JP2020190017A - Dew point control method for reduction atmospheric furnace, reduction atmospheric furnace, method for producing cold rolled steel sheet, and method for producing hot dip galvanized steel sheet - Google Patents

Dew point control method for reduction atmospheric furnace, reduction atmospheric furnace, method for producing cold rolled steel sheet, and method for producing hot dip galvanized steel sheet Download PDF

Info

Publication number
JP2020190017A
JP2020190017A JP2019096468A JP2019096468A JP2020190017A JP 2020190017 A JP2020190017 A JP 2020190017A JP 2019096468 A JP2019096468 A JP 2019096468A JP 2019096468 A JP2019096468 A JP 2019096468A JP 2020190017 A JP2020190017 A JP 2020190017A
Authority
JP
Japan
Prior art keywords
gas
reducing atmosphere
atmosphere furnace
dew point
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096468A
Other languages
Japanese (ja)
Other versions
JP7111059B2 (en
Inventor
亨介 笠原
Kyosuke Kasahara
亨介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019096468A priority Critical patent/JP7111059B2/en
Publication of JP2020190017A publication Critical patent/JP2020190017A/en
Application granted granted Critical
Publication of JP7111059B2 publication Critical patent/JP7111059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

To provide a dew point control method capable of increasing and controlling the dew point in a reduction atmospheric furnace at high precision by economically excellent means.SOLUTION: In a reduction atmospheric furnace using a nitrogen gas and a hydrogen gas as reduction gases to be fed, the reduction gases are mixed with an oxygen-containing gas, and the oxygen concentration in the reduction gases to be fed is controlled, thus the dew point in the furnace is regulated to -20 to 0°C.SELECTED DRAWING: Figure 2

Description

本発明は、鋼板を熱処理する水素ガスと窒素ガスを含む還元性雰囲気炉の露点制御方法および還元性雰囲気炉、ならびに冷延鋼板の製造方法および溶融亜鉛めっき鋼板の製造方法に関するものである。 The present invention relates to a dew point control method and a reducing atmosphere furnace of a reducing atmosphere furnace containing hydrogen gas and nitrogen gas for heat-treating a steel sheet, a method for producing a cold-rolled steel sheet, and a method for producing a hot-dip galvanized steel sheet.

近年、自動車、家電、建材等の分野において、構造物の軽量化等に利用可能な高張力鋼板(ハイテン鋼材)の需要が高まっている。ハイテン鋼材としては、例えば、鋼中にSiを含有することにより穴広げ性の良好な鋼板や、また、SiやAlを含有することにより残留γが形成しやすく延性の良好な鋼板が得られることがわかっている。 In recent years, in the fields of automobiles, home appliances, building materials, etc., there is an increasing demand for high-strength steel sheets (high-tensile steel materials) that can be used for reducing the weight of structures. As the high-tensile steel material, for example, a steel sheet having good hole expanding property by containing Si in the steel, and a steel sheet having good ductility by containing Si and Al can be obtained. I know.

しかし、例えばSiを多量に含有する高強度鋼板を母材とする溶融亜鉛めっき鋼板及び合金化溶融めっき鋼板を製造する場合、以下の問題がある。溶融亜鉛めっき鋼板は非酸化性雰囲気中あるいは還元性雰囲気中で600〜900℃程度の温度で加熱焼鈍を行った後に溶融亜鉛めっき処理を行う。しかし、鋼中のSiは易酸化性元素であり、一般的に用いられる非酸化性雰囲気中あるいは還元性雰囲気中でも選択酸化されて、表面に濃化し酸化物を形成する。この酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるので、鋼中のSi濃度の増加とともに濡れ性が急激に低下し、不めっきの多発や、めっき密着性が悪化するという問題がある。さらに、鋼中のSiが選択酸化されて表面に濃化すると、溶融亜鉛めっき後の合金化過程において著しい合金化遅延が生じる。その結果、生産性を著しく阻害する。生産性を確保するために過剰に高温で合金化処理しようとすると、耐パウダリング性の劣化を招くという問題もあり、高い生産性と良好な耐パウダリング性を両立させることは困難である。 However, for example, when a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet containing a large amount of Si as a base material is manufactured, there are the following problems. The hot-dip galvanized steel sheet is subjected to hot-dip galvanizing after being heat-annealed at a temperature of about 600 to 900 ° C. in a non-oxidizing atmosphere or a reducing atmosphere. However, Si in steel is an easily oxidizing element and is selectively oxidized in a generally used non-oxidizing atmosphere or reducing atmosphere to concentrate on the surface and form an oxide. Since this oxide lowers the wettability with hot-dip zinc during the plating process and causes non-plating, the wettability drops sharply as the Si concentration in the steel increases, resulting in frequent non-plating and plating adhesion. There is a problem that the sex deteriorates. Furthermore, when Si in steel is selectively oxidized and concentrated on the surface, a significant delay in alloying occurs in the alloying process after hot dip galvanizing. As a result, productivity is significantly impaired. If an alloying process is attempted at an excessively high temperature in order to secure productivity, there is also a problem that the powdering resistance is deteriorated, and it is difficult to achieve both high productivity and good powdering resistance at the same time.

このような問題に対して、例えば、特許文献1及び特許文献2には、直火型加熱炉(DFF)あるいは無酸化炉(NOF)を用いて鋼板表面を一旦酸化させた後、還元帯で還元することでSiを内部酸化させ、Si表面濃化を抑制し、溶融亜鉛めっき濡れ性及び密着性を向上させる方法が開示されている。 In response to such problems, for example, in Patent Document 1 and Patent Document 2, the surface of the steel sheet is once oxidized using a direct-fired heating furnace (DFF) or a non-oxidizing furnace (NOF), and then in a reduction zone. A method of internally oxidizing Si by reducing it, suppressing the concentration of the Si surface, and improving the wettability and adhesion of hot dip galvanizing is disclosed.

しかし、特許文献1及び2に記載の方法では、還元後のめっき密着性は良好であるものの、内部酸化量が不足しやすく、鋼中の含有Siの影響で合金化温度が通常よりも30〜50℃高温になってしまい、鋼板の引張強度や延性が低下する問題があった。十分な内部酸化量を確保するために酸化量を増加させると、炉内ロールに酸化スケールが付着し鋼板に押疵が発生する、いわゆるピックアップ現象が発生するため、酸化量を単に増加させる手段は取れない。 However, in the methods described in Patent Documents 1 and 2, although the plating adhesion after reduction is good, the amount of internal oxidation tends to be insufficient, and the alloying temperature is 30 to 30 to higher than usual due to the influence of Si contained in the steel. There is a problem that the tensile strength and ductility of the steel sheet are lowered due to the high temperature of 50 ° C. If the amount of oxidation is increased in order to secure a sufficient amount of internal oxidation, the oxide scale adheres to the roll in the furnace and the steel sheet is scratched, which is a so-called pickup phenomenon. Therefore, the means for simply increasing the amount of oxidation is I can't get it.

また、特許文献3には、ガスを温水中通過させる方法で供給ガスを加湿し、炉内をシール装置で分割制御し、焼鈍炉内の水素濃度及び露点を所定範囲に制御することによってSiを内部酸化させ、溶融亜鉛めっき濡れ性及び密着性を向上させる方法が開示されている。 Further, in Patent Document 3, the supplied gas is humidified by a method of passing the gas through warm water, the inside of the furnace is divided and controlled by a sealing device, and the hydrogen concentration and the dew point in the annealing furnace are controlled within a predetermined range to obtain Si. Disclosed is a method of internally oxidizing to improve hot-dip galvanizing wettability and adhesion.

しかし、特許文献3に記載の方法では、外気温変動や鋼板の種類によって炉内に持ち込まれる水分量が変化すると、この変化により加湿ガスの露点が変動しやすく、安定して最適露点範囲に制御することは困難であった。 However, in the method described in Patent Document 3, when the amount of water brought into the furnace changes due to fluctuations in the outside temperature or the type of steel plate, the dew point of the humidifying gas tends to fluctuate due to this change, and the dew point is stably controlled to the optimum dew point range. It was difficult to do.

特許文献4には、加熱炉内に水蒸気を直接噴射して露点を上昇・制御する方法が開示されている。 Patent Document 4 discloses a method of directly injecting steam into a heating furnace to raise and control the dew point.

しかし、特許文献4に記載の方法では、炉内に直接水蒸気を供給すると局所的に10℃以上の高露点になる領域が発生し、その領域を鋼板が通ると地鉄までも酸化されてピックアップ現象が起こることがわかっている。また水蒸気生成装置と炉内に送気する装置と水蒸気が通る配管系統のドレン抜き装置が必要であり、メンテナンスや設置コストが高くなり、経済性に劣る。 However, in the method described in Patent Document 4, when steam is directly supplied into the furnace, a region having a high dew point of 10 ° C. or higher is locally generated, and when the steel plate passes through the region, even the ground iron is oxidized and picked up. It is known that the phenomenon will occur. In addition, a steam generating device, a device for supplying air into the furnace, and a draining device for a piping system through which steam passes are required, which increases maintenance and installation costs and is inferior in economic efficiency.

特許文献5には、水蒸気透過膜なる加湿ユニットを用いて、炉内に投入するガスを加湿し炉内露点調整する方法が開示されている。 Patent Document 5 discloses a method of humidifying the gas to be charged into the furnace and adjusting the dew point in the furnace by using a humidifying unit as a water vapor permeable membrane.

また特許文献6には、化成処理性に優れた高強度鋼板を製造するために、焼鈍炉内に加湿ガスを導入して鋼板の内部酸化を促進することが開示されている。 Further, Patent Document 6 discloses that in order to produce a high-strength steel sheet having excellent chemical conversion treatment property, a humidifying gas is introduced into an annealing furnace to promote internal oxidation of the steel sheet.

