JP4258235B2 - Steel heating method and program thereof - Google Patents

Steel heating method and program thereof Download PDF

Info

Publication number
JP4258235B2
JP4258235B2 JP2003058341A JP2003058341A JP4258235B2 JP 4258235 B2 JP4258235 B2 JP 4258235B2 JP 2003058341 A JP2003058341 A JP 2003058341A JP 2003058341 A JP2003058341 A JP 2003058341A JP 4258235 B2 JP4258235 B2 JP 4258235B2
Authority
JP
Japan
Prior art keywords
steel material
temperature
temperature drop
heating
straightening device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003058341A
Other languages
Japanese (ja)
Other versions
JP2004269909A (en
Inventor
慶次 飯島
浩 水野
宏 関根
聖 中野
正敏 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003058341A priority Critical patent/JP4258235B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to PCT/JP2003/004298 priority patent/WO2003085142A1/en
Priority to KR1020047003029A priority patent/KR100585540B1/en
Priority to EP03745906A priority patent/EP1496129A4/en
Priority to CNB038009412A priority patent/CN1292081C/en
Priority to TW092107905A priority patent/TWI224144B/en
Priority to US10/785,629 priority patent/US6891139B2/en
Publication of JP2004269909A publication Critical patent/JP2004269909A/en
Application granted granted Critical
Publication of JP4258235B2 publication Critical patent/JP4258235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
この発明は、熱間圧延後の鋼材を加熱する方法に関し、特にライン上に誘導加熱装置を配置したインライン加熱処理技術に関する。
【0002】
【従来の技術】
厚鋼板は、高強度化、高靭性化を図るために、熱間圧延後の鋼板を焼入れや加速冷却によって急冷し、次いで焼戻し処理する方法により製造される。
【0003】
近年、焼入れや加速冷却はオンラインで行われるようになって来たが、焼戻し処理(以下「加熱処理」という)は、相変わらずオフラインでガス燃焼炉を用いて行われているため長時間を要し、厚鋼板の生産性を著しく阻害している。
【0004】
このため、加熱処理をインラインで行う方法として、ソレノイド型誘導加熱装置を複数台直列にラインに配置し、厚鋼板を加熱処理する技術が開示されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開昭48−25239号公報
【0006】
【発明が解決しようとする課題】
ところで、冷却直後の鋼板は、残留応力のため、先端部や後端部が上方または下方に反っている場合が多い。従って、このような鋼板をそのまま誘導加熱装置に通過させようとすると、鋼板との接触により誘導加熱装置が損傷するばかりでなく、場合によれば破壊する恐れもある。
【0007】
また、このような事故が発生すると、鋼板が誘導加熱装置中で停止してしまい、復旧までの間、圧延を停止することになり、生産能率を著しく阻害することになる。従って、誘導加熱装置を用いて加熱処理を行う場合には、鋼板の先後端に曲りが発生しないように、矯正装置を使用することが不可欠である。
【0008】
しかしながら、矯正装置を通すことは、矯正ロールによる抜熱や矯正装置内の冷却水による抜熱等のため厚鋼板の温度を下げることとなる。従って、その後の誘導加熱装置での加熱処理においては矯正装置の影響を考慮する必要があるが、矯正装置を含めた形で加熱処理する技術について開示されたものはない。
【0009】
本発明は、かかる事情に鑑みてなされたもので、矯正装置と誘導加熱装置を用いた厚鋼板などの鋼材の加熱処理において、精度良く鋼材を熱処理することのできる加熱方法及びそのプログラムを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解消するための本発明は、ライン上に設置された矯正装置と少なくとも1台の誘導加熱装置とを有し、前記矯正装置を通過させたのち、前記誘導加熱装置を通過させることにより鋼材を加熱する加熱方法において、矯正装置の入側における鋼材の温度と鋼材の搬送速度とを含む情報に基づいて、矯正装置における鋼材の温度降下量を推定する温度降下量推定工程と、推定した温度降下量に基づいて、鋼材を目標温度に加熱するための誘導加熱装置に供給する電力を算出する電力算出工程とを備える。
