JP4903073B2 - Cooling pattern display method - Google Patents

Cooling pattern display method Download PDF

Info

Publication number
JP4903073B2
JP4903073B2 JP2007078257A JP2007078257A JP4903073B2 JP 4903073 B2 JP4903073 B2 JP 4903073B2 JP 2007078257 A JP2007078257 A JP 2007078257A JP 2007078257 A JP2007078257 A JP 2007078257A JP 4903073 B2 JP4903073 B2 JP 4903073B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
heat transfer
transfer coefficient
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007078257A
Other languages
Japanese (ja)
Other versions
JP2008240013A (en
Inventor
新太郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007078257A priority Critical patent/JP4903073B2/en
Publication of JP2008240013A publication Critical patent/JP2008240013A/en
Application granted granted Critical
Publication of JP4903073B2 publication Critical patent/JP4903073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、鋼板を熱処理する連続焼鈍炉の冷却帯における冷却温度履歴、冷却速度を表示する冷却パターンの表示方法に関する。   The present invention relates to a cooling pattern display method for displaying a cooling temperature history and a cooling rate in a cooling zone of a continuous annealing furnace for heat-treating a steel plate.

走行する鋼板を加熱、冷却して連続的に焼鈍するのに連続焼鈍炉が利用されている(特許文献1)。   A continuous annealing furnace is used to heat and cool a traveling steel plate and continuously anneal it (Patent Document 1).

図4(a)は連続焼鈍炉の概略図、(b)は溶融亜鉛メッキ設備の連続焼鈍炉の概略図である。図4(a)において、デフレクターロール1から鋼板2は炉内に導入され、炉内の上部及び下部の搬送ロール3により、加熱帯4、均熱帯5、徐冷帯6、1次冷却帯7、過時効帯8、2次冷却帯9、3次冷却帯10を順次搬送されて炉外のクエンチ装置11を経て次工程へ搬送される。   FIG. 4A is a schematic view of a continuous annealing furnace, and FIG. 4B is a schematic view of a continuous annealing furnace of a hot dip galvanizing facility. In FIG. 4 (a), the steel plate 2 is introduced into the furnace from the deflector roll 1 and heated zone 4, soaking zone 5, slow cooling zone 6, primary cooling zone 7 by the upper and lower conveying rolls 3 in the furnace. Then, the overaging zone 8, the secondary cooling zone 9, and the tertiary cooling zone 10 are sequentially conveyed and conveyed to the next process through the quench device 11 outside the furnace.

また、図4(b)に示す溶融亜鉛メッキ設備は、炉内に導入された鋼板2は、加熱帯4、均熱帯5、徐冷帯6、急冷帯12、冷却調整帯13,14へ順次搬送され、スナウト15を経てメッキポット16で溶融亜鉛メッキされる。   Further, in the hot dip galvanizing equipment shown in FIG. 4 (b), the steel sheet 2 introduced into the furnace is sequentially supplied to the heating zone 4, the soaking zone 5, the slow cooling zone 6, the quenching zone 12, and the cooling adjustment zones 13 and 14. It is conveyed and hot-dip galvanized in the plating pot 16 through the snout 15.

冷却帯では、鋼板をオーステナイト状態から所定の冷却速度で冷却してフェライトベイナイトあるいはマルテンサイトに組織変態させて所定の加工性、靭性などを付与している。   In the cooling zone, the steel sheet is cooled from the austenite state at a predetermined cooling rate and transformed into ferrite bainite or martensite to give predetermined workability and toughness.