特開2010−202959号公報JP-A-2010-202959 特開2011−117069号公報Japanese Unexamined Patent Publication No. 2011-117069 WO2007/043273号公報WO2007 / 043273 特開2005−264305号公報Japanese Unexamined Patent Publication No. 2005-264305 特許第6052464号公報Japanese Patent No. 6052464 特開2015−151604号公報JP 2015-151604

特許文献5に記載の方法では、水蒸気透過膜モジュールを用いて露点制御を行うことにより、上記特許文献4の問題は解決されたが、水蒸気透過膜モジュールの破損による供給ガス系統への水漏洩の検知が困難であり、ガス供給配管内に液体としての水が流入し、設備停止トラブルの危険がある。また、モジュールへ水を送水するチラーユニットも必要であり、メンテナンスや設置コストが高くなり、経済性に劣るという問題があった。また、特許文献6も特許文献5と同様に加湿設備を必要とし、メンテナンス性や設置コストについて特段の検討はなされていない。 In the method described in Patent Document 5, the problem of Patent Document 4 is solved by controlling the dew point using the steam permeable membrane module, but water leakage to the supply gas system due to the breakage of the steam permeable membrane module It is difficult to detect, and water as a liquid flows into the gas supply pipe, and there is a risk of equipment stop trouble. In addition, a chiller unit that sends water to the module is also required, which causes a problem that maintenance and installation costs are high and the economy is inferior. Further, Patent Document 6 also requires a humidifying facility like Patent Document 5, and no particular study has been made on maintainability and installation cost.

本発明はこの様な課題に鑑みてなされたものであって、本発明の目的は、経済性に優れた手法で還元性雰囲気炉内の露点を高精度に上昇させ、制御することができる露点制御方法を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is a dew point that can raise and control the dew point in the reducing atmosphere furnace with high accuracy by an economical method. The purpose is to provide a control method.

特許文献1〜4の課題は、特許文献5で解消されたと考えられるが、特許文献5、6には上記のように設備上の課題と、メンテナンスコストと設備コストの課題があった。発明者は上記課題を解決する露点制御方法に関して種々の検討を行った。その結果、以下を知見し本発明を完成させた。 It is considered that the problems of Patent Documents 1 to 4 have been solved in Patent Document 5, but Patent Documents 5 and 6 have problems in terms of equipment and maintenance costs and equipment costs as described above. The inventor has conducted various studies on a dew point control method for solving the above problems. As a result, the following was found and the present invention was completed.

還元性雰囲気炉の露点を上昇させるために、特許文献5では直接水蒸気を還元炉に供給しているので、その水蒸気に起因する種々の課題が発生した。従って、直接水蒸気を供給せずに炉内に水分を供給すれば、上記課題は解消可能であろうとの発想を得た。その手法として通常還元性雰囲気炉への供給ガスとして使用される窒素と水素との混合ガスの水素に着目した。還元性雰囲気炉への供給時に窒素と水素との混合ガスと共に酸素ガスを供給すれば、還元性雰囲気炉内では水素と酸素が反応して水となり、あたかも、水蒸気を供給したのと同じ雰囲気が形成されることを見出した。水蒸気となる気体の還元性雰囲気炉への供給前の状態は酸素であり、供給前の水蒸気に起因する問題は発生しないことは明らかである。 In Patent Document 5, in order to raise the dew point of the reducing atmosphere furnace, steam is directly supplied to the reducing furnace, so that various problems caused by the steam have occurred. Therefore, we came up with the idea that the above problems could be solved by supplying water to the furnace without directly supplying steam. As a method, we focused on hydrogen, which is a mixed gas of nitrogen and hydrogen, which is usually used as a supply gas to a reducing atmosphere furnace. If oxygen gas is supplied together with a mixed gas of nitrogen and hydrogen at the time of supply to the reducing atmosphere furnace, hydrogen and oxygen react in the reducing atmosphere furnace to become water, and the atmosphere is as if water vapor was supplied. Found to be formed. It is clear that the state before the supply of the gas to be water vapor to the reducing atmosphere furnace is oxygen, and the problem caused by the water vapor before supply does not occur.

更に、単独で酸素ガスを直接還元性雰囲気炉へ供給することが考えられるが、この場合は、特許文献4の場合と同様に、還元性雰囲気炉内の酸素を供給する部位で、急激に炉内雰囲気の水素を酸化して水となり、局所的に鋼板を酸化する雰囲気が形成される。その結果、鋼板表面が酸化され、その後鋼板表面が還元されるまでに炉内ロールと接触し、炉内ロール表面に鋼板酸化物が付着して、押傷を発生させることが容易に想定される。従って、単独で酸素ガスを直接還元性雰囲気炉へ供給することには問題がある。 Further, it is conceivable to directly supply oxygen gas to the reducing atmosphere furnace by itself, but in this case, as in the case of Patent Document 4, the furnace is rapidly supplied at the site where oxygen is supplied in the reducing atmosphere furnace. Oxygen in the inner atmosphere is oxidized to water, and an atmosphere that locally oxidizes the steel plate is formed. As a result, it is easily assumed that the surface of the steel sheet is oxidized and then comes into contact with the in-core roll before the surface of the steel sheet is reduced, and the steel plate oxide adheres to the surface of the roll in the furnace to cause scratches. .. Therefore, there is a problem in supplying oxygen gas directly to the reducing atmosphere furnace by itself.

ここで,還元性雰囲気炉とは、通常鉄鋼製品の熱処理に使用される炉であり、鉄が酸化されずに、鉄酸化物が還元される雰囲気の炉を意味する。 Here, the reducing atmosphere furnace is a furnace usually used for heat treatment of steel products, and means a furnace in an atmosphere in which iron oxide is reduced without oxidizing iron.

また、特許文献5は溶融亜鉛めっき鋼板製造時の還元性雰囲気炉の露点制御時に課題があり、本発明はこの課題を解決することを目的とするが、溶融亜鉛めっき鋼板に限らず、化成処理性に代表される良好な表面特性が要求される冷延鋼板製造時にも還元性雰囲気炉内の露点を高精度に上昇させ、制御することが課題として存在している。本発明は、溶融亜鉛めっき鋼板と冷延鋼板の焼鈍時に共通して適用可能な技術である。 Further, Patent Document 5 has a problem in controlling the dew point of the reducing atmosphere furnace during the production of a hot-dip galvanized steel sheet, and an object of the present invention is to solve this problem, but the present invention is not limited to the hot-dip galvanized steel sheet and is subjected to chemical conversion treatment. Even during the production of cold-rolled steel sheets, which require good surface characteristics typified by properties, it is an issue to raise and control the dew point in the reducing atmosphere furnace with high accuracy. The present invention is a technique that can be commonly applied when annealing a hot-dip galvanized steel sheet and a cold-rolled steel sheet.

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]冷延鋼板に焼鈍を施す際に、還元性雰囲気炉に供給する還元性ガスとして窒素ガスと水素ガスを用い、還元性ガスに酸素を含有する気体を混合させ、供給する還元性ガス中の酸素濃度を制御することで、還元性雰囲気炉内の露点を調整することを特徴とする還元性雰囲気炉の露点制御方法。
[2]前記酸素を含有する気体が空気であることを特徴とする前記[1]に記載の還元性雰囲気炉の露点制御方法。
[3]前記還元性ガスの、酸素濃度を0vol%超え2vol%以下に制御することを特徴とする前記[1]または[2]に記載の還元性雰囲気炉の露点制御方法。
[4]前記還元性雰囲気炉内の露点を−20℃〜0℃に調整することを特徴とする前記[1]〜[3]のいずれかに記載の還元性雰囲気炉の露点制御方法。
[5]前記[1]〜[4]のいずれかに記載の還元性雰囲気炉の露点制御方法を用いて、冷延鋼板の製造を行うことを特徴とする冷延鋼板の製造方法。
[6]前記[1]〜[4]のいずれかの還元性雰囲気炉の露点制御方法で、還元性雰囲気炉の露点を制御して、冷延鋼板に焼鈍を施した後に、引き続き連続して溶融亜鉛めっきを行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。
[7]冷延鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、窒素ガスと水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記Aから供給される窒素ガスと水素ガスと前記Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。
[8]連続式溶融亜鉛めっき設備鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、窒素ガスと水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記Aから供給される窒素ガスと水素ガスと前記Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] When the cold-rolled steel sheet is annealed, nitrogen gas and hydrogen gas are used as the reducing gas to be supplied to the reducing atmosphere furnace, and the reducing gas is mixed with a gas containing oxygen and supplied. A method for controlling the dew point of a reducing atmosphere furnace, which comprises adjusting the dew point in the reducing atmosphere furnace by controlling the oxygen concentration in the reducing atmosphere.
[2] The dew point control method for a reducing atmosphere furnace according to the above [1], wherein the gas containing oxygen is air.
[3] The dew point control method for a reducing atmosphere furnace according to the above [1] or [2], wherein the oxygen concentration of the reducing gas is controlled to exceed 0 vol% and 2 vol% or less.
[4] The dew point control method for a reducing atmosphere furnace according to any one of [1] to [3], wherein the dew point in the reducing atmosphere furnace is adjusted to −20 ° C. to 0 ° C.
[5] A method for producing a cold-rolled steel sheet, which comprises manufacturing the cold-rolled steel sheet by using the dew point control method of the reducing atmosphere furnace according to any one of the above [1] to [4].
[6] The dew point of the reducing atmosphere furnace is controlled by the method for controlling the dew point of the reducing atmosphere furnace according to any one of the above [1] to [4], and after the cold-rolled steel sheet is annealed, it is continuously continued. A method for producing a hot-dip galvanized steel sheet, which comprises performing hot-dip galvanizing.
[7] A reducing atmosphere furnace for a cold-rolled steel plate anneaizer, which consists of a heating device using a radiant tube, a pipe for supplying nitrogen gas and hydrogen gas, and a device A for adjusting the supply flow rate thereof, and a gas containing oxygen. A device B including a supply pipe and a supply amount adjusting device, a device C for mixing a gas containing nitrogen gas and hydrogen gas supplied from the A, and an oxygen supplied from the B to adjust the flow rate, and the mixing. A reducing atmosphere provided with an oxygen concentration measuring device in the gas, a pipe for supplying the mixed gas supplied from the device C to the reducing atmosphere furnace, and a dew point measuring device installed in the reducing atmosphere furnace. Furnace.
[8] Continuous hot-dip zinc plating equipment A reducing atmosphere furnace for a steel plate anneaizer, a heating device using a radiant tube, a device A consisting of a pipe for supplying nitrogen gas and hydrogen gas, and a supply flow rate adjusting device, and oxygen. A device B consisting of a pipe for supplying a gas containing the above gas and a supply amount adjusting device thereof, and a device C for adjusting the flow rate by mixing the nitrogen gas and hydrogen gas supplied from the A and the gas containing oxygen supplied from the B. A device for measuring the oxygen concentration in the mixed gas, a pipe for supplying the mixed gas supplied from the device C to the reducing atmosphere furnace, and a dew point measuring device installed in the reducing atmosphere furnace. Reducing atmosphere furnace.