【0011】
また本発明の他の局面に係る鋼材の加熱方法は、上記記載の鋼材の加熱方法において、降下量推定工程は、鋼材と矯正ロールとの接触による第1の温度降下量を推定する工程と、鋼材から大気への熱放散による第2の温度降下量を推定する工程と、鋼材の水冷却による第3の温度降下量を推定する工程とを備える。
【0012】
また本発明の他の局面に係る鋼材の加熱方法は、上記記載の鋼材の加熱方法において、鋼材の推定温度降下量から求めた矯正装置の出側における鋼材の推定温度と、矯正装置の出側に設けた温度計で測定した矯正装置の出側における鋼材の実測温度とに基づいて、鋼材の温度降下量推定モデルを修正する修正工程を更に備える。
【0016】
また本発明は、ライン上に設置された矯正装置と少なくとも1台の誘導加熱装置とを有し、前記矯正装置を通過させたのち、前記誘導加熱装置を通過させることにより鋼材を加熱するための加熱処理プログラムにおいて、コンピュータに、矯正装置の入側における鋼材の温度と鋼材の搬送速度とを含む情報に基づいて、矯正装置における鋼材の温度降下量を推定する温度降下量推定手順、推定した温度降下量に基づいて、鋼材を目標温度に加熱するための誘導加熱装置に供給する電力を算出する電力算出手順、を実行させる。
【0017】
また本発明の他の局面に係る加熱処理プログラムは、上記記載のプログラムにおいて、降下量推定手順は、鋼材と矯正ロールとの接触による第1の温度降下量を推定する手順、鋼材から大気への熱放散による第2の温度降下量を推定する手順、鋼材の水冷却による第3の温度降下量を推定する手順、をコンピュータに実行させる。
【0018】
また本発明の他の局面に係る加熱処理プログラムは、上記記載のプログラムにおいて、鋼材の推定温度降下量から求めた矯正装置の出側における鋼材の推定温度と、矯正装置の出側に設けた温度計で測定した矯正装置の出側における鋼材の実測温度とに基づいて、鋼材の温度降下量推定モデルを修正する修正手順を更にコンピュータに実行させる。
【0019】
【発明の実施の形態】
図1は、本発明に係る加熱方法が適用される第1の実施の形態の熱処理設備の概略構成を示す側面図である。本熱処理設備は、複数の誘導加熱装置1、誘導加熱装置1の前に設置された矯正装置2、誘導加熱装置1の前後と矯正装置2の前後に備えられ鋼材3の温度を検出する温度検出器4、鋼材3を搬送するための搬送ローラ5で構成されている。ここで図1においては、誘導加熱装置1に電力を供給する電力設備と、その電力を制御する制御装置の図は省略している。
【0020】
以下、図1に示す構成の熱処理設備を用いて、本発明に係る第1の実施の形態の加熱方法を説明する。
【0021】
鋼材を熱処理する場合、材料の種類等に対応して加熱すべき目標温度、加熱上限温度、下限温度等の加熱条件が与えられる。これらの加熱条件と運転条件である鋼材の搬送速度、加熱直前に計測された鋼材温度に基づいて誘導加熱装置1に供給する電力を決定する。そして、誘導加熱装置1に供給する加熱電力を決定する際には、誘導加熱装置間での大気の冷却による鋼材3の温度降下を考慮する必要があり、さらに矯正装置2を使用する場合は、矯正装置2での鋼材3の温度降下量を含めた上で、各誘導加熱装置に配分する電力を求める必要がある。
【0022】
図2は、誘導加熱装置に供給する加熱電力を求める手順を示すフロー図である。尚、この処理は、処理装置(不図示)にプログラムを組み込んで実現するものであっても良い。
【0023】
ステップS1では、加熱する鋼材の種類、厚み、幅、および加熱目標温度等を取得する。これらの情報は、処理装置が伝送または設定入力等によって外部から取得しても良く、また予め処理装置内部に記憶されているデータの中から抽出するものであっても良い。
【0024】
ステップS2では、矯正装置2の入側での鋼材の温度実績値と、搬送速度を取得する。鋼材の温度実績値は、温度検出器4が測定した値を用いる。また搬送速度は、搬送ローラ5の回転数から実測した値を用いても良く、処理装置が伝送または設定入力等によって外部から取得しても良く、また予め処理装置内部に記憶されているデータから抽出するものであっても良い。
【0025】
ステップS3では、これらのデータに基づいて矯正装置2における鋼材3の温度降下量を推定する。
【0026】
矯正装置2での温度降下量は、矯正装置2のロールによる抜熱、矯正装置内での大気による抜熱と冷却水による抜熱を考慮することにより、式(1)で求めることができる。
【0027】
ΔT=ΔT+ΔT+ΔT (1)
ΔT:矯正装置での温度降下量推定値
ΔT:ロールによる接触抜熱、ΔT:大気による冷却、ΔT:水冷による冷却
さらに、それぞれの抜熱項は式(2)〜式(5)で表わされる。
【0028】
ΔT=h(T−T)/√(τ ) (2)
τ=L/ν (3)
:ロール熱伝達係数、T:鋼材表面温度、T:ロール表面温度
τ:ロール接触時間、L:ロール接触距離、ν:搬送速度
ここで、ロール接触距離(L)とは、それぞれの矯正ロールと鋼材3との接触長(鋼材搬送方向)を、全矯正ロールについて加算した長さをいう。矯正装置内においては、鋼材3を矯正するため、ロールには鋼材3が所定長だけ巻きついた状態で通板が行われる。従って、ロール接触距離を搬送速度(ν)で除した時間の間矯正ロールと鋼材3は接触し、鋼材3は矯正ロールから抜熱を受けることになる。
【0029】
ΔT=h(T−T) (4)
ΔT:大気による冷却温度
:大気の熱伝達率、T:大気温度
ΔT=h(T−T) (5)
ΔT:水冷による冷却温度
:水冷の熱伝達率、T:冷却水温度
ところで、これらの温度推定値は、実計測に伴う計測誤差や、矯正ロールの磨耗、冷却水のかかり具合などの影響を受け、また経年変化によっても大きく影響をうける。そこで、矯正装置2の前後に設けた温度計検出器4で測定した温度に基づいて、これらの推定式に補正を加える。補正式は式(6)で与えられる。