図5は冷却帯の概略図である。徐冷帯、急冷帯の冷却帯7においては、走行する鋼板2を挟んで冷却用気体を鋼板2に吹き付ける複数の冷却用ウインドボックス17が縦方向に間隔をおいて配置され、各冷却用ウインドボックス17には冷却ブロワ18により冷却用気体が供給される。冷却帯では、鋼板の出側温度が所定の温度となるように冷却ブロワにより冷却用ウインドボックスから冷却用気体を鋼板の両側に吹き付けて冷却を制御している。入側板温は板温検出器19、出側板温は板温検出器20により測定される。   FIG. 5 is a schematic view of the cooling zone. In the cooling zone 7 of the slow cooling zone and the quenching zone, a plurality of cooling window boxes 17 for blowing cooling gas to the steel plate 2 with the traveling steel plate 2 interposed therebetween are arranged at intervals in the vertical direction, and each cooling window is arranged. A cooling gas is supplied to the box 17 by a cooling blower 18. In the cooling zone, cooling is controlled by blowing a cooling gas from both sides of the steel plate by a cooling blower so that the outlet temperature of the steel plate becomes a predetermined temperature. The inlet side plate temperature is measured by a plate temperature detector 19, and the outlet side plate temperature is measured by a plate temperature detector 20.

操作室のDCSやプロセスコンピュータには、入側の板温及び出側の板温と、入側及び出側の板温、冷却帯長および通板速度から{(出側板温一入側板温)/(冷却帯長/通板速度)}により求めた平均冷却速度とが表示される。
特開2005−226157号公報
The DCS and process computer in the operation room include {(exit side plate temperature one inlet side plate temperature) from the inlet side plate temperature and the outlet side plate temperature, the inlet side and outlet side plate temperatures, the cooling zone length and the plate passing speed. / (Cooling zone length / feeding plate speed)} is displayed.
JP 2005-226157 A

従来、冷却帯での冷却は、プロセスコンピュータもしくはDCSでの出側板温制御においては、出側板温を所定の温度にすることを第一優先して冷却ブロワの風量が制御され、オペレーターは操作画面に表示される実績出側板温を監視する。   Conventionally, cooling in the cooling zone is controlled by the process computer or DCS outlet side plate temperature control, with the air flow of the cooling blower being controlled with the priority given to setting the outlet side plate temperature to a predetermined temperature. The actual delivery side plate temperature displayed on the is monitored.

鋼板の冶金組織や機械的特性などは、冷却帯における冷却温度履歴や冷却速度に影響される。冷却速度や冷却温度履歴は、通板速度、入側および出側板温、冷却長さに影響される。最大通板速度が鋼種、鋼板サイズにより処理量や伝熱条件から異なり、また、冷却長さが通板速度、温度条件、鋼板サイズによって、何段の冷却ブロワで出側板温を達成するかにより変わる。そのため、通板条件、操業条件により冷却温度履歴や冷却速度は変化する。   The metallurgical structure and mechanical characteristics of the steel sheet are affected by the cooling temperature history and cooling rate in the cooling zone. The cooling rate and the cooling temperature history are affected by the plate passing speed, the inlet and outlet plate temperatures, and the cooling length. Depending on the steel plate and steel plate size, the maximum plate passing speed differs from the throughput and heat transfer conditions, and the cooling length depends on how many cooling blowers achieve the outlet side plate temperature depending on the plate passing speed, temperature conditions, and steel plate size. change. Therefore, the cooling temperature history and the cooling rate change depending on the plate passing condition and the operating condition.

従来の操作画面には、冷却帯における冷却速度に関する情報は、(出側板温一入側板温)/(冷却帯長/通板速度)から求めた平均の冷却速度を表示する程度である。   On the conventional operation screen, the information regarding the cooling rate in the cooling zone is such that the average cooling rate obtained from (exit side plate temperature / inlet side plate temperature) / (cooling zone length / plate passing rate) is displayed.

