 3 in which the plate thickness is 2.3 mm shows the decarburization depth when the dew point of the rear stage is fixed at −20 ° C. and the dew point of the front stage is changed. In Example 3, it was shown that by setting the dew point at the latter stage to −20 ° C., the target decarburization depth of 80 μm can be accurately controlled even if the plate thickness is 2.3 mm.

本発明に係る竪型連続焼鈍炉及び焼鈍方法は、例えば自動車、船舶、建材、家電等に用いられる溶融亜鉛めっき鋼板等に好適に利用することができる。   The vertical continuous annealing furnace and annealing method according to the present invention can be suitably used for, for example, hot-dip galvanized steel sheets used in automobiles, ships, building materials, home appliances, and the like.

1、50 竪型連続焼鈍炉
2 帯状鋼板
3 トップロール
4 ボトムロール
5 加熱帯
5A 第1加熱帯
5B 第2加熱帯
6A、6B、6C、6D ガス供給ノズル
7 冷却帯
10、20、30、40 均熱帯
11、21、31、41 後段
12、22、32、42 前段
14、24、34、44 仕切板
25、26 スロート
G1、G2、G4、G6、G9 ガス導入口
R1、R2 露点測定器
DESCRIPTION OF SYMBOLS 1,50 Vertical type continuous annealing furnace 2 Strip | belt-shaped steel plate 3 Top roll 4 Bottom roll 5 Heating zone 5A 1st heating zone 5B 2nd heating zone 6A, 6B, 6C, 6D Gas supply nozzle 7 Cooling zone 10, 20, 30, 40 Soaking area 11, 21, 31, 41 Rear stage 12, 22, 32, 42 First stage 14, 24, 34, 44 Partition plate 25, 26 Throat G1, G2, G4, G6, G9 Gas inlet R1, R2 Dew point measuring device

Claims (4)

内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成される竪型連続焼鈍炉であって、
内部を上記特定水平方向に沿って複数の区画に分割し、上記鋼板と対向するよう炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板と、
上記複数の区画毎に配設される複数の露点測定器と、
上記複数の区画の露点を調整するため高露点ガス(水蒸気含む)を吹き込む機構と、
上記雰囲気ガスの組成から算出される必要水蒸気量並びに上記露点測定器による露点の履歴及び上記鋼板の温度により予測される脱炭反応による消費水蒸気量に基づき、上記吹込機構の高露点ガス吹込量を制御する機構と
を備える竪型連続焼鈍炉。
A plurality of top rolls and a plurality of bottom rolls arranged inside are provided, and a strip-shaped steel plate is laid between the plurality of top rolls and the plurality of bottom rolls so as to meander in the vertical direction, and this steel plate is placed in a specific horizontal direction. A vertical continuous annealing furnace configured to heat-treat while being conveyed in a direction,
One or a plurality of partition plates having an opening so that the atmosphere gas that circulates in the furnace so as to meander up and down is divided into a plurality of sections along the specific horizontal direction,
A plurality of dew point measuring devices arranged for each of the plurality of sections;
A mechanism for blowing a high dew point gas (including water vapor) to adjust the dew points of the plurality of compartments;
Based on the required water vapor amount calculated from the composition of the atmospheric gas, the history of the dew point by the dew point measuring device, and the amount of water vapor consumed by the decarburization reaction predicted by the temperature of the steel sheet, the high dew point gas blowing amount of the blowing mechanism is A vertical continuous annealing furnace equipped with a control mechanism.
通板方向上流側の区画の露点が通板方向下流側の区画の露点よりも高い請求項1に記載の竪型連続焼鈍炉。   The vertical continuous annealing furnace according to claim 1, wherein the dew point in the section upstream in the sheet passing direction is higher than the dew point in the section downstream in the sheet passing direction. 上記仕切板の位置における鉛直方向炉断面の炉内面積に対する上記仕切板の開口の面積比が1/10以上1/4以下である請求項1又は請求項2に記載の竪型連続焼鈍炉。   The vertical continuous annealing furnace according to claim 1 or 2, wherein an area ratio of an opening of the partition plate to an area in the furnace of a vertical cross section at the position of the partition plate is 1/10 or more and 1/4 or less. 内部に配設される複数のトップロール及び複数のボトムロールを備え、これらの複数のトップロール及び複数のボトムロール間に帯状の鋼板を上下方向に蛇行するよう架け渡し、この鋼板を特定の水平方向に搬送しつつ熱処理するよう構成され、炉内に流通される雰囲気ガスが上下に蛇行するよう開口を有する1又は複数の仕切板により内部を上記特定水平方向に沿って複数の区画に分割する竪型連続焼鈍炉を用いた焼鈍方法であって、
上記雰囲気ガスの組成から必要水蒸気量を算出する工程と、
上記1又は複数の区画の露点の履歴及び上記鋼板の温度から脱炭反応による消費水蒸気量を予測する工程と、
上記必要水蒸気量及び上記消費水蒸気量により上記1又は複数の区画の高露点ガス吹込量を制御する工程と
を備える焼鈍方法。
A plurality of top rolls and a plurality of bottom rolls arranged inside are provided, and a strip-shaped steel plate is laid between the plurality of top rolls and the plurality of bottom rolls so as to meander in the vertical direction, and this steel plate is placed in a specific horizontal direction. The interior is divided into a plurality of compartments along the specific horizontal direction by one or a plurality of partition plates which are configured to heat-treat while being conveyed in a direction and have an opening so that the atmospheric gas flowing in the furnace meanders up and down. An annealing method using a vertical continuous annealing furnace,
Calculating the required water vapor amount from the composition of the atmospheric gas,
Predicting the amount of water vapor consumed by decarburization reaction from the history of the dew point of the one or more sections and the temperature of the steel sheet;
And a step of controlling a high dew point gas blowing amount in the one or more sections according to the required water vapor amount and the consumed water vapor amount.
JP2018065840A 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method Active JP7073162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018065840A JP7073162B2 (en) 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018065840A JP7073162B2 (en) 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method