本発明は、加湿装置や配管内ドレン抜き装置が不要であるから、安価な設備改造で上記溶融亜鉛めっき鋼板を製造することができる。 Since the present invention does not require a humidifying device or a drain draining device in the pipe, the hot-dip galvanized steel sheet can be manufactured by inexpensive equipment modification.

また供給ガスに水分ではなく、酸素を含有する気体を混合し、混合された供給ガスの酸素濃度と供給ガス流量をコントロールし、炉内露点制御を出来るようにしたので、加湿ユニットが不要となり、従来よりもメンテナンス性や経済性に優れる露点制御が出来るようになった。 In addition, the supply gas is mixed with a gas containing oxygen instead of water, and the oxygen concentration of the mixed supply gas and the flow rate of the supply gas can be controlled to control the dew point in the furnace, eliminating the need for a humidification unit. Dew point control, which is more maintainable and economical than before, has become possible.

本発明の連続溶融亜鉛めっき設備の一実施形態を示す図である。It is a figure which shows one Embodiment of the continuous hot dip galvanizing facility of this invention. 本発明の還元性雰囲気炉内の一実施形態を示す図である。It is a figure which shows one Embodiment in the reducing atmosphere furnace of this invention. 先行技術(特許文献5)の還元性雰囲気炉内の1実施形態である。It is one embodiment in the reducing atmosphere furnace of the prior art (Patent Document 5). 本発明例と比較例における露点推移を示したものである。The dew point transitions in the examples of the present invention and the comparative examples are shown.

以下に、本発明の実施形態について、具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.

まず図面を参照しながら本実施形態に用いる設備の例を示す。鋼板に焼鈍と溶融亜鉛め
っき処理を施し、溶融亜鉛めっき鋼板を製造する際に用いる連続溶融亜鉛めっき設備の焼鈍炉タイプとしては、鋼板を昇温加熱する加熱炉がDFF(直火型)又はNOF(無酸化型)で、加熱した鋼板を均熱する均熱炉がラジアントチューブ炉(RTF)タイプのもの、加熱炉から均熱炉までが全てラジアントチューブであるオールラジアントチューブ炉タイプのもの等が例示できる。
First, an example of the equipment used in this embodiment is shown with reference to the drawings. As an annealing furnace type of continuous hot-dip zinc plating equipment used when annealing and hot-dip zinc-plated steel sheets are applied to manufacture hot-dip zinc-plated steel sheets, the heating furnace that heats the steel sheet by raising the temperature is DFF (direct flame type) or NOF. (Non-oxidation type), the soaking furnace for soaking the heated steel sheet is the radiant tube furnace (RTF) type, and the all-radiant tube furnace type, in which the heating furnace to the soaking furnace are all radiant tubes, etc. It can be exemplified.

本発明においては、ラジアントチューブを備える炉部分を還元性雰囲気炉と称する。すなわち、加熱炉がDFF(直火型)又はNOF(無酸化型)で均熱炉がラジアントチューブ炉(RTF)タイプのものでは、均熱炉を還元性雰囲気炉とする。加熱炉から均熱炉までが全てラジアントチューブであるオールラジアントチューブ炉タイプのものでは、還元性雰囲気炉は、加熱炉から均熱炉までとする。 In the present invention, the furnace portion provided with the radiant tube is referred to as a reducing atmosphere furnace. That is, if the heating furnace is a DFF (direct flame type) or NOF (non-oxidizing type) and the soaking furnace is a radiant tube furnace (RTF) type, the soaking furnace is a reducing atmosphere furnace. In the all-radiant tube furnace type in which everything from the heating furnace to the soaking furnace is a radiant tube, the reducing atmosphere furnace is from the heating furnace to the soaking furnace.

そして、本発明の還元性雰囲気炉の露点制御方法を用いれば、加熱炉がDFF(直火型)又はNOF(無酸化型)で均熱炉がラジアントチューブ炉(RTF)タイプのもの、オールラジアントチューブタイプのもののいずれでも、還元性雰囲気炉内の露点を高精度に制御でき、Si等の易酸化性元素を多量に含む鋼板の場合でもめっき性が確保される。 Then, by using the dew point control method of the reducing atmosphere furnace of the present invention, the heating furnace is DFF (direct flame type) or NOF (non-oxidation type) and the soaking furnace is a radiant tube furnace (RTF) type, all radiant. In any of the tube type, the dew point in the reducing atmosphere furnace can be controlled with high accuracy, and the plating property is ensured even in the case of a steel plate containing a large amount of easily oxidizing elements such as Si.

図1は、焼鈍炉とめっき装置を備える連続溶融亜鉛めっき設備の一構成例を示す図である。図1において、1は鋼板、2は鋼板搬送ロール、3は直火型加熱帯(DFF)、4は還元性雰囲気炉(ラジアントチューブ炉タイプ)、5は急冷帯、6は徐冷帯、7はめっき装置である。 FIG. 1 is a diagram showing a configuration example of a continuous hot-dip galvanizing facility equipped with an annealing furnace and a plating apparatus. In FIG. 1, 1 is a steel plate, 2 is a steel plate transport roll, 3 is a direct flame type heating zone (DFF), 4 is a reducing atmosphere furnace (radiant tube furnace type), 5 is a quenching zone, 6 is a slow cooling zone, and 7 Is a plating device.

鋼板1は鋼板搬送ロール2により直火型加熱炉3に送られて、加熱(酸化処理工程)されて、次いで、還元性雰囲気炉4にて還元(還元焼鈍工程)され、その後、急冷帯5、徐冷帯6により冷却(冷却工程)され、めっき装置7にてめっき処理される。 The steel plate 1 is sent to the direct-fired heating furnace 3 by the steel plate transport roll 2, heated (oxidation treatment step), then reduced in the reducing atmosphere furnace 4 (reduction annealing step), and then the quenching zone 5 , It is cooled by the slow cooling zone 6 (cooling step), and is plated by the plating apparatus 7.

なお、本発明における焼鈍炉はめっき設備の前処理として用いられるものに限られない。焼鈍した鋼板にリン酸塩皮膜等を付与する化成処理の前処理に適用してもよい。冷延鋼板の焼鈍炉に用いることも可能である。 The annealing furnace in the present invention is not limited to that used as a pretreatment for plating equipment. It may be applied to the pretreatment of the chemical conversion treatment for imparting a phosphate film or the like to the annealed steel sheet. It can also be used in an annealing furnace for cold-rolled steel sheets.

図2は、図1で示した還元性雰囲気炉4の構成を示し、本発明の還元性雰囲気炉の一実施形態を示す図である。図2では、還元性雰囲気炉(ラジアントチューブタイプ)4における炉内へ供給するガスの供給ルートを示している
ここで、酸素を含有するガスを酸素含有ガスと略する場合がある。また、酸素を含有するガスとは酸素と不可避的不純物からなるガスを含むものとする。
FIG. 2 is a diagram showing the configuration of the reducing atmosphere furnace 4 shown in FIG. 1 and showing an embodiment of the reducing atmosphere furnace of the present invention. FIG. 2 shows the supply route of the gas supplied into the furnace in the reducing atmosphere furnace (radiant tube type) 4. Here, the gas containing oxygen may be abbreviated as the oxygen-containing gas. Further, the gas containing oxygen shall include a gas composed of oxygen and unavoidable impurities.

図2において8は窒素ガスと水素ガス供給流量調整装置、9は酸素含有ガス供給流量調整装置、10は窒素ガスと水素ガスと酸素含有ガス混合流量調整装置、11は供給混合ガス酸素濃度計、12は酸素含有ガス乾燥装置、14は炉内露点測定箇所、15は供給混合ガス配管である。 In FIG. 2, 8 is a nitrogen gas and hydrogen gas supply flow rate adjusting device, 9 is an oxygen-containing gas supply flow rate adjusting device, 10 is a nitrogen gas, hydrogen gas and oxygen-containing gas mixed flow rate adjusting device, and 11 is a supply mixed gas oxygen concentration meter. Reference numeral 12 is an oxygen-containing gas drying device, 14 is an in-furnace dew point measurement point, and 15 is a supply mixed gas pipe.