【0030】
=αΔT+ΔT+ΔT (6)
:補正された矯正装置での温度降下量、α:調整係数
調整係数αは式(7)で求める。
【0031】
α=(t−t)/(ΔT−ΔT−ΔT) (7)
:矯正装置入側温度、t:矯正装置出側温度
また、式(6)、(7)は矯正ロールからの抜熱に対する補正であるが、式(8)、(9)のように矯正装置全体の温度降下量に調整係数を設定することもできる。
【0032】
=βΔT (8)
β=(t−t)/ΔT (9)
β:調整係数
式(6)、または式(9)で求めた調整係数を用いれば、矯正装置の温度推定式の誤差を補正し、温度降下量の経年変化を補正することができる。
【0033】
このようにして求めた調整係数α又はβは、次材以降の加熱電力を決定する際の計算に使用する。また、鋼材の厚みや幅や昇温量ごとにこれらの調整係数を分類して保存しておき、次材以降、同様の加熱条件の鋼材に使用することもできる。
【0034】
尚、本実施の形態では、数式を用いて温度降下量を求めたが、この形態に限定されず推定モデルを用いて温度降下量を求めても良い。
【0035】
ステップS4では、式(10)により加熱温度を算出する。
【0036】
ΔT=Tref−t+ΔT+ΔT (10)
ΔT:加熱温度、Tref:目標温度、t:装置入側温度
ΔT:矯正装置での温度降下、ΔT:空冷温度
ステップS5では、加熱温度に応じた電力量を算出する。
【0037】
=CρVΔT/τ (11)
:加熱電力
:比熱、ρ:密度、V:体積、ΔT:加熱温度、τ:加熱時間以上説明した手順により決定された電力量を誘導加熱装置に供給することで、鋼材を精度良く加熱することができる。
【0038】
図3は、本発明に係る加熱方法が適用される第2の実施の形態の熱処理設備の概略構成を示す側面図である。第2の実施の形態では、熱処理ライン上、誘導加熱装置1の後段に矯正装置2が設置されている。
【0039】
第2の実施の形態においても、上述と同様にして加熱電力を求めることができる。即ち、矯正装置2の後の鋼材3の温度が目標温度となるように、ステップS1〜S5の手順に従い、式(1)〜(11)を用いて誘導加熱装置1に供給する電力を算出すれば良い。
【0040】
図4は、本発明に係る加熱方法が適用される第3の実施の形態の熱処理設備の概略構成を示す側面図である。第3の実施の形態では、熱処理ライン上、誘導加熱装置間に矯正装置2が設置されている。
【0041】
第2の実施の形態においても、上述と同様にして加熱電力を求めることができる。即ち、矯正装置2の後の鋼材3の温度が目標温度となるように、ステップS1〜S5の手順に従い、式(1)〜(11)を用いて誘導加熱装置1に供給する電力を算出すれば良い。
【0042】
次に、図1に示す熱処理設備を用いたインライン加熱処理の適用例について説明する。本実施例では、誘導加熱装置1としてソレノイド型誘導加熱装置を直列に3台配置する構成とした。そして、加熱処理前の鋼材温度を200℃とし、加熱処理後で板厚中心部が650℃となるように焼戻し熱処理を行った。なお、鋼材表面温度の上限は、Ac1変態点以下の700℃とした。矯正装置2は1パス目の入側と、3パス目の入側で使用することにしている。
【0043】
図5は、上述の加熱処理を実現するための運転条件を表にして示す図である。この運転条件によれば、全3パスの加熱処理において加熱される温度は540℃であり、一方、冷却による降下温度は90℃である。従って、差し引き450℃の温度上昇となる。
【0044】
ここで、矯正装置2での温度降下量は式(1)により求め、また各誘導加熱装置1での温度降下量は、空冷による温度降下として、式(4)により算出した。また搬送速度は、誘導加熱装置1の能力と能率を考慮の上、上記加熱が可能なものの内で最も早い搬送速度を選択した。
【0045】
これにより求めた各誘導加熱装置1に供給する電力量を表にして図6に示す。さらに、図7にこの電力を与えて加熱した場合の鋼材3の温度変化をグラフで表す。最終の誘導加熱装置出側で当初の目標通りの温度に鋼材が加熱されたことが示されている。
【0046】
尚、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明を抽出することができる。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成を発明として抽出することができる。
【0047】
【発明の効果】
以上のように、本発明によれば、誘導加熱装置を用いて鋼材の加熱処理を行う際に、鋼材を精度良く目標温度に加熱することができ、製品の品質を確保することができる。
【図面の簡単な説明】
【図1】 本発明に係る加熱方法が適用される第1の実施の形態の熱処理設備の概略構成を示す側面図。
【図2】 誘導加熱装置に供給する加熱電力を求める手順を示すフロー図。
【図3】 本発明に係る加熱方法が適用される第2の実施の形態の熱処理設備の概略構成を示す側面図。
【図4】 本発明に係る加熱方法が適用される第3の実施の形態の熱処理設備の概略構成を示す側面図。
鋼材の温度分布を示す図。
【図5】 加熱処理を実現するための運転条件を表にして示す図。
【図6】 各誘導加熱装置に供給する電力量を表にして示す図。
【図7】 鋼材の温度変化を示す図。
【符号の説明】
1…誘導加熱装置、2…矯正装置、3…鋼材、4…温度計、5…搬送用ローラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for heating a steel material after hot rolling, and particularly to an in-line heat treatment technique in which an induction heating device is arranged on a line.