Publications (2)

Publication Number Publication Date
JP2019173144A true JP2019173144A (en) 2019-10-10
JP7073162B2 JP7073162B2 (en) 2022-05-23

Family

ID=68166587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018065840A Active JP7073162B2 (en) 2018-03-29 2018-03-29 Vertical continuous annealing furnace and annealing method

Country Status (1)

Country Link
JP (1) JP7073162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826511A (en) * 2020-06-15 2020-10-27 华菱安赛乐米塔尔汽车板有限公司 Method for improving platability of high-strength strip steel in hot dip plating production process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158268A (en) * 1992-11-30 1994-06-07 Kawasaki Steel Corp Method for continuous carburization and temperature control of metal strip
JPH1030127A (en) * 1996-07-19 1998-02-03 Nippon Steel Corp Method for controlling strip temperature in continuous annealing furnace
JPH11158559A (en) * 1997-11-27 1999-06-15 Sumitomo Metal Ind Ltd Method for controlling atmosphere in continuous annealing furnace
JPH11241123A (en) * 1998-02-27 1999-09-07 Nisshin Steel Co Ltd Apparatus for controlling decarburizing or bluing annealing of steel strip
JP2007146241A (en) * 2005-11-29 2007-06-14 Jfe Steel Kk Method for producing high strength hot dip galvanized steel sheet and production equipment for hot dip galvanized steel sheet
WO2013187039A1 (en) * 2012-06-13 2013-12-19 Jfeスチール株式会社 Method of continuous annealing of steel strip, device for continuous annealing of steel strip, method of manufacturing hot-dip galvanized steel strip, and device for manufacturing hot-dip galvanized steel strip
KR20160078667A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Humidity measuring apparatus and improvement method for measuring degree thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158268A (en) * 1992-11-30 1994-06-07 Kawasaki Steel Corp Method for continuous carburization and temperature control of metal strip
JPH1030127A (en) * 1996-07-19 1998-02-03 Nippon Steel Corp Method for controlling strip temperature in continuous annealing furnace
JPH11158559A (en) * 1997-11-27 1999-06-15 Sumitomo Metal Ind Ltd Method for controlling atmosphere in continuous annealing furnace
JPH11241123A (en) * 1998-02-27 1999-09-07 Nisshin Steel Co Ltd Apparatus for controlling decarburizing or bluing annealing of steel strip
JP2007146241A (en) * 2005-11-29 2007-06-14 Jfe Steel Kk Method for producing high strength hot dip galvanized steel sheet and production equipment for hot dip galvanized steel sheet
WO2013187039A1 (en) * 2012-06-13 2013-12-19 Jfeスチール株式会社 Method of continuous annealing of steel strip, device for continuous annealing of steel strip, method of manufacturing hot-dip galvanized steel strip, and device for manufacturing hot-dip galvanized steel strip
KR20160078667A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Humidity measuring apparatus and improvement method for measuring degree thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826511A (en) * 2020-06-15 2020-10-27 华菱安赛乐米塔尔汽车板有限公司 Method for improving platability of high-strength strip steel in hot dip plating production process

Also Published As

Publication number Publication date
JP7073162B2 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
US11421312B2 (en) Method for manufacturing hot-dip galvanized steel sheet
JP5884748B2 (en) Steel strip continuous annealing equipment and continuous hot dip galvanizing equipment
CN107109609B (en) The manufacturing method of alloyed hot-dip galvanized steel plate
US10752975B2 (en) Method of producing galvannealed steel sheet
JP4770428B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
US11649520B2 (en) Continuous hot dip galvanizing apparatus
US20230323501A1 (en) Continuous hot-dip galvanizing apparatus
JP7073162B2 (en) Vertical continuous annealing furnace and annealing method
EP3369836B1 (en) Method for manufacturing hot-dip galvanized steel sheet
JP6792561B2 (en) Methods and equipment for reaction control
JP6418175B2 (en) Dew point control method and method for producing hot dip galvanized steel sheet
JP6128068B2 (en) Method for producing galvannealed steel sheet
KR940003784B1 (en) Continuous annealing line having carburizing/nitriding furnace
JP6825593B2 (en) Hot-dip galvanizing equipment and manufacturing method of hot-dip galvanized steel sheet
JP2004115830A (en) Cooling facility and cooling method in continuous annealing facility used in common with hot-dipping facility
CN117616146A (en) Method for producing hot dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150