図2によれば、窒素ガスと水素ガス供給流量調整装置8により窒素ガスと水素ガスの混合ガスの流量を調整し、酸素含有ガス供給流量調整装置9により酸素含有ガスの流量を調整する。これにより、窒素ガスと水素ガスと酸素含有ガス混合流量調整装置10へ供給されるガスの混合割合が調整される。そして窒素ガスと水素ガスと酸素含有ガス混合流量調整装置10で、還元性雰囲気炉4へ供給されるガス流量を調整し、供給ガス配管15を通って、還元性雰囲気炉4内に供給される。また混合前の酸素含有ガスは水分を含む場合がある為、酸素含有ガスエアー乾燥装置12を用いて水分除去することが好ましい。また、供給ガス配管15を通る供給混合ガスは、供給混合ガス酸素濃度計11により酸素濃度を測定し、必要に応じて酸素濃度の流量をフィードバック制御する事が好ましい。供給混合ガスは、還元性雰囲気炉内に投入直後に、供給混合ガス中の酸素と還元性雰囲気炉内の水素と反応し、水分となり、還元性雰囲気炉内の露点温度は上昇する。 According to FIG. 2, the flow rate of the mixed gas of nitrogen gas and hydrogen gas is adjusted by the nitrogen gas and hydrogen gas supply flow rate adjusting device 8, and the flow rate of the oxygen-containing gas is adjusted by the oxygen-containing gas supply flow rate adjusting device 9. As a result, the mixing ratio of the gas supplied to the nitrogen gas, hydrogen gas, and oxygen-containing gas mixing flow rate adjusting device 10 is adjusted. Then, the gas flow rate to be supplied to the reducing atmosphere furnace 4 is adjusted by the nitrogen gas / hydrogen gas / oxygen-containing gas mixing flow rate adjusting device 10, and the gas is supplied into the reducing atmosphere furnace 4 through the supply gas pipe 15. .. Further, since the oxygen-containing gas before mixing may contain water, it is preferable to remove the water using the oxygen-containing gas air drying device 12. Further, it is preferable that the oxygen concentration of the supply mixed gas passing through the supply gas pipe 15 is measured by the supply mixed gas oxygen concentration meter 11, and the flow rate of the oxygen concentration is feedback-controlled as necessary. Immediately after being charged into the reducing atmosphere furnace, the supplied mixed gas reacts with oxygen in the supplied mixed gas and hydrogen in the reducing atmosphere furnace to become water, and the dew point temperature in the reducing atmosphere furnace rises.

還元性雰囲気炉内には炉内露点採取箇所14が一つ又は複数個所設置されており、還元性雰囲気炉内の露点が測定される。そして、測定結果を受けて、混合供給ガス酸素濃度計11を監視しながら、ガスと酸素含有ガスの流量を適正範囲に制御し、還元性雰囲気炉内露点を所望の範囲に調整する。還元性雰囲気炉内に供給するガスの酸素濃度は0vol%超2vol%以下に制御されることが好ましい。 One or a plurality of dew point sampling points 14 in the furnace are installed in the reducing atmosphere furnace, and the dew point in the reducing atmosphere furnace is measured. Then, in response to the measurement result, the flow rate of the gas and the oxygen-containing gas is controlled within an appropriate range while monitoring the mixed supply gas oxygen concentration meter 11, and the dew point in the reducing atmosphere furnace is adjusted to a desired range. The oxygen concentration of the gas supplied into the reducing atmosphere furnace is preferably controlled to be more than 0 vol% and 2 vol% or less.

酸素濃度0vol%では還元性雰囲気炉内露点を−20℃以上とするのは困難である。酸素濃度0.0001vol%で還元性雰囲気炉内露点を−20℃以上と出来ることが確認された。また、2vol%を超えると還元炉の混合ガス供給部で露点が部分的に高くなりすぎて鋼板の酸化を引き起こす危険性がある。 When the oxygen concentration is 0 vol%, it is difficult to set the dew point in the reducing atmosphere furnace to −20 ° C. or higher. It was confirmed that the dew point in the reducing atmosphere furnace can be set to -20 ° C or higher at an oxygen concentration of 0.0001 vol%. On the other hand, if it exceeds 2 vol%, the dew point becomes partially too high in the mixed gas supply section of the reduction furnace, and there is a risk of causing oxidation of the steel sheet.

混合供給ガス流量を露点に基づき制御することで還元性雰囲気炉内水分生成量を調整でき、還元性雰囲気炉内露点を調整することができる。なお酸素含有ガスに代えて、酸素を還元性ガスに混合して還元性雰囲気炉に供給してもよい。窒素ガスと水素ガスと酸素含有ガス混合流量調整装置10の最小制御分解能を考慮し、還元性雰囲気炉内の露点を正確に制御するためには、酸素含有ガスや酸素を希釈した酸素含有ガスを供給することで酸素含有ガス流量調整弁11の制御誤差を吸収する事が好ましく、またコストの観点からは酸素含有ガスとして空気を供給する事が好ましい。 By controlling the flow rate of the mixed supply gas based on the dew point, the amount of water generated in the reducing atmosphere furnace can be adjusted, and the dew point in the reducing atmosphere furnace can be adjusted. Instead of the oxygen-containing gas, oxygen may be mixed with the reducing gas and supplied to the reducing atmosphere furnace. Considering the minimum control resolution of the nitrogen gas / hydrogen gas / oxygen-containing gas mixed flow rate regulator 10, in order to accurately control the dew point in the reducing atmosphere furnace, oxygen-containing gas or oxygen-containing gas diluted with oxygen should be used. It is preferable to absorb the control error of the oxygen-containing gas flow rate adjusting valve 11 by supplying the gas, and it is preferable to supply air as the oxygen-containing gas from the viewpoint of cost.

図2では省略して示していないが、通常、還元性雰囲気炉4には、還元性ガスとして露点−60〜−40℃の乾燥した窒素と水素とを混合したガスが常時供給される。より具体的には雰囲気中の水素体積分率が1〜50%が好ましく、残部は窒素および不可避的不純物であることが好ましい。なお、雰囲気の組成はこれに限られず、露点の制御に影響を及ぼさない範囲で、さらにCO、COガスなどの気体成分をさらに含有してもよく、乾燥していないガスを還元性雰囲気炉4に供給してもよい。また、水素体積分率も上記範囲に限定する必要はなく、例えばバッチ式の還元炉のように還元性ガス中の水素体積分率を100%としてもよい。 Although not shown by omission in FIG. 2, normally, a gas in which dry nitrogen and hydrogen having a dew point of −60 to −40 ° C. are mixed is constantly supplied to the reducing atmosphere furnace 4 as a reducing gas. More specifically, the hydrogen volume fraction in the atmosphere is preferably 1 to 50%, and the balance is preferably nitrogen and unavoidable impurities. The composition of the atmosphere is not limited to this, and gas components such as CO and CO 2 gas may be further contained within a range that does not affect the control of the dew point, and the undried gas is used in the reducing atmosphere furnace. It may be supplied to 4. Further, the hydrogen volume fraction does not have to be limited to the above range, and the hydrogen volume fraction in the reducing gas may be set to 100% as in a batch type reduction furnace, for example.

以上のように、本発明によれば、それぞれ流量調整弁により流量調整された窒素ガスと水素ガスと乾燥酸素含有ガスを混合し、そして炉内露点採取箇所での露点状態により、ガスと酸素含有ガスのそれぞれの流量をフィードバック制御出来るようにしたので、還元性雰囲気炉内露点の制御が可能となる。 As described above, according to the present invention, the nitrogen gas, hydrogen gas, and dry oxygen-containing gas whose flow rates are adjusted by the flow rate adjusting valves are mixed, and the gas and oxygen are contained depending on the dew point state at the dew point sampling point in the furnace. Since the flow rate of each gas can be feedback-controlled, the dew point in the reducing atmosphere furnace can be controlled.

これに対して、図3は特許文献5に記載された水蒸気透過膜モジュールを用いて露点制御を行う還元性雰囲気炉である。図3において、1は鋼板、2は鋼板搬送ロール、4は還元性雰囲気炉、14は炉内露点測定箇所、15は供給混合ガス配管、16はガス分配装置、17はガス混合装置、18は供給ガス用露点計、19は加湿装置、20は循環高温水槽である。 On the other hand, FIG. 3 is a reducing atmosphere furnace in which the dew point is controlled by using the steam permeation membrane module described in Patent Document 5. In FIG. 3, 1 is a steel plate, 2 is a steel plate transfer roll, 4 is a reducing atmosphere furnace, 14 is a dew point measurement point in the furnace, 15 is a supply mixing gas pipe, 16 is a gas distributor, 17 is a gas mixing device, and 18 is. A dew point meter for supply gas, 19 is a humidifying device, and 20 is a circulating high temperature water tank.

本発明によれば、図3のような還元性雰囲気炉内露点を高めるための加湿装置による水分付与が不要となるため、加湿装置と供給ガス配管内結露対策におけるドレン抜き装置及び配管保温施工が不要となり、安価な費用で還元性雰囲気炉内露点を制御出来るようになる。以上、図1、図2によれば、還元性雰囲気炉(還元焼鈍工程)において、高精度な露点の制御が可能となる。 According to the present invention, since it is not necessary to add water by the humidifying device for raising the dew point in the reducing atmosphere furnace as shown in FIG. 3, the humidifying device and the drain removing device and the pipe heat insulating construction for dew condensation measures in the supply gas pipe are performed. It becomes unnecessary and the dew point in the reducing atmosphere furnace can be controlled at low cost. As described above, according to FIGS. 1 and 2, highly accurate dew point control is possible in the reducing atmosphere furnace (reduction annealing step).

本発明において焼鈍の対象となる金属帯の組成は特に限定されない。所望の表面性状を実現するために還元性雰囲気炉内露点を所望範囲まで高める必要がある場合であれば、任意の組成の金属帯に適用することができる。 The composition of the metal band to be annealed in the present invention is not particularly limited. If it is necessary to raise the dew point in the reducing atmosphere furnace to a desired range in order to achieve a desired surface texture, it can be applied to a metal band having an arbitrary composition.

金属帯の例としては、鋼帯、特にSiまたはMn等の易酸化性元素を含有する鋼帯を一
例として挙げることができる。当該鋼帯としては、例えば以下の様な組成を例示できる。
As an example of the metal strip, a steel strip, particularly a steel strip containing an easily oxidizing element such as Si or Mn, can be mentioned as an example. As the steel strip, for example, the following composition can be exemplified.