[0002]
[Prior art]
A thick steel plate is manufactured by a method of quenching a hot-rolled steel plate by quenching or accelerated cooling and then tempering it in order to increase the strength and toughness.
[0003]
In recent years, quenching and accelerated cooling have been performed online, but tempering (hereinafter referred to as “heating”) is still performed offline using a gas-fired furnace and requires a long time. This significantly hinders the productivity of thick steel plates.
[0004]
For this reason, as a method of performing the heat treatment in-line, a technique is disclosed in which a plurality of solenoid induction heating devices are arranged in series in a line and the thick steel plate is heat-treated (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP-A-48-25239 [0006]
[Problems to be solved by the invention]
By the way, the steel plate immediately after cooling often warps upward or downward due to residual stress. Therefore, if such a steel plate is allowed to pass through the induction heating device as it is, not only the induction heating device is damaged by contact with the steel plate, but also there is a risk of destruction in some cases.
[0007]
In addition, when such an accident occurs, the steel sheet stops in the induction heating apparatus, and rolling is stopped until recovery, which significantly impedes the production efficiency. Therefore, when heat treatment is performed using an induction heating device, it is indispensable to use a correction device so that bending does not occur at the front and rear ends of the steel plate.
[0008]
However, passing the straightening device lowers the temperature of the thick steel plate due to heat removal by the straightening roll, heat removal by the cooling water in the straightening device, or the like. Therefore, in the subsequent heat treatment with the induction heating device, it is necessary to consider the influence of the correction device, but there is no disclosure of a technique for heat treatment including the correction device.
[0009]
The present invention has been made in view of such circumstances, and provides a heating method capable of accurately heat-treating a steel material such as a thick steel plate using a straightening device and an induction heating device, and a program therefor. For the purpose.
[0010]
[Means for Solving the Problems]
The present invention for solving the above-described problems has a correction device installed on a line and at least one induction heating device, and passes the correction device and then passes the induction heating device. In the heating method for heating a steel material , based on information including the temperature of the steel material on the entry side of the straightening device and the conveying speed of the steel material, a temperature drop amount estimation step for estimating the temperature drop amount of the steel material in the straightening device, and And a power calculating step for calculating the power supplied to the induction heating device for heating the steel material to the target temperature based on the temperature drop amount.
[0011]
Moreover, the heating method of the steel materials which concerns on the other situation of this invention is the heating method of the said steel materials, The amount-of-fall estimation process estimates the 1st temperature fall amount by contact with steel materials and a correction | amendment roll, and A step of estimating a second temperature drop due to heat dissipation from the steel to the atmosphere, and a step of estimating a third temperature drop due to water cooling of the steel.
[0012]
Moreover, the heating method of the steel material which concerns on the other situation of this invention WHEREIN: In the heating method of the said steel material, the estimated temperature of the steel material in the outgoing side of the straightening apparatus calculated | required from the estimated amount of temperature drop of steel materials, and the outgoing side of the straightening apparatus And a correction step of correcting the temperature drop amount estimation model of the steel material based on the measured temperature of the steel material on the exit side of the straightening device measured by the thermometer provided in.
[0016]
The present invention also includes a straightening device installed on a line and at least one induction heating device, and after passing the straightening device, the steel material is heated by passing the induction heating device. In the heat treatment program, based on information including the temperature of the steel material on the entry side of the straightening device and the conveyance speed of the steel material, a temperature drop amount estimation procedure for estimating the temperature drop amount of the steel material in the straightening device, and the estimated temperature An electric power calculation procedure for calculating electric power to be supplied to the induction heating device for heating the steel material to the target temperature is executed based on the descending amount.