しかしながら、出側と入側の板温を用いて求めた平均の冷却速度だけでは、鋼板の実態の冷却速度履歴は不明であり、通板速度、温度条件、冷却長さ、入側板温、出側板温の変化による、実際の冷却温度履歴や冷却速度の違いによる鋼板の冶金組織や機械的特性への影響を正確に把握することができなかった。   However, the actual cooling rate history of the steel sheet is unknown only by the average cooling rate obtained using the outlet side and inlet side plate temperatures, and the plate speed, temperature conditions, cooling length, inlet side plate temperature, outlet side The effect on the metallurgical structure and mechanical properties of the steel sheet due to differences in the actual cooling temperature history and cooling rate due to changes in the side plate temperature could not be accurately grasped.

そこで、本発明は、冷却帯の操作盤の表示パネルに冷却帯の走行途中における冷却速度及び冷却温度履歴演算して鋼の連続冷却変態図上に表示して鋼板コイルの品質管理に反映させることができる、鋼板の連続熱処理炉の冷却帯における冷却パターンの表示方法を提供するものである。   Therefore, the present invention calculates the cooling rate and cooling temperature history during the running of the cooling zone on the display panel of the cooling zone operation panel, displays it on the continuous cooling transformation diagram of steel, and reflects it in the quality control of the steel sheet coil. The present invention provides a method for displaying a cooling pattern in a cooling zone of a continuous heat treatment furnace for steel plates.

本発明は、走行する鋼板を連続熱処理する連続熱処理炉の冷却帯における冷却温度履歴及び冷却速度実績値を前記鋼板の連続冷却変態図に表示する冷却温度パターンの表示方法において、
下記の(4)式により計算された熱伝達係数を含む下記の(1)式及び下記の(2)式により冷却温度履歴{T(t)}及び冷却速度実績値{Rc(t)}を求めるにあたり、演算により求められた出側板温から下記の(3)式から求めた熱伝達係数(α )と測定による実績の出側板温から下記の(3)式から求めた熱伝達係数(α )との比{熱伝達係数(α )/熱伝達係数(α )}を下記の(4)式により計算された前記熱伝達係数に乗算することにより補正して演算出側板温が実績板温に合致した冷却温度履歴{T(t)}及び冷却速度実績値{Rc(t)}を計算し、
求めた冷却温度履歴と冷却速度実績値を前記鋼の連続冷却変態図上に表示する。
The present invention provides a cooling temperature pattern display method for displaying a cooling temperature history and a cooling rate actual value in a cooling zone of a continuous heat treatment furnace for continuously heat-treating a traveling steel plate in a continuous cooling transformation diagram of the steel plate ,
The cooling temperature history {T (t)} and the cooling rate actual value {Rc (t)} are calculated by the following equation (1) including the heat transfer coefficient calculated by the following equation (4) and the following equation (2). In determining the heat transfer coefficient (α 1 ) obtained from the following equation (3) from the outlet plate temperature obtained by calculation and the heat transfer coefficient obtained from the following equation (3) from the actual outlet temperature obtained from the measurement ( α 2 ) and the ratio {heat transfer coefficient (α 2 ) / heat transfer coefficient (α 1 )} multiplied by the heat transfer coefficient calculated by the following equation (4) to correct the calculated output side plate temperature Calculates the cooling temperature history {T (t)} and the cooling rate actual value {Rc (t)} that match the actual plate temperature,
The cooling speed actual value and the cooling temperature history obtained to display in the drawing CCT of the steel.

本発明において、冷却温度{T(t)}及び冷却速度{Rc(t)}を次の(1)式、(2)式(3)式及び(4)式により求めて、連続冷却変態図上に表示する。 In the present invention, the cooling temperature {T (t)} and the cooling rate {Rc (t)} are obtained by the following equations (1), (2) , (3), and (4) , and the continuous cooling transformation is performed. Display on the diagram.