本発明において、鋼板の成分組成は下記の範囲が好ましい。 In the present invention, the composition of the steel sheet is preferably in the following range.

なお、成分に関する%表示は特に断らない限り質量%を意味するものとする。 In addition,% notation about component means mass% unless otherwise specified.

C:0.03〜0.35%
Cは鋼帯の強度を高める効果を有する。そのためには、0.03%以上必要である。一方で、0.35%を超えると自動車や家電の素材として用いる場合に必要である溶接性が劣化する。したがって、C量は0.03%以上0.35%以下としてよい。
C: 0.03 to 0.35%
C has the effect of increasing the strength of the steel strip. For that purpose, 0.03% or more is required. On the other hand, if it exceeds 0.35%, the weldability required for use as a material for automobiles and home appliances deteriorates. Therefore, the amount of C may be 0.03% or more and 0.35% or less.

Si:0.01〜3.00%
Siは鋼を強化し、延性を向上させるのに有効な元素であり、そのためには0.01%以上が必要である。一方で、3.00%を超えると、Siが表面に酸化物を形成し、めっき外観が劣化する。したがって、Si量は0.01%以上3.00%以下としてよい。
Si: 0.01 to 3.00%
Si is an element effective for strengthening steel and improving ductility, and 0.01% or more is required for that purpose. On the other hand, if it exceeds 3.00%, Si forms an oxide on the surface and the appearance of plating deteriorates. Therefore, the amount of Si may be 0.01% or more and 3.00% or less.

Mn:0.5〜3.0%
Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。その効果は、0.5%未満では得られない。一方、含有量が3.0%を超えるとMnの偏析が生じ、加工性が低下する。したがって、Mn量は0.5〜3.0%が望ましい。
Mn: 0.5 to 3.0%
Mn is an element useful for enhancing hardenability and increasing the strength of steel sheets. The effect cannot be obtained below 0.5%. On the other hand, if the content exceeds 3.0%, segregation of Mn occurs and the workability is lowered. Therefore, the amount of Mn is preferably 0.5 to 3.0%.

Al:0.001〜1.000%
Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。一方、1.000%を超えると、Alが表面に酸化物を形成し、めっき外観(表面外観)が劣化する。したがって、Al量は0.001%以上1.000%以下としてよい。
Al: 0.001 to 1.000%
Al is added for the purpose of deoxidizing molten steel, but if the content is less than 0.001%, the purpose is not achieved. On the other hand, if it exceeds 1.000%, Al forms an oxide on the surface, and the plating appearance (surface appearance) deteriorates. Therefore, the amount of Al may be 0.001% or more and 1.000% or less.

P:0.10%以下
Pは不可避的に含有される元素のひとつであり、0.005%未満にする為には、コストの増大が懸念される為、0.005%以上が望ましい。一方、Pの増加に伴いスラブ製造性が劣化する。さらに、Pの含有は合金化反応を抑制し、めっきムラを引き起こす。これらを抑制する為には、含有量を0.10%以下にすることが必要である。したがって、P量は0.10%以下としてよい。好ましくは0.05%以下である。
P: 0.10% or less P is one of the elements inevitably contained, and in order to make it less than 0.005%, there is a concern that the cost will increase, so 0.005% or more is desirable. On the other hand, the slab manufacturability deteriorates as P increases. Further, the content of P suppresses the alloying reaction and causes uneven plating. In order to suppress these, it is necessary to reduce the content to 0.10% or less. Therefore, the amount of P may be 0.10% or less. It is preferably 0.05% or less.

S:0.01%以下
Sは製鋼過程で不可避的に含有される元素である。しかしながら、多量に含有すると溶接性が劣化する。そのため、Sは0.01%以下としてよい。
残部はFeおよび不可避不純物である。
S: 0.01% or less S is an element inevitably contained in the steelmaking process. However, if it is contained in a large amount, the weldability deteriorates. Therefore, S may be 0.01% or less.
The rest is Fe and unavoidable impurities.

なお、下記を目的として、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.080%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%、Sb:0.001〜0.200%の中から選ばれる1種以上の元素を必要に応じて含有してもよい。 For the following purposes, B: 0.001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.080%, Cr: 0.001 to 1.000%. , Mo: 0.05 to 1.00%, Cu: 0.05 to 1.00%, Ni: 0.05 to 1.00%, Sb: 0.001 to 0.200% 1 More than a species of element may be contained as needed.

これらの元素を添加する場合における適正含有量およびその限定理由は以下の通りである。 The appropriate content when these elements are added and the reasons for their limitation are as follows.

B:0.001〜0.005%
Bは0.001%以上で焼き入れ促進効果が得られる。一方、0.005%超えではめっき密着性が劣化する。よって、含有する場合、B量は0.001%以上0.005%以下としてよい。
B: 0.001 to 0.005%
When B is 0.001% or more, the quenching promoting effect can be obtained. On the other hand, if it exceeds 0.005%, the plating adhesion deteriorates. Therefore, when it is contained, the amount of B may be 0.001% or more and 0.005% or less.

Nb:0.005〜0.050%
Nbは0.005%以上で強度調整(強度向上)の効果が得られる。一方、0.050%超えではコストアップを招く。よって、含有する場合、Nb量は0.005%以上0.050%以下としてよい。
Nb: 0.005 to 0.050%
When Nb is 0.005% or more, the effect of strength adjustment (strength improvement) can be obtained. On the other hand, if it exceeds 0.050%, the cost will increase. Therefore, when it is contained, the amount of Nb may be 0.005% or more and 0.050% or less.

Ti:0.005〜0.080%
Tiは0.005%以上で強度調整(強度向上)の効果が得られる。一方、0.080%超えではめっき密着性の劣化を招く。よって、含有する場合、Ti量は0.005%以上0.080%以下としてよい。
Ti: 0.005 to 0.080%
When Ti is 0.005% or more, the effect of strength adjustment (strength improvement) can be obtained. On the other hand, if it exceeds 0.080%, the plating adhesion deteriorates. Therefore, when it is contained, the amount of Ti may be 0.005% or more and 0.080% or less.

Cr:0.001〜1.000%
Crは0.001%以上で焼き入れ性効果が得られる。一方、1.000%超えではCrが表面濃化するため、溶接性が劣化する。よって、含有する場合、Cr量は0.001%以上1.000%以下としてよい。
Cr: 0.001 to 1.000%
A quenching effect can be obtained when Cr is 0.001% or more. On the other hand, if it exceeds 1.000%, the surface of Cr becomes thickened, so that the weldability deteriorates. Therefore, when it is contained, the amount of Cr may be 0.001% or more and 1.000% or less.

Mo:0.05〜1.00%
Moは0.05%以上で強度調整(強度向上)の効果が得られる。一方、1.00%超えではコストアップを招く。よって、含有する場合、Mo量は0.05%以上1.00%以下としてよい。
Mo: 0.05 to 1.00%
When Mo is 0.05% or more, the effect of strength adjustment (strength improvement) can be obtained. On the other hand, if it exceeds 1.00%, the cost will increase. Therefore, when it is contained, the amount of Mo may be 0.05% or more and 1.00% or less.

Cu:0.05〜1.00%
Cuは0.05%以上で残留γ相形成促進効果が得られる。一方、1.00%超えではコストアップを招く。よって、含有する場合、Cu量は0.05%以上1.00%以下としてよい。
Cu: 0.05 to 1.00%
When Cu is 0.05% or more, the effect of promoting the formation of the residual γ phase can be obtained. On the other hand, if it exceeds 1.00%, the cost will increase. Therefore, when it is contained, the amount of Cu may be 0.05% or more and 1.00% or less.

Ni:0.05〜1.00%
Niは0.05%以上で残留γ相形成促進効果が得られる。一方、1.00%超えではコストアップを招く。よって、含有する場合、Ni量は0.05%以上1.00%以下としてよい。
Ni: 0.05 to 1.00%
When Ni is 0.05% or more, the effect of promoting the formation of the residual γ phase can be obtained. On the other hand, if it exceeds 1.00%, the cost will increase. Therefore, when it is contained, the amount of Ni may be 0.05% or more and 1.00% or less.

Sb:0.001〜0.200%
Sbは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。窒化や酸化を抑制することで鋼板表面においてマルテンサイトの生成量が減少するのを防止し、疲労特性や表面品質が改善する。このような効果は、0.001%以上で得られる。一方、0.200%を超えると靭性が劣化する。よって、含有する場合、Sb量は0.001%以上0.200%以下としてよい。
Sb: 0.001 to 0.200%
Sb can be contained from the viewpoint of suppressing nitriding, oxidation, or decarburization of the steel sheet surface in a region of several tens of microns caused by oxidation. By suppressing nitriding and oxidation, it is possible to prevent the amount of martensite produced on the surface of the steel sheet from decreasing, and improve fatigue characteristics and surface quality. Such an effect can be obtained at 0.001% or more. On the other hand, if it exceeds 0.200%, the toughness deteriorates. Therefore, when it is contained, the amount of Sb may be 0.001% or more and 0.200% or less.

このような鋼帯は、公知又は任意の方法で製造することができる。例えば、上記成分組成を有するスラブを加熱し、熱間圧延して熱延鋼板とし、この熱延鋼板を酸洗した後、必要に応じて熱延鋼板に冷間圧延を施して冷延鋼板とすることができる。 Such steel strips can be produced by known or arbitrary methods. For example, a slab having the above composition is heated and hot-rolled to obtain a hot-rolled steel sheet, and after pickling the hot-rolled steel sheet, the hot-rolled steel sheet is cold-rolled as necessary to obtain a cold-rolled steel sheet. can do.