[0017]
Further, the heat treatment program according to another aspect of the present invention is the above-described program, wherein the descent amount estimation procedure is a procedure for estimating a first temperature drop amount due to contact between the steel material and the straightening roll, from the steel material to the atmosphere. A computer is made to perform the procedure which estimates the 2nd temperature fall amount by heat dissipation, and the procedure which estimates the 3rd temperature fall amount by water cooling of steel materials.
[0018]
The heat treatment program according to another aspect of the present invention is the above-described program, wherein the estimated temperature of the steel material on the outlet side of the straightening device determined from the estimated temperature drop of the steel material and the temperature provided on the outlet side of the straightener device Based on the measured temperature of the steel material on the outlet side of the straightening device measured by the meter, the computer is further caused to execute a correction procedure for correcting the temperature drop estimation model of the steel material.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a side view showing a schematic configuration of a heat treatment facility according to a first embodiment to which a heating method according to the present invention is applied. This heat treatment equipment includes a plurality of induction heating devices 1, a straightening device 2 installed in front of the induction heating device 1, a temperature detection that detects the temperature of the steel material 3 provided before and after the induction heating device 1 and before and after the straightening device 2. It comprises a container 4 and a conveying roller 5 for conveying the steel material 3. Here, in FIG. 1, illustrations of power equipment for supplying power to the induction heating device 1 and a control device for controlling the power are omitted.
[0020]
Hereinafter, the heating method of the first embodiment according to the present invention will be described using the heat treatment equipment having the configuration shown in FIG.
[0021]
When heat-treating a steel material, heating conditions such as a target temperature to be heated, a heating upper limit temperature, and a lower limit temperature are given in accordance with the type of material. The electric power supplied to the induction heating apparatus 1 is determined based on the heating conditions and the operating conditions of the steel material conveyance speed and the steel material temperature measured immediately before heating. And when determining the heating power supplied to the induction heating device 1, it is necessary to consider the temperature drop of the steel 3 due to the cooling of the air between the induction heating devices, and when using the straightening device 2, It is necessary to obtain the power to be distributed to each induction heating device after including the temperature drop amount of the steel material 3 in the straightening device 2.
[0022]
FIG. 2 is a flowchart showing a procedure for obtaining the heating power supplied to the induction heating apparatus. This process may be realized by incorporating a program into a processing device (not shown).
[0023]
In step S1, the type, thickness, width, target heating temperature, and the like of the steel material to be heated are acquired. Such information may be acquired from the outside by transmission or setting input by the processing device, or may be extracted from data stored in the processing device in advance.
[0024]
In step S2, the actual temperature value of the steel material on the entry side of the straightening device 2 and the conveyance speed are acquired. As the actual temperature value of the steel material, the value measured by the temperature detector 4 is used. The conveyance speed may be a value actually measured from the number of rotations of the conveyance roller 5, or may be acquired from the outside by transmission or setting input by the processing device, or from data stored in the processing device in advance. What to extract may be used.
[0025]
In step S3, the temperature drop amount of the steel material 3 in the straightening device 2 is estimated based on these data.
[0026]
The amount of temperature drop in the straightening device 2 can be obtained by the equation (1) by considering heat removal by the roll of the straightening device 2, heat removal by the atmosphere in the straightening device, and heat removal by the cooling water.
[0027]
ΔT L = ΔT R + ΔT A + ΔT W (1)
ΔT L : Estimated value of temperature drop in straightening device ΔT R : Contact heat removal by roll, ΔT A : Cooling by air, ΔT W : Cooling by water cooling Further, each heat removal term is expressed by equations (2) to (5) ).
[0028]
ΔT R = h R (T S −T R ) / √ (τ R 3 ) (2)
τ R = L R / ν (3)
h R : roll heat transfer coefficient, T S : steel surface temperature, T R : roll surface temperature τ R : roll contact time, L R : roll contact distance, ν: transport speed, where roll contact distance (L R ) Means the length obtained by adding the contact lengths (steel material conveying direction) between each straightening roll and the steel material 3 for all straightening rolls. In the straightening device, in order to straighten the steel material 3, the sheet is passed through the roll in a state where the steel material 3 is wound by a predetermined length. Accordingly, the straightening roll and the steel material 3 are in contact with each other during the time obtained by dividing the roll contact distance by the conveyance speed (ν), and the steel material 3 receives heat from the straightening roll.