T(t)={K・α・(Tg−T/2)・t+h・C・T}/(K・α・t/2+
h・C) ・・・(1)
Rc(t)=K・α・(Tg−T/2)・(K・α・t/2+h・C)−1
−(K・α/2)・{K・α(Tg−T/2)・t+h・C・T}・
{(K・t/2)+h・C}−2 ・・・(2)
α∝ln{(T−Tg)/(Ts−Tg)} ・・・(3)
α=A・N ・・・(4)
ただし、
K:2/(7.85g/cm×3600sec/hr)=7.1×10−5
h:板厚(mm)
C:鋼板比熱(kcal/kg・℃)
:入側板温(℃)
T(t):板温(℃)
Rc(t):冷却速度(℃/sec)
t:時間(sec)
α:熱伝達係数(kcal/m・hr・℃)
α:演算により求められた熱伝達係数(kcal/m・hr・℃)
α:熱伝達係数(kcal/m・hr・℃)
Tg:冷却ガス温度(℃)
Ts:出側板温
A:定数(冷却装置による)
N:ブロワの回転数
m:定数(冷却装置による)
T (t) = {K · α · (Tg−T o / 2) · t + h · C · T o } / (K · α · t / 2 +
h · C) (1)
Rc (t) = K · α · (Tg−T o / 2) · (K · α · t / 2 + h · C) −1
− (K · α / 2) · {K · α (Tg−T o / 2) · t + h · C · T o } ·
{(K · t / 2) + h · C} −2 (2)
α∝ln {(T o −Tg) / (Ts−Tg)} (3)
α = A · N m (4)
However,
K: 2 / (7.85 g / cm 3 × 3600 sec / hr) = 7.1 × 10 −5
h: Plate thickness (mm)
C: Specific heat of steel plate (kcal / kg · ° C)
T o: entry side temperature (℃)
T (t): Plate temperature (° C)
Rc (t): Cooling rate (° C / sec)
t: Time (sec)
α: Heat transfer coefficient (kcal / m 2 · hr · ° C)
α 1 : Heat transfer coefficient obtained by calculation (kcal / m 2 · hr · ° C)
α 2 : heat transfer coefficient (kcal / m 2 · hr · ° C)
Tg: Cooling gas temperature (° C)
Ts: Outboard plate temperature
A: Constant (depending on the cooling device)
N: Blower speed
m: Constant (depending on the cooling device)

本発明により、冷却温度履歴や冷却速度を演算し、表示することにより、鋼板の冷却温度履歴や冷却速度が冶金組織や機械的特性に及ぼす影響を知ることができるので、鋼板の品質管理の一助となる。   According to the present invention, by calculating and displaying the cooling temperature history and cooling rate, it is possible to know the influence of the cooling temperature history and cooling rate of the steel sheet on the metallurgical structure and mechanical properties. It becomes.

各冷却装置には強制対流熱伝達の理論式や、実験式から、ブロワの回転数と熱伝達係数の近似関数が作成できる。これは、
α=A・N
のごとく、熱伝達係数がブロワの回転数の指数関数に近似できる。ここで、
α:熱伝達係数
A:定数(冷却装置による)
N:ブロワの回転数
m:定数(冷却装置による)
各ブロワの回転数実績Nから、各冷却装置の熱伝達係数αが計算でき、冷却帯を走行途中の鋼帯について(1)式、(2)式より、逐次、冷却温度履歴T(t)、冷却速度Rc(t)が計算できる。
For each cooling device, an approximate function of the rotational speed of the blower and the heat transfer coefficient can be created from the theoretical formula and experimental formula of forced convection heat transfer. this is,
α = A ・ N m
As shown, the heat transfer coefficient can be approximated to an exponential function of the rotational speed of the blower. here,
α: Heat transfer coefficient A: Constant (depending on cooling device)
N: Blower rotation speed m: Constant (depending on cooling system)
The heat transfer coefficient α of each cooling device can be calculated from the actual rotational speed N of each blower, and the cooling temperature history T (t) is sequentially calculated from the formulas (1) and (2) for the steel strip in the course of traveling through the cooling zone. The cooling rate Rc (t) can be calculated.