上記のようなSiまたはMn含有鋼を本実施形態の還元焼鈍工程に適用する場合、酸化処理工程で鋼板表面に形成された鉄酸化物を還元するとともに、鉄酸化物から供給される酸素によって、SiやMnの合金元素が鋼板内部に内部酸化物として形成することになる。結果として、鋼板最表面には鉄酸化物から還元された還元鉄層が形成され、SiやMnは内部酸化物として鋼板内部に留まるため、鋼板表面でのSiやMnの酸化が抑制され、鋼板と溶融めっきの濡れ性の低下を防止し、不めっきなく良好なめっき密着性を得ることができる。 When the Si or Mn-containing steel as described above is applied to the reduction annealing step of the present embodiment, the iron oxide formed on the surface of the steel plate in the oxidation treatment step is reduced, and the oxygen supplied from the iron oxide reduces the iron oxide. The alloying elements of Si and Mn are formed as internal oxides inside the steel plate. As a result, a reduced iron layer reduced from the iron oxide is formed on the outermost surface of the steel sheet, and Si and Mn remain inside the steel sheet as internal oxides, so that oxidation of Si and Mn on the surface of the steel sheet is suppressed and the steel sheet is steel. It is possible to prevent deterioration of the wettability of hot-dip galvanizing and to obtain good plating adhesion without non-plating.

しかしながら、良好なめっき密着性は得られるものの、Si含有鋼における合金化温度は高温になるために、残留オーステナイト相のパーライト相への分解や、マルテンサイト相の焼き戻し軟化が起こり、所望の機械特性が得られない場合がある。そこで、合金化温度を低減させるための技術検討を行った結果、Siの内部酸化を更に積極的に形成させることで、鋼板表層の固溶Si量を低下させ、合金化反応を促進させる技術を考案した。Siの内部酸化を更に積極的に形成させるためには、還元性雰囲気炉内の雰囲気露点を−20℃以上に制御することが有効である。 However, although good plating adhesion can be obtained, the alloying temperature of Si-containing steel is high, so that the retained austenite phase is decomposed into the pearlite phase and the martensite phase is tempered and softened, which is a desired machine. The characteristics may not be obtained. Therefore, as a result of conducting a technical study for reducing the alloying temperature, a technology for reducing the amount of solid solution Si on the surface layer of the steel sheet and accelerating the alloying reaction by forming the internal oxidation of Si more positively was developed. Invented. In order to form the internal oxidation of Si more positively, it is effective to control the atmospheric dew point in the reducing atmosphere furnace to −20 ° C. or higher.

還元性雰囲気炉内の露点を−20℃以上に制御すると、鉄酸化物から酸素が供給されて、Siの内部酸化物が形成した後も、雰囲気の水分から供給される酸素によってSiの内部酸化が継続して起こるために、より多くのSiの内部酸化が形成される。すると、内部酸化が形成された鋼板表層の内部の領域において、固溶Siが低下する。固溶Si量が低下すると、鋼板表層はあたかも低Si鋼のような挙動を示し、その後の合金化反応が促進され、低温で合金化反応が進行する。合金化温度が低下した結果として、残留オーステナイト相が高分率で維持できることによる延性の向上や、マルテンサイト相の焼き戻し軟化が進行せずに、所望の強度が得られることになる。還元性雰囲気炉4内では、+10℃以上の露点になると、鋼板地鉄が酸化し始めるため、還元性雰囲気炉内露点分布の均一性や露点変動幅を最少化する理由から上限は0℃で管理することが好ましい。 When the dew point in the reducing atmosphere furnace is controlled to -20 ° C or higher, oxygen is supplied from the iron oxide, and even after the internal oxide of Si is formed, the internal oxidation of Si is performed by the oxygen supplied from the moisture in the atmosphere. Due to the continued occurrence of, more internal oxidation of Si is formed. Then, the solid solution Si decreases in the inner region of the surface layer of the steel sheet in which the internal oxidation is formed. When the amount of solid solution Si decreases, the surface layer of the steel sheet behaves as if it were low Si steel, the subsequent alloying reaction is promoted, and the alloying reaction proceeds at a low temperature. As a result of lowering the alloying temperature, the desired strength can be obtained without improving ductility by maintaining the retained austenite phase at a high fraction and tempering softening of the martensite phase. In the reducing atmosphere furnace 4, when the dew point reaches + 10 ° C or higher, the steel plate base iron begins to oxidize, so the upper limit is 0 ° C for the reason of minimizing the dew point distribution uniformity and the dew point fluctuation range in the reducing atmosphere furnace. It is preferable to manage it.

なお、炉内露点を所望範囲まで高める必要があれば、還元焼鈍工程の条件は限定されない。SiまたはMn含有鋼を処理する条件としては、例えば鋼板最高到達温度700℃〜900℃、加熱時間30秒以上、等を例示できる。 If it is necessary to raise the dew point in the furnace to a desired range, the conditions of the reduction annealing step are not limited. Examples of the conditions for treating the Si or Mn-containing steel include, for example, a maximum steel sheet temperature of 700 ° C. to 900 ° C. and a heating time of 30 seconds or more.

本発明を実施例により更に詳細に説明する。 The present invention will be described in more detail by way of examples.

加熱炉がDFF(直火型)で均熱炉がラジアントチューブ(RTF)タイプの連続溶融亜鉛めっき設備において焼鈍と溶融亜鉛めっき処理を施した。鋼板の組成は質量%で、C:0.13、Si:1.4、Mn:1.9、P:0.01、S:0.001、残部Feおよび不可避的不純物である。 Annealing and hot-dip galvanizing were performed in a continuous hot-dip galvanizing facility where the heating furnace was a DFF (direct flame type) and the soaking furnace was a radiant tube (RTF) type. The composition of the steel sheet is mass%, C: 0.13, Si: 1.4, Mn: 1.9, P: 0.01, S: 0.001, balance Fe and unavoidable impurities.

次いで、合金化処理を行い合金化溶融亜鉛めっき鋼板を製造した。加熱炉では、加熱炉用バーナーを4つの群(#1〜#4)に分割したDFFを用い、鋼板移動方向上流側の3つの群(#1〜#3)(前段)は酸化ゾーン、最終ゾーン(#4)(後段)は還元ゾーンとし、酸化ゾーンの空気比は1.10〜1.15に、還元ゾーンの空気比は0.85に個別に制御した。加熱炉出側での鋼板温度は718〜722℃であった。なお、各ゾーンの長さは4mである。 Next, an alloying treatment was performed to produce an alloyed hot-dip galvanized steel sheet. In the heating furnace, a DFF obtained by dividing the burner for the heating furnace into four groups (# 1 to # 4) is used, and the three groups (# 1 to # 3) (previous stage) on the upstream side in the steel sheet moving direction are the oxidation zone and the final. The zone (# 4) (second stage) was a reduction zone, and the air ratio of the oxidation zone was controlled to 1.10 to 1.15 and the air ratio of the reduction zone was controlled to 0.85. The temperature of the steel sheet on the exit side of the heating furnace was 718 to 722 ° C. The length of each zone is 4 m.

均熱炉として、図2に示す還元性雰囲気炉を用いた。図2に示すように、乾燥した窒素ガスと水素ガスと乾燥した空気とを混合させてから還元性雰囲気炉に供給した。供給ガスの供給口は、図2に示すように、炉下部3か所、炉中段3か所、炉上段3か所である。 As the heat equalizing furnace, the reducing atmosphere furnace shown in FIG. 2 was used. As shown in FIG. 2, dry nitrogen gas, hydrogen gas, and dry air were mixed and then supplied to the reducing atmosphere furnace. As shown in FIG. 2, the supply gas supply ports are three places in the lower part of the furnace, three places in the middle stage of the furnace, and three places in the upper stage of the furnace.

供給混合ガスの流量は最大350Nm/Hrとし、酸素濃度は0.001〜0.1vol%になるように、混合する空気を0.2〜1.0m/Hrの間で流量調整した。 The maximum flow rate of the supplied mixed gas was 350 Nm 3 / Hr, and the flow rate of the mixed air was adjusted between 0.2 and 1.0 m 3 / Hr so that the oxygen concentration was 0.001 to 0.1 vol%.

還元性雰囲気炉の水素濃度は15vol%とした。還元性雰囲気炉の炉内温度は800〜830℃であった。なお、めっき浴温は460℃、めっき浴中Al濃度は0.13質量%、付着量はガスワイピングにより片面当たり45g/mに調整した。合金化温度は510〜530℃に調整し、皮膜合金化度(Fe含有率)が10〜13質量%内となるように、誘導加熱式合金化炉にて合金化処理を行った。 The hydrogen concentration in the reducing atmosphere furnace was set to 15 vol%. The temperature inside the reducing atmosphere furnace was 800 to 830 ° C. The plating bath temperature was adjusted to 460 ° C., the Al concentration in the plating bath was 0.13% by mass, and the adhesion amount was adjusted to 45 g / m 2 per side by gas wiping. The alloying temperature was adjusted to 510 to 530 ° C., and the alloying treatment was performed in an induction heating type alloying furnace so that the degree of film alloying (Fe content) was within 10 to 13% by mass.

比較のため、均熱炉として、従来の中空糸膜を有する加湿装置(図3)を用いた。中空糸膜加湿方式では、還元性雰囲気炉内に投入する全ガス量を最大350Nm/Hrとし、12台の膜モジュールからなり、各膜モジュールに最大0.5Nm/Hrの窒素ガスと水素の混合ガスと、最大0.6m/Hrの循環水を流すようにした。循環恒温水槽は計6.0m/hrの純水を供給可能である。なお、加湿装置以外は、上記実施例と同じである。 For comparison, a conventional humidifier having a hollow fiber membrane (FIG. 3) was used as the soaking furnace. In the hollow fiber membrane humidification method, the total amount of gas charged into the reducing atmosphere furnace is 350 Nm 3 / Hr at the maximum, and it consists of 12 membrane modules, and each membrane module has a maximum of 0.5 Nm 3 / Hr of nitrogen gas and hydrogen. The mixed gas of the above and the circulating water of a maximum of 0.6 m 3 / Hr were allowed to flow. The circulating constant temperature water tank can supply a total of 6.0 m 3 / hr of pure water. The same applies to the above embodiment except for the humidifying device.