[0029]
ΔT A = h A (T s −T A ) (4)
[Delta] T A: cooling by ambient temperature h A: heat transfer coefficient of air, T A: atmospheric temperature ΔT W = h W (T S -T W) (5)
ΔT W : Cooling temperature by water cooling h W : Heat transfer coefficient of water cooling, T W : Cooling water temperature By the way, these temperature estimated values are measurement errors due to actual measurement, wear of correction rolls, degree of cooling water, etc. It is also influenced greatly by the secular change. Therefore, these estimation equations are corrected based on the temperatures measured by the thermometer detectors 4 provided before and after the correction device 2. The correction equation is given by equation (6).
[0030]
T L * = αΔT R + ΔT A + ΔT W (6)
T L * : the corrected temperature drop amount in the correction device, α: the adjustment coefficient adjustment coefficient α is obtained by equation (7).
[0031]
α = (t 1 −t 0 ) / (ΔT L −ΔT A −ΔT W ) (7)
t 0 : Straightening device inlet side temperature, t 1 : Straightening device outlet temperature, and Equations (6) and (7) are corrections for heat removal from the straightening rolls, but as in Equations (8) and (9) In addition, an adjustment coefficient can be set for the temperature drop amount of the entire correction apparatus.
[0032]
T L * = βΔT L (8)
β = (t 1 −t 0 ) / ΔT L (9)
β: If the adjustment coefficient obtained by the adjustment coefficient formula (6) or formula (9) is used, the error in the temperature estimation formula of the correction device can be corrected, and the secular change of the temperature drop amount can be corrected.
[0033]
The adjustment coefficient α or β obtained in this way is used for calculation when determining the heating power for the subsequent materials. Further, these adjustment factors are classified and stored for each thickness, width, and temperature increase amount of the steel material, and the subsequent materials can be used for steel materials having similar heating conditions.
[0034]
In the present embodiment, the temperature drop amount is obtained using an equation, but the present invention is not limited to this form, and the temperature drop amount may be obtained using an estimation model.
[0035]
In step S4, the heating temperature is calculated by equation (10).
[0036]
ΔT H = T ref −t 0 + ΔT L + ΔT A (10)
ΔT H : heating temperature, T ref : target temperature, t 0 : device entry side temperature ΔT L : temperature drop at the straightening device, ΔT A : air cooling temperature In step S5, an electric energy corresponding to the heating temperature is calculated.
[0037]
P H = C P ρVΔT H / τ H (11)
P H : Heating power C P : Specific heat, ρ: Density, V: Volume, ΔT H : Heating temperature, τ H : Heating time Supplying the amount of power determined by the procedure described above to the induction heating device, steel material Can be heated with high accuracy.
[0038]
FIG. 3 is a side view showing a schematic configuration of the heat treatment facility according to the second embodiment to which the heating method according to the present invention is applied. In 2nd Embodiment, the correction apparatus 2 is installed in the back | latter stage of the induction heating apparatus 1 on the heat processing line.
[0039]
Also in the second embodiment, the heating power can be obtained in the same manner as described above. That is, the electric power supplied to the induction heating device 1 is calculated using the equations (1) to (11) according to the procedures of steps S1 to S5 so that the temperature of the steel material 3 after the straightening device 2 becomes the target temperature. It ’s fine.
[0040]
FIG. 4 is a side view showing a schematic configuration of a heat treatment facility according to a third embodiment to which the heating method according to the present invention is applied. In 3rd Embodiment, the correction apparatus 2 is installed between the induction heating apparatuses on the heat processing line.
[0041]
Also in the second embodiment, the heating power can be obtained in the same manner as described above. That is, the electric power supplied to the induction heating device 1 is calculated using the equations (1) to (11) according to the procedures of steps S1 to S5 so that the temperature of the steel material 3 after the straightening device 2 becomes the target temperature. It ’s fine.
[0042]
Next, an application example of in-line heat treatment using the heat treatment facility shown in FIG. 1 will be described. In this embodiment, the induction heating device 1 has three solenoid induction heating devices arranged in series. And the steel material temperature before heat processing was 200 degreeC, and tempering heat processing was performed so that plate | board thickness center part might be 650 degreeC after heat processing. The upper limit of the steel material surface temperature was 700 ° C. below the Ac1 transformation point. The correction device 2 is used on the entrance side of the first pass and the entrance side of the third pass.
[0043]
FIG. 5 is a table showing operating conditions for realizing the above-described heat treatment. According to this operating condition, the temperature heated in all three passes of heat treatment is 540 ° C., while the temperature drop due to cooling is 90 ° C. Therefore, the temperature rises by 450 ° C.
[0044]
Here, the amount of temperature drop in the straightening device 2 was obtained from Equation (1), and the amount of temperature drop in each induction heating device 1 was calculated from Equation (4) as a temperature drop due to air cooling. In consideration of the capacity and efficiency of the induction heating apparatus 1, the fastest transport speed was selected among those capable of heating.
[0045]
The amount of electric power supplied to each induction heating device 1 obtained in this way is shown in a table in FIG. Furthermore, the temperature change of the steel material 3 at the time of giving and heating this electric power to FIG. 7 is represented with a graph. It is shown that the steel was heated to the original target temperature at the final induction heating device exit side.