ここで、冷却装置の熱伝達係数αの近似式や、(1)式の算術平均温度差や、板温実測誤差などの、誤差要因から、上記のように計算した出側板温とオンラインで測定する実績の出側板温とは完全には一致しない。そこで、熱伝達係数αを次の(3)式により補正する。
α∝ln{(T−Tg)/(Ts−Tg)} ・・・(3)
ここで、
:入側板温
Tg:吹き付けガス温
Ts:出側板温
例えば、図2に示すように各ブロワを均一回転させ、入側板温677℃、出側板温400℃の際に、演算により求められた出側板温が388℃になったとする。この板温388℃を実績の400℃に補正するため、演算に使用したα∝ln{(677−50)/(388−50)}=0.617と実績のα∝ln{(677−50)/(400−50)}=0.583との比0.583/0.6179=0.943を求め、この0.943を各ブロワの演算(前記の「α=A・N 」)に使用したαに乗算して補正する。
Here, on-line measurement with the outlet side plate temperature calculated as described above from the error factors such as the approximate expression of the heat transfer coefficient α of the cooling device, the arithmetic mean temperature difference of equation (1), and the plate temperature measurement error. This is not exactly the same as the delivery side temperature. Therefore, the heat transfer coefficient α is corrected by the following equation (3).
α∝ln {(T o −Tg) / (Ts−Tg)} (3)
here,
T o : inlet side plate temperature Tg: blowing gas temperature Ts: outlet side plate temperature For example, as shown in FIG. 2, when each blower is rotated uniformly, the inlet side plate temperature is 677 ° C and the outlet side plate temperature is 400 ° C. Assume that the outlet side plate temperature is 388 ° C. In order to correct the plate temperature of 388 ° C. to the actual 400 ° C., α 1 ∝ln {(677-50) / (388-50)} = 0.617 used in the calculation and the actual α 2 ∝ln {(677 -50) / (400-50)} = 0.583 and 0.583 / 0.6179 = 0.944, and 0.943 is calculated for each blower (the above-mentioned “α = A · N m )) Multiplied by α used for correction.

また、図3に示すように、前段のブロワを優先運転させ、入側板温677℃、出側板温400℃の際に、演算により求められた板温が走行途中で422℃、出側板温が408℃になったとする。この出側板温408℃を実績の400℃に補正するため、演算に使用したα∝ln{(677−50)/(422−50)}=0.522、及びα∝ln{(422−50)/(408−50)}=0.038から、(α+α)∝0.560を求め、実績のα∝ln{(677−50)/(400−50)}=0.583との比0.583/0.560=1.04を求め、この1.04を各ブロワの演算に使用したαに乗算して補正する。 In addition, as shown in FIG. 3, when the pre-stage blower is preferentially operated and the inlet side plate temperature is 677 ° C. and the outlet side plate temperature is 400 ° C., the plate temperature obtained by calculation is 422 ° C. and the outlet side plate temperature is Suppose that it became 408 degreeC. In order to correct this delivery side plate temperature of 408 ° C. to the actual 400 ° C., α 1 ∝ln {(677-50) / (422-50)} = 0.522 and α 2 ∝ln {(422 −50) / (408-50)} = 0.038, (α 1 + α 2 ) ∝0.560 is obtained, and α∝ln {(677-50) / (400-50)} = 0. The ratio 0.583 / 0.560 = 1.04 with respect to 583 is obtained, and 1.04 is multiplied by α used for the calculation of each blower to correct it.

以上のように、αを補正することにより、演算出側板温が実績板温に合致した冷却温度履歴、冷却速度を計算することができる。   As described above, by correcting α, it is possible to calculate the cooling temperature history and the cooling rate at which the calculated delivery side plate temperature matches the actual plate temperature.