以上により得られた合金化溶融亜鉛めっき鋼板に対して、めっき外観を評価した。 The plated appearance of the alloyed hot-dip galvanized steel sheet obtained as described above was evaluated.

めっき外観の評価は、光学式の表面欠陥計による検査(φ0.5mm以上の不めっき欠陥や過酸化性欠陥を検出)及び目視による合金化ムラ判定を行った。発明例のめっき外観は比較例と同等であり、歩留りも同程度であった。 The appearance of the plating was evaluated by inspection with an optical surface defect meter (detection of non-plating defects and peroxidizing defects having a diameter of 0.5 mm or more) and visual determination of uneven alloying. The plating appearance of the invention example was the same as that of the comparative example, and the yield was also the same.

なお、発明例での炉内酸素濃度は50〜400ppmの範囲内、比較例での炉内酸素濃度は20〜200ppmの範囲内におさまり、発明例と比較例とで炉内酸素濃度に有意差は見られなかった。 The oxygen concentration in the furnace in the invention example was in the range of 50 to 400 ppm, and the oxygen concentration in the furnace in the comparative example was in the range of 20 to 200 ppm, and there was a significant difference in the oxygen concentration in the furnace between the invention example and the comparative example. Was not seen.

得られた結果を図4に示した。図4は製造時間と還元帯の上段、中断、下段3点で測定した露点の平均値の推移を示したものである。図4より、本発明例では、比較例として示した従来の中空糸膜を有する加湿装置による露点制御と同等の時間で−20℃〜0℃の範囲に収束し、露点制御が出来ていることがわかる。 The obtained results are shown in FIG. FIG. 4 shows the transition of the average value of the production time and the dew point measured at the upper, interrupted, and lower three points of the reduction zone. From FIG. 4, in the example of the present invention, the dew point can be controlled by converging in the range of −20 ° C. to 0 ° C. in the same time as the dew point control by the conventional humidifier having a hollow fiber membrane shown as a comparative example. I understand.

また、表面外観は良好であり、材料強度も鋼板成分から要求される強度水準を満足した。 In addition, the surface appearance was good, and the material strength also satisfied the strength level required from the steel sheet component.

本発明の還元性雰囲気炉の露点制御方法および還元性雰囲気炉では、露点を高精度に制御出来る為、Siを0.1質量%以上含む鋼の焼鈍にも安定して使用可能であり、溶融亜鉛めっき鋼板、冷延鋼板の製造分野で広範に使用できる。 In the method for controlling the dew point of the reducing atmosphere furnace and the reducing atmosphere furnace of the present invention, since the dew point can be controlled with high accuracy, it can be stably used for annealing steel containing 0.1% by mass or more of Si, and is melted. It can be widely used in the field of manufacturing galvanized steel sheets and cold-rolled steel sheets.

1 鋼板
2 ロール
3 直火型加熱帯(DFF)
4 還元性雰囲気炉(ラジアントチューブタイプ)
5 急冷帯
6 徐冷帯
7 めっき装置
8 窒素ガスと水素ガス供給流量調整装置
9 酸素含有ガス供給流量調整装置
10 窒素ガスと水素ガスと酸素含有ガス混合流量調整装置
11 供給混合ガス酸素濃度計
12 酸素含有ガス乾燥装置
14 炉内露点測定箇所
15 供給ガス配管
16 ガス分配装置
17 ガス混合装置
18 供給ガス用露点計
19 加湿装置
20 循環恒温水槽
1 Steel plate 2 Roll 3 Direct flame type heating zone (DFF)
4 Reducing atmosphere furnace (radiant tube type)
5 Quenching zone 6 Slow cooling zone 7 Plating device 8 Nitrogen gas and hydrogen gas supply flow rate adjusting device 9 Oxygen-containing gas supply flow rate adjusting device 10 Nitrogen gas, hydrogen gas and oxygen-containing gas mixed flow rate adjusting device 11 Supply mixed gas oxygen concentration meter 12 Oxygen-containing gas drying device 14 Dew point measurement point in the furnace 15 Supply gas piping 16 Gas distribution device 17 Gas mixing device 18 Dew point meter for supply gas 19 Humidifying device 20 Circulating constant temperature water tank

本発明は、以下の知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]冷延鋼板に焼鈍を施す際に、還元性雰囲気炉に供給する還元性ガスとして、少なくとも水素ガスを用い、還元性ガスに酸素を含有する気体を混合させ、供給する還元性ガス中の酸素濃度を制御することで、還元性雰囲気炉内の露点を調整することを特徴とする還元性雰囲気炉の露点制御方法。
[2]冷延鋼板に焼鈍を施す際に、還元性雰囲気炉に供給する還元性ガスとして窒素ガスと水素ガスを用い、還元性ガスに酸素を含有する気体を混合させ、供給する還元性ガス中の酸素濃度を制御することで、還元性雰囲気炉内の露点を調整することを特徴とする還元性雰囲気炉の露点制御方法。
[3]前記酸素を含有する気体が空気であることを特徴とする前記[1]または[2]に記載の還元性雰囲気炉の露点制御方法。
[4]前記還元性ガスの、酸素濃度を0vol%超え2vol%以下に制御することを特徴とする前記[1]〜[3]のいずれかに記載の還元性雰囲気炉の露点制御方法。
[5]前記還元性雰囲気炉内の露点を−20℃〜0℃に調整することを特徴とする前記[1]〜[]のいずれかに記載の還元性雰囲気炉の露点制御方法。
[6]前記[1]〜[]のいずれかに記載の還元性雰囲気炉の露点制御方法を用いて、鋼板の製造を行うことを特徴とする冷延鋼板の製造方法
[7]前記[1]〜[]のいずれかの還元性雰囲気炉の露点制御方法で、還元性雰囲気炉の露点を制御して、冷延鋼板に焼鈍を施した後に、引き続き連続して溶融亜鉛めっきを行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。
[8]冷延鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、少なくとも水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記装置Aから供給される前記水素ガスと前記装置Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。
[9]冷延鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、窒素ガスと水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記装置Aから供給される窒素ガスと水素ガスと前記装置Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。
[10]連続式溶融亜鉛めっき設備鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、少なくとも水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記装置Aから供給される前記水素ガスと前記装置Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。
[11]連続式溶融亜鉛めっき設備鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、少なくとも水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記装置Aから供給される窒素ガスと水素ガスと前記装置Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。
The present invention has been made based on the following findings, and the gist thereof is as follows.
[1] At least hydrogen gas is used as the reducing gas to be supplied to the reducing atmosphere furnace when the cold-rolled steel sheet is annealed, and the reducing gas is mixed with a gas containing oxygen and supplied in the reducing gas. A method for controlling the dew point of a reducing atmosphere furnace, which comprises adjusting the dew point in the reducing atmosphere furnace by controlling the oxygen concentration of the reducing atmosphere furnace.
[2] When the cold-rolled steel sheet is annealed, nitrogen gas and hydrogen gas are used as the reducing gas to be supplied to the reducing atmosphere furnace, and the reducing gas is mixed with a gas containing oxygen and supplied. A method for controlling the dew point of a reducing atmosphere furnace, which comprises adjusting the dew point in the reducing atmosphere furnace by controlling the oxygen concentration in the reducing atmosphere.
[3] The method for controlling the dew point of a reducing atmosphere furnace according to the above [1] or [2] , wherein the gas containing oxygen is air.
[4] The dew point control method for a reducing atmosphere furnace according to any one of [1] to [3], wherein the oxygen concentration of the reducing gas is controlled to exceed 0 vol% and 2 vol% or less.
[5] The dew point control method for a reducing atmosphere furnace according to any one of [1] to [ 4 ], wherein the dew point in the reducing atmosphere furnace is adjusted to −20 ° C. to 0 ° C.
[6] A method for producing a cold-rolled steel sheet, which comprises producing a steel sheet by using the dew point control method of the reducing atmosphere furnace according to any one of the above [1] to [ 5 ]. By the dew point control method of the reducing atmosphere furnace according to any one of 1] to [ 5 ], the dew point of the reducing atmosphere furnace is controlled, the cold-rolled steel sheet is annealed, and then hot-dip galvanizing is continuously performed. A method for manufacturing a hot-dip galvanized steel sheet.
[8] A reducing atmosphere furnace for a cold-rolled steel plate anneaizer, which supplies a heating device using a radiant tube, a device A consisting of at least a pipe for supplying hydrogen gas and a supply flow rate adjusting device thereof, and a gas containing oxygen. A device B composed of a pipe and a supply amount adjusting device thereof, a device C for adjusting the flow rate by mixing the hydrogen gas supplied from the device A and a gas containing oxygen supplied from the device B, and the mixed gas. A reducing atmosphere furnace including an oxygen concentration measuring device inside, a pipe for supplying a mixed gas supplied from the device C to the reducing atmosphere furnace, and a dew point measuring device installed in the reducing atmosphere furnace.
[9] A reducing atmosphere furnace for a cold-rolled steel plate anneaizer, which consists of a heating device using a radiant tube, a pipe for supplying nitrogen gas and hydrogen gas, and a device A for adjusting the supply flow rate thereof, and a gas containing oxygen. A device B including a supply pipe and a supply amount adjusting device, a device C that mixes nitrogen gas and hydrogen gas supplied from the device A, and a gas containing oxygen supplied from the device B to adjust the flow rate. Reduction provided with an oxygen concentration measuring device in the mixed gas, a pipe for supplying the mixed gas supplied from the device C to the reducing atmosphere furnace, and a dew point measuring device installed in the reducing atmosphere furnace. Sexual atmosphere furnace.
[10] Continuous hot-dip galvanizing equipment A reducing atmosphere furnace for a steel plate anneaizer, which includes a heating device using a radiant tube, a device A including at least a pipe for supplying hydrogen gas and a supply flow rate adjusting device thereof, and oxygen. A device B including a pipe for supplying gas and a supply amount adjusting device thereof, a device C for mixing the hydrogen gas supplied from the device A and a gas containing oxygen supplied from the device B, and adjusting the flow rate. Reduction provided with an oxygen concentration measuring device in the mixed gas, a pipe for supplying the mixed gas supplied from the device C to the reducing atmosphere furnace, and a dew point measuring device installed in the reducing atmosphere furnace. Sexual atmosphere furnace.
[11] Continuous hot-dip zinc plating equipment A reducing atmosphere furnace for a steel plate anneaizer, which includes a heating device using a radiant tube, a device A including at least a pipe for supplying hydrogen gas and a supply flow rate adjusting device thereof, and oxygen. A device B consisting of a pipe for supplying gas and a supply amount adjusting device thereof, and a device C for mixing a gas containing nitrogen gas and hydrogen gas supplied from the device A and an oxygen supplied from the device B to adjust the flow rate. A device for measuring the oxygen concentration in the mixed gas, a pipe for supplying the mixed gas supplied from the device C to the reducing atmosphere furnace, and a dew point measuring device installed in the reducing atmosphere furnace. Reducing atmosphere furnace.