[0046]
The above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed structural requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be obtained as an invention.
[0047]
【The invention's effect】
As described above, according to the present invention, when a heat treatment of a steel material is performed using an induction heating device, the steel material can be accurately heated to the target temperature, and the quality of the product can be ensured.
[Brief description of the drawings]
FIG. 1 is a side view showing a schematic configuration of a heat treatment facility according to a first embodiment to which a heating method according to the present invention is applied.
FIG. 2 is a flowchart showing a procedure for obtaining heating power supplied to the induction heating device.
FIG. 3 is a side view showing a schematic configuration of a heat treatment facility according to a second embodiment to which a heating method according to the present invention is applied.
FIG. 4 is a side view showing a schematic configuration of a heat treatment facility according to a third embodiment to which a heating method according to the present invention is applied.
The figure which shows the temperature distribution of steel materials.
FIG. 5 is a table showing operating conditions for realizing heat treatment.
FIG. 6 is a table showing the amount of power supplied to each induction heating device.
FIG. 7 is a view showing a temperature change of a steel material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Induction heating apparatus, 2 ... Straightening apparatus, 3 ... Steel materials, 4 ... Thermometer, 5 ... Roller for conveyance.

Claims (6)

ライン上に設置された矯正装置と少なくとも1台の誘導加熱装置とを有し、前記矯正装置を通過させたのち、前記誘導加熱装置を通過させることにより鋼材を加熱する加熱方法において、
前記矯正装置の入側における前記鋼材の温度と前記鋼材の搬送速度とを含む情報に基づいて、前記矯正装置における前記鋼材の温度降下量を推定する温度降下量推定工程と、
推定した温度降下量に基づいて、前記鋼材を目標温度に加熱するための前記誘導加熱装置に供給する電力を算出する電力算出工程と
を備えたことを特徴とする鋼材の加熱方法。
After the installed correction device on the line and have at at least one induction heating device was passed through the straightening device, the heating method of heating the steel material by passing the induction heating device,
Based on information including the temperature of the steel material on the entry side of the straightening device and the conveyance speed of the steel material, a temperature drop amount estimation step for estimating the temperature drop amount of the steel material in the straightening device;
A method for heating a steel material, comprising: an electric power calculation step for calculating electric power supplied to the induction heating device for heating the steel material to a target temperature based on the estimated temperature drop amount.
前記降下量推定工程は、
前記鋼材と矯正ロールとの接触による第1の温度降下量を推定する工程と、
前記鋼材から大気への熱放散による第2の温度降下量を推定する工程と、
前記鋼材の水冷却による第3の温度降下量を推定する工程と
を備えたことを特徴とする請求項1に記載の鋼材の加熱方法。
The descent amount estimation step includes:
Estimating a first temperature drop due to contact between the steel material and the straightening roll;
Estimating a second temperature drop due to heat dissipation from the steel to the atmosphere;
The method for heating a steel material according to claim 1, further comprising a step of estimating a third temperature drop due to water cooling of the steel material.
前記鋼材の推定温度降下量から求めた前記矯正装置の出側における前記鋼材の推定温度と、前記矯正装置の出側に設けた温度計で測定した前記矯正装置の出側における前記鋼材の実測温度とに基づいて、前記鋼材の温度降下量推定モデルを修正する修正工程を更に備えたことを特徴とする請求項1または2に記載の鋼材の加熱方法。  The estimated temperature of the steel material on the outlet side of the straightening device obtained from the estimated temperature drop of the steel material, and the measured temperature of the steel material on the outlet side of the straightening device measured with a thermometer provided on the outlet side of the straightening device The steel material heating method according to claim 1, further comprising a correction step of correcting the temperature drop amount estimation model of the steel material based on the above. ライン上に設置された矯正装置と少なくとも1台の誘導加熱装置とを有し、前記矯正装置を通過させたのち、前記誘導加熱装置を通過させることにより鋼材を加熱するための加熱処理プログラムにおいて、
コンピュータに、
前記矯正装置の入側における前記鋼材の温度と前記鋼材の搬送速度とを含む情報に基づいて、前記矯正装置における前記鋼材の温度降下量を推定する温度降下量推定手順、
推定した温度降下量に基づいて、前記鋼材を目標温度に加熱するための前記誘導加熱装置に供給する電力を算出する電力算出手順、
を実行させるためのプログラム。
The installed correction device on the line and have at at least one induction heating device, after having passed through the straightening device, the heat treatment program for heating the steel by passing the induction heating device,
On the computer,
Based on information including the temperature of the steel material on the entry side of the straightening device and the conveying speed of the steel material, a temperature drop amount estimation procedure for estimating the temperature drop amount of the steel material in the straightening device,
An electric power calculation procedure for calculating electric power supplied to the induction heating device for heating the steel material to a target temperature based on the estimated temperature drop amount,
A program for running
前記降下量推定手順は、
前記鋼材と矯正ロールとの接触による第1の温度降下量を推定する手順と、
前記鋼材から大気への熱放散による第2の温度降下量を推定する手順と、
前記鋼材の水冷却による第3の温度降下量を推定する手順と
を備えたことを特徴とする請求項に記載のプログラム。
The descent amount estimation procedure includes:
A procedure for estimating a first temperature drop due to contact between the steel material and the straightening roll;
A procedure for estimating a second temperature drop due to heat dissipation from the steel to the atmosphere;
The program according to claim 4 , further comprising a procedure for estimating a third temperature drop due to water cooling of the steel material.