ある冷却帯の例に、表1の通板操業条件での計算結果の表示が図1である。表1は実際の操業における鋼種毎の入側板温、出側板温、板厚、通板速度、冷却装置の運転モードの一例を示す表である。

Figure 0004903073
In an example of a certain cooling zone, the display of the calculation result under the plate operating conditions in Table 1 is shown in FIG. Table 1 is a table showing an example of the inlet side plate temperature, the outlet side plate temperature, the plate thickness, the plate passing speed, and the operation mode of the cooling device for each steel type in actual operation.
Figure 0004903073

表1に示す条件で冷却した際の、連続冷却変態図上に表示する鋼種毎の板温T(t)と冷却速度Rc(t)を、縦軸が温度(℃)、横軸が時間(t)の図上に表示すると、図1のような曲線になる。 When cooling is performed under the conditions shown in Table 1, the sheet temperature T (t) and the cooling rate Rc (t) for each steel type displayed on the continuous cooling transformation diagram , the vertical axis is the temperature (° C.), and the horizontal axis is the time ( When displayed on figure t), it will curve as shown in FIG.

連続冷却変態図にはオーステナイト状態から連続冷却していく過程で起こる変態の状況が示されているので、この連続冷却変態図に冷却速度及び冷却温度履歴を表示することにより、鋼板の走行途中での残留オーステナイト、フェライト、ベイナイトの変態の状態を知ることが可能となる。製品コイルの情報をプロセスコンピュータに記憶させておき、冷却速度及び冷却温度履歴と製品コイルの情報とを照らし合わせて検討することにより、鋼板の走行途中の冷却速度及び冷却温度履歴が組織や機械的特性に及ぼす影響を検討して、鋼板の品質管理の一助とすることができる。   In the continuous cooling transformation diagram, the state of transformation that occurs in the process of continuous cooling from the austenite state is shown, so by displaying the cooling rate and cooling temperature history in this continuous cooling transformation diagram, It becomes possible to know the transformation state of retained austenite, ferrite and bainite. Information on the product coil is stored in the process computer, and the cooling rate and cooling temperature history during the running of the steel sheet are determined by comparing the cooling rate and cooling temperature history with the information on the product coil. The influence on the characteristics can be examined to help the quality control of the steel sheet.

縦軸が温度(℃)、横軸が時間(t)の図上に冷却温度履歴T(t)、冷却速度Rc(t)を示した図である。 Vertical axis Temperature (° C.), the horizontal axis indicates time diagram on the cooling temperature history T of (t) (t), is a diagram showing a cooling rate Rc (t). 熱伝達係数αの補正の説明図である。It is explanatory drawing of correction | amendment of the heat transfer coefficient (alpha). 熱伝達係数αの補正の説明図である。It is explanatory drawing of correction | amendment of the heat transfer coefficient (alpha). (a)は連続焼鈍炉の概略図、(b)は溶融亜鉛メッキ設備の連続焼鈍炉の概略図である。(A) is the schematic of a continuous annealing furnace, (b) is the schematic of the continuous annealing furnace of a hot dip galvanization installation. 冷却帯の概略図である。It is the schematic of a cooling zone.

符号の説明Explanation of symbols

1:デフレクターロール
2:鋼板
3:搬送ロール
4:加熱帯
5:均熱帯
6:徐冷帯
7:1次冷却帯
8:過時効帯
9:2次冷却帯
10:3次冷却帯
11:クエンチ装置
12:急冷帯
13,14:冷却調整帯
15:スナウト
16:メッキポット
17:冷却用ウインドボックス
18:冷却ブロワ
19,20:温度検出器
1: Deflector roll 2: Steel plate 3: Transport roll 4: Heating zone 5: Soaking zone 6: Slow cooling zone 7: Primary cooling zone 8: Overaging zone 9: Secondary cooling zone 10: Third cooling zone 11: Quench Device 12: Rapid cooling zone 13, 14: Cooling adjustment zone 15: Snout 16: Plating pot 17: Winding box 18 for cooling 18: Cooling blower 19, 20: Temperature detector

Claims (1)