Claims (8)

冷延鋼板に焼鈍を施す際に、還元性雰囲気炉に供給する還元性ガスとして窒素ガスと水素ガスを用い、還元性ガスに酸素を含有する気体を混合させ、供給する還元性ガス中の酸素濃度を制御することで、還元性雰囲気炉内の露点を調整することを特徴とする還元性雰囲気炉の露点制御方法。 When quenching a cold-rolled steel sheet, nitrogen gas and hydrogen gas are used as the reducing gas to be supplied to the reducing atmosphere furnace, and the reducing gas is mixed with a gas containing oxygen, and the oxygen in the reducing gas supplied is supplied. A method for controlling the dew point of a reducing atmosphere furnace, which comprises adjusting the dew point in the reducing atmosphere furnace by controlling the concentration. 前記酸素を含有する気体が空気であることを特徴とする請求項1に記載の還元性雰囲気炉の露点制御方法。 The dew point control method for a reducing atmosphere furnace according to claim 1, wherein the gas containing oxygen is air. 前記還元性ガスの、酸素濃度を0vol%超え2vol%以下に制御することを特徴とする請求項1または請求項2に記載の還元性雰囲気炉の露点制御方法。 The dew point control method for a reducing atmosphere furnace according to claim 1 or 2, wherein the oxygen concentration of the reducing gas is controlled to exceed 0 vol% and 2 vol% or less. 前記還元性雰囲気炉内の露点を−20℃〜0℃に調整することを特徴とする請求項1〜3のいずれかに記載の還元性雰囲気炉の露点制御方法。 The dew point control method for a reducing atmosphere furnace according to any one of claims 1 to 3, wherein the dew point in the reducing atmosphere furnace is adjusted to −20 ° C. to 0 ° C. 前記請求項1〜4のいずれかに記載の還元性雰囲気炉の露点制御方法を用いて、鋼板の製造を行うことを特徴とする冷延鋼板の製造方法 A method for producing a cold-rolled steel sheet, which comprises producing a steel sheet by using the dew point control method of the reducing atmosphere furnace according to any one of claims 1 to 4. 請求項1〜4のいずれかの還元性雰囲気炉の露点制御方法で、還元性雰囲気炉の露点を制御して、冷延鋼板に焼鈍を施した後に、引き続き連続して溶融亜鉛めっきを行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。 By the method for controlling the dew point of the reducing atmosphere furnace according to any one of claims 1 to 4, the dew point of the reducing atmosphere furnace is controlled, the cold-rolled steel sheet is annealed, and then hot-dip galvanizing is continuously performed. A method for manufacturing a hot-dip galvanized steel sheet. 冷延鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、窒素ガスと水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記Aから供給される窒素ガスと水素ガスと前記Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。 It is a reducing atmosphere furnace of a cold-rolled steel plate incubator, and consists of a heating device using a radiant tube, a pipe for supplying nitrogen gas and hydrogen gas, and a device A for adjusting the supply flow rate, and a pipe for supplying gas containing oxygen. And the device B composed of the supply amount adjusting device, the device C for mixing the nitrogen gas and hydrogen gas supplied from the A, and the gas containing oxygen supplied from the B to adjust the flow rate, and the mixed gas. An oxygen concentration measuring device, a pipe for supplying a mixed gas supplied from the device C to the reducing atmosphere furnace, and a reducing atmosphere furnace provided with a dew point measuring device installed in the reducing atmosphere furnace. 連続式溶融亜鉛めっき設備鋼板の焼鈍装置の還元性雰囲気炉であり、ラジアントチューブによる加熱装置と、窒素ガスと水素ガスを供給する配管とその供給流量調整装置からなる装置Aと、酸素を含むガスを供給する配管とその供給量調整装置からなる装置Bと、前記Aから供給される窒素ガスと水素ガスと前記Bから供給される酸素を含むガスを混合して流量調整する装置Cと、前記混合したガス中の酸素濃度測定装置と、前記装置Cから供給される混合ガスを前記還元性雰囲気炉に供給する配管と、前記還元性雰囲気炉内に設置された露点測定装置を備えた還元性雰囲気炉。 Continuous hot-dip zinc plating equipment It is a reducing atmosphere furnace of a steel plate anneaizer, a heating device using a radiant tube, a device A consisting of a pipe for supplying nitrogen gas and hydrogen gas and a supply flow rate adjusting device, and a gas containing oxygen. A device B consisting of a pipe for supplying the gas and a supply amount adjusting device thereof, a device C for mixing a gas containing nitrogen gas and hydrogen gas supplied from the A and an oxygen supplied from the B, and adjusting the flow rate, and the above. Reducibility including an oxygen concentration measuring device in the mixed gas, a pipe for supplying the mixed gas supplied from the device C to the reducing atmosphere furnace, and a dew point measuring device installed in the reducing atmosphere furnace. Atmosphere furnace.
JP2019096468A 2019-05-23 2019-05-23 Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method Active JP7111059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096468A JP7111059B2 (en) 2019-05-23 2019-05-23 Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096468A JP7111059B2 (en) 2019-05-23 2019-05-23 Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JP2020190017A true JP2020190017A (en) 2020-11-26
JP7111059B2 JP7111059B2 (en) 2022-08-02

Family

ID=73453405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096468A Active JP7111059B2 (en) 2019-05-23 2019-05-23 Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JP7111059B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014372A1 (en) * 2022-07-12 2024-01-18 Jfeスチール株式会社 Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment
WO2024014371A1 (en) * 2022-07-12 2024-01-18 Jfeスチール株式会社 Method for heating steel plate, method for manufacturing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanization facility
CN117947249A (en) * 2024-03-26 2024-04-30 包头威丰新材料有限公司 Process for relieving brittle failure of low-temperature high-magnetic-induction oriented silicon steel strip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739123A (en) * 1980-07-16 1982-03-04 Sumitomo Metal Ind Ltd Annealing method for cold rolled steel plate
JP2010126758A (en) * 2008-11-27 2010-06-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet, and method for producing the same
JP2010126757A (en) * 2008-11-27 2010-06-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet and method for producing the same
DE102014008346A1 (en) * 2014-06-05 2015-12-17 Linde Aktiengesellschaft Humidification of hydrogen or hydrogen mixtures as process gas for the heat treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739123A (en) * 1980-07-16 1982-03-04 Sumitomo Metal Ind Ltd Annealing method for cold rolled steel plate
JP2010126758A (en) * 2008-11-27 2010-06-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet, and method for producing the same
JP2010126757A (en) * 2008-11-27 2010-06-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet and method for producing the same
DE102014008346A1 (en) * 2014-06-05 2015-12-17 Linde Aktiengesellschaft Humidification of hydrogen or hydrogen mixtures as process gas for the heat treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014372A1 (en) * 2022-07-12 2024-01-18 Jfeスチール株式会社 Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment
WO2024014371A1 (en) * 2022-07-12 2024-01-18 Jfeスチール株式会社 Method for heating steel plate, method for manufacturing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanization facility
CN117947249A (en) * 2024-03-26 2024-04-30 包头威丰新材料有限公司 Process for relieving brittle failure of low-temperature high-magnetic-induction oriented silicon steel strip

Also Published As

Publication number Publication date
JP7111059B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
JP6455544B2 (en) Method for producing hot-dip galvanized steel sheet
KR101893509B1 (en) Method for controlling dew point in reducing furnace, and reducing furnace
JP6131919B2 (en) Method for producing galvannealed steel sheet
US11649520B2 (en) Continuous hot dip galvanizing apparatus
JP6607339B1 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
CN106715726A (en) Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
JP5338087B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating properties and continuous hot-dip galvanizing equipment
JP7111059B2 (en) Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
EP4310207A1 (en) Method for controlling dew point of continuous annealing furnace, continuous annealing method for steel sheets, method for producing steel sheet, continuous annealing furnace, continuous hot dip galvanization facility and alloyed hot dip galvanization facility
JP6128068B2 (en) Method for producing galvannealed steel sheet
JP2019019344A (en) Manufacturing method of hot-dip galvanized steel plate
US12031192B2 (en) Continuous hot-dip galvanizing apparatus
US20240229186A1 (en) Dew point control method for continuous annealing furnace, continuous annealing method for steel sheet, steel sheet manufacturing method, continuous annealing furnace, continuous hot-dip galvanizing line, and galvannealing line
CN111850263A (en) Production method for improving aging resistance of continuous hot-dip galvanizing baking hardened steel plate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7111059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150