前記鋼材の推定温度降下量から求めた前記矯正装置の出側における前記鋼材の推定温度と、前記矯正装置の出側に設けた温度計で測定した前記矯正装置の出側における前記鋼材の実測温度とに基づいて、前記鋼材の温度降下量推定モデルを修正する修正手順を更に備えたことを特徴とする請求項またはに記載のプログラム。The estimated temperature of the steel material on the exit side of the straightening device obtained from the estimated temperature drop of the steel material, and the measured temperature of the steel material on the exit side of the straightening device measured with a thermometer provided on the exit side of the straightening device based on the bets, the program according to claim 4 or 5, further comprising a modification procedure to modify the temperature drop amount estimation model of the steel.
JP2003058341A 2002-04-08 2003-03-05 Steel heating method and program thereof Expired - Lifetime JP4258235B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003058341A JP4258235B2 (en) 2003-03-05 2003-03-05 Steel heating method and program thereof
KR1020047003029A KR100585540B1 (en) 2002-04-08 2003-04-03 Heat treating device, heat treating method, recording medium recording heat treating program and steel product
EP03745906A EP1496129A4 (en) 2002-04-08 2003-04-03 Heat treating device, heat treating method, recording medium recording heat treating program and steel product
CNB038009412A CN1292081C (en) 2002-04-08 2003-04-03 Heat treatment apparatus, heat treatment method, medium on which heat treatment program is recorded, and steel product
PCT/JP2003/004298 WO2003085142A1 (en) 2002-04-08 2003-04-03 Heat treating device, heat treating method, recording medium recording heat treating program and steel product
TW092107905A TWI224144B (en) 2002-04-08 2003-04-07 Heat treating device, heat treating method, recording medium recording heat treating program and steel product
US10/785,629 US6891139B2 (en) 2002-04-08 2004-02-25 Heat treatment apparatus, heat treatment method, medium on which heat treatment program is recorded, and steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058341A JP4258235B2 (en) 2003-03-05 2003-03-05 Steel heating method and program thereof

Publications (2)

Publication Number Publication Date
JP2004269909A JP2004269909A (en) 2004-09-30
JP4258235B2 true JP4258235B2 (en) 2009-04-30

Family

ID=33121470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058341A Expired - Lifetime JP4258235B2 (en) 2002-04-08 2003-03-05 Steel heating method and program thereof

Country Status (1)

Country Link
JP (1) JP4258235B2 (en)

Also Published As

Publication number Publication date
JP2004269909A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
KR20090115195A (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
EP3560616B1 (en) Method for cooling steel sheet and method for manufacturing steel sheet
US10814366B2 (en) Coil width control method and apparatus
JP4258235B2 (en) Steel heating method and program thereof
CN113423517B (en) Cooling control method and cooling control device for thick steel plate, and manufacturing method for thick steel plate
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JP2019073754A (en) Method for producing heat-treated steel sheet, and steel sheet cooling device
JP5015386B2 (en) Heat treatment method for thick steel plate
JPH11290946A (en) Method for straightening thick steel plate
EP3757236A1 (en) Steel sheet heating method in continuous annealing and continuous annealing facility
JP4079098B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JPH093553A (en) Method for controlling tension in heat treatment furnace
JP4655684B2 (en) Heat treatment method for steel sheet
JP6394625B2 (en) Width reduction device and side guide position control method of width reduction device
JP3518504B2 (en) How to set cooling conditions for steel sheets
JP3582517B2 (en) Manufacturing method of hot-rolled steel strip
JP2003253343A (en) Process for continuously heat treating metal strip
JP2004283846A (en) Hot rolling method and its equipment
JP3329297B2 (en) Hot rolling method
JP2001158920A (en) Method of preventing variation of width in continuous annealing furnace
JP4285027B2 (en) Hot straightening method
JP2002028709A (en) Method for controlling width of steel sheet
JP2003013134A (en) Manufacturing method for steel sheet, and facility therefor
JP2023018813A (en) Torsion determination method of hot slab width reduction, hot slab width reduction method and manufacturing method of hot rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term