走行する鋼板を連続熱処理する連続熱処理炉の冷却帯における冷却温度履歴及び冷却速度実績値を前記鋼板の連続冷却変態図に表示する冷却温度パターンの表示方法において、
下記の(4)式により計算された熱伝達係数を含む下記の(1)式及び下記の(2)式により冷却温度履歴{T(t)}及び冷却速度実績値{Rc(t)}を求めるにあたり、演算により求められた出側板温から下記の(3)式から求めた熱伝達係数(α )と測定による実績の出側板温から下記の(3)式から求めた熱伝達係数(α )との比{熱伝達係数(α )/熱伝達係数(α )}を下記の(4)式により計算された前記熱伝達係数に乗算することにより補正して演算出側板温が実績板温に合致した冷却温度履歴{T(t)}及び冷却速度実績値{Rc(t)}を計算し、
求めた冷却温度履歴と冷却速度実績値を前記鋼の連続冷却変態図上に表示することを特徴とする冷却パターンの表示方法。
T(t)={K・α・(Tg−T/2)・t+h・C・T}/(K・α・t/2+
h・C) ・・・(1)
Rc(t)=K・α・(Tg−T/2)・(K・α・t/2+h・C)−1
−(K・α/2)・{K・α(Tg−T/2)・t+h・C・T}・
{(K・t/2)+h・C}−2 ・・・(2)
α∝ln{(T−Tg)/(Ts−Tg)} ・・・(3)
α=A・N ・・・(4)
ただし、
K:2/(7.85g/cm×3600sec/hr)=7.1×10−5
h:板厚(mm)
C:鋼板比熱(kcal/kg・℃)
:入側板温(℃)
T(t):板温(℃)
Rc(t):冷却速度(℃/sec)
t:時間(sec)
α:熱伝達係数(kcal/m・hr・℃)
Tg:冷却ガス温度(℃)
Ts:出側板温
A:定数(冷却装置による)
N:ブロワの回転数
m:定数(冷却装置による)
In the cooling temperature pattern display method for displaying the cooling temperature history and the cooling rate actual value in the cooling zone of the continuous heat treatment furnace for continuously heat-treating the traveling steel plate in the continuous cooling transformation diagram of the steel plate ,
The cooling temperature history {T (t)} and the cooling rate actual value {Rc (t)} are calculated by the following equation (1) including the heat transfer coefficient calculated by the following equation (4) and the following equation (2). In determining the heat transfer coefficient (α 1 ) obtained from the following equation (3) from the outlet plate temperature obtained by calculation and the heat transfer coefficient obtained from the following equation (3) from the actual outlet temperature obtained from the measurement ( α 2 ) and the ratio {heat transfer coefficient (α 2 ) / heat transfer coefficient (α 1 )} multiplied by the heat transfer coefficient calculated by the following equation (4) to correct the calculated output side plate temperature Calculates the cooling temperature history {T (t)} and the cooling rate actual value {Rc (t)} that match the actual plate temperature,
A cooling pattern display method, wherein the obtained cooling temperature history and actual cooling rate value are displayed on the continuous cooling transformation diagram of the steel.
T (t) = {K · α · (Tg−T o / 2) · t + h · C · T o } / (K · α · t / 2 +
h · C) (1)
Rc (t) = K · α · (Tg−T o / 2) · (K · α · t / 2 + h · C) −1
− (K · α / 2) · {K · α (Tg−T o / 2) · t + h · C · T o } ·
{(K · t / 2) + h · C} −2 (2)
α∝ln {(T o −Tg) / (Ts−Tg)} (3)
α = A · N m (4)
However,
K: 2 / (7.85 g / cm 3 × 3600 sec / hr) = 7.1 × 10 −5
h: Plate thickness (mm)
C: Specific heat of steel plate (kcal / kg · ° C)
T o: entry side temperature (℃)
T (t): Plate temperature (° C)
Rc (t): Cooling rate (° C / sec)
t: Time (sec)
α: Heat transfer coefficient (kcal / m 2 · hr · ° C)
Tg: Cooling gas temperature (° C)
Ts: Outboard plate temperature
A: Constant (depending on the cooling device)
N: Blower speed
m: Constant (depending on the cooling device)
JP2007078257A 2007-03-26 2007-03-26 Cooling pattern display method Expired - Fee Related JP4903073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078257A JP4903073B2 (en) 2007-03-26 2007-03-26 Cooling pattern display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078257A JP4903073B2 (en) 2007-03-26 2007-03-26 Cooling pattern display method

Publications (2)

Publication Number Publication Date
JP2008240013A JP2008240013A (en) 2008-10-09
JP4903073B2 true JP4903073B2 (en) 2012-03-21

Family

ID=39911700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078257A Expired - Fee Related JP4903073B2 (en) 2007-03-26 2007-03-26 Cooling pattern display method

Country Status (1)

Country Link
JP (1) JP4903073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107069A (en) * 2017-11-22 2018-06-01 山西太钢不锈钢股份有限公司 A kind of test method of hot modeling test machine supplement heat rejecter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496429A (en) * 2020-04-20 2020-08-07 唐山松下产业机器有限公司 Welding system and welding data processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120742A (en) * 1982-01-11 1983-07-18 Nippon Steel Corp Controlling method for cooling of steel strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107069A (en) * 2017-11-22 2018-06-01 山西太钢不锈钢股份有限公司 A kind of test method of hot modeling test machine supplement heat rejecter

Also Published As

Publication number Publication date
JP2008240013A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US20220403480A1 (en) Continuous hot dip galvanizing apparatus
SE452023B (en) PROCEDURE FOR HEAT TREATMENT OF TRADINGS AND OVEN FOR IMPLEMENTATION OF HEAT TREATMENT
KR20170016467A (en) Method of producing galvannealed steel sheet
US6341955B1 (en) Sealing apparatus in continuous heat-treatment furnace and sealing method
JP4903073B2 (en) Cooling pattern display method
JP2022024340A (en) Steel strip material prediction method, material control method, production method and method for creating material prediction model
JP2020190017A (en) Dew point control method for reduction atmospheric furnace, reduction atmospheric furnace, method for producing cold rolled steel sheet, and method for producing hot dip galvanized steel sheet
JP6584439B2 (en) Multipurpose processing line for heat treatment and hot dipping of steel strip
KR20180064497A (en) Manufacturing method of hot-dip galvanized steel sheet
US20240158885A1 (en) Continuous annealing equipment, continuous annealing method, method of producing cold-rolled steel sheets and method of producing coated or plated steel sheets
US20200131598A1 (en) Continuous annealing or galvanising line comprising a tensioning block between two consecutive furnaces
JP6686983B2 (en) Steel plate heat treatment method and heat treatment apparatus
JP6402696B2 (en) High-strength steel plate manufacturing equipment and manufacturing method
JP7073162B2 (en) Vertical continuous annealing furnace and annealing method
JP5226965B2 (en) Steel plate cooling method and steel plate continuous heat treatment equipment
JP6295387B1 (en) Controlled cooling method for hot-rolled steel bars
JP7207335B2 (en) Plate temperature control method, heating control device, and metal plate manufacturing method
TWI810861B (en) Device and method for heat-treating a metal strip
JP2019151864A (en) Steel sheet temperature prediction method, steel sheet temperature prediction device, and steel sheet temperature control method
JP6756295B2 (en) Sealing device
JP2983398B2 (en) Continuous annealing and continuous carburizing of metal strip
JP2004115830A (en) Cooling facility and cooling method in continuous annealing facility used in common with hot-dipping facility
JP4547936B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
KR101277922B1 (en) Material heating apparatus and control method thereof
JP4258235B2 (en) Steel heating method and program thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees