JPS6156270A - Method for hot dip galvanizing dead soft steel - Google Patents

Method for hot dip galvanizing dead soft steel

Info

Publication number
JPS6156270A
JPS6156270A JP59175133A JP17513384A JPS6156270A JP S6156270 A JPS6156270 A JP S6156270A JP 59175133 A JP59175133 A JP 59175133A JP 17513384 A JP17513384 A JP 17513384A JP S6156270 A JPS6156270 A JP S6156270A
Authority
JP
Japan
Prior art keywords
alloying
dip galvanizing
steel
hot dip
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59175133A
Other languages
Japanese (ja)
Inventor
Shigeo Kanbara
神原 繁雄
Takeshi Okuyama
健 奥山
Masaki Abe
阿部 雅樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP59175133A priority Critical patent/JPS6156270A/en
Publication of JPS6156270A publication Critical patent/JPS6156270A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To make the rate of alloying of Zn proper and to prevent deterioration in workability due to an excessive rate of alloying by increasing the Al content in a hot dip galvanizing bath, hot dip galvanizing a dead soft steel strip, and heat treating it under specified conditions to alloy Zn. CONSTITUTION:When a dead soft steel strip contg. <0.005wt% C is hot dip galvanized in a hot dip galvanizing bath, the concn. of Al in the bath is regulated to 0.14-0.17wt%. The amount of molten Zn on the surface of the steel strip passed through the bath is regulated to a prescribed value, and the steel strip is heated at 530-580 deg.C for 5-15sec to alloy a proper amount of Zn with iron in the steel strip. Deterioration in the workability of the resulting Zn layer due to an excessive amount of Zn alloyed is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は極低炭素鋼の溶融亜鉛めっき方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for hot-dip galvanizing ultra-low carbon steel.

(従来の技術) 低炭素鋼板の亜鉛めっき方法として、鋼帯を溶融亜鉛め
っきした後、合金化処理する手法が汎用されているが、
この合金化溶融亜鉛めっき法を極低炭素鋼(鋼中C量が
o、ooswt%以下の鋼で、Ti、Nbなどによるス
タビライズド鋼を含む、以下同じ)に適用した場合、合
金化率が高くなり、めっき層の加工性が劣化しやすいと
いう問題があった。
(Prior art) As a galvanizing method for low-carbon steel sheets, a method in which a steel strip is hot-dip galvanized and then alloyed is commonly used.
When this alloying hot-dip galvanizing method is applied to ultra-low carbon steel (steel with a C content of o, ooswt% or less, including steel stabilized with Ti, Nb, etc., the same applies hereinafter), the alloying rate is There was a problem in that the processability of the plating layer was likely to deteriorate.

第2図はC量が0.04wt$の鋼の合金化量を1とし
た場合の鋼中Cikと合金化速度比金示すもので、Fe
−Zn反応速度は鋼中のC量により大きく変化し、極低
炭素鋼はFe −Zn反応速度が早いことがわかる。こ
れは、粒界に偏析する固溶CがFe −Znの相互拡散
反応を抑制するが、低炭素鋼の場合は固溶Cが少なく、
上記抑制効果が弱いためであると考えられる。
Figure 2 shows the Cik in steel and the alloying rate ratio when the alloying amount of steel with a C content of 0.04 wt$ is set to 1.
It can be seen that the -Zn reaction rate varies greatly depending on the amount of C in the steel, and that the ultra-low carbon steel has a faster Fe-Zn reaction rate. This is because solid solute C that segregates at grain boundaries suppresses the Fe-Zn interdiffusion reaction, but in the case of low carbon steel, there is little solid solute C,
This is thought to be because the above-mentioned suppressing effect is weak.

このようなf!’e  Znの反応性の尚さは合金化処
理後のめつき層品實に大きな影響を与え、特にめっき層
の加工性にとっては反応性の影響は致命的といえる。第
2図はめつき層の合金化率と加工性(パウダリング童)
の関係を示すもので、通常鋼種に比較してめっき層の加
工性が大きく劣化する。
f like this! 'e The low reactivity of Zn has a great influence on the quality of the plated layer after alloying treatment, and the influence of reactivity can be said to be fatal, especially for the workability of the plated layer. Figure 2 shows the alloying rate and workability of the plating layer (powdering)
This shows the relationship that the workability of the plating layer is greatly deteriorated compared to normal steel types.

上記の点から、極低炭素鋼を用いて合金化処理鋼板を製
造する場合、合金化率を適正領域内にコントロールする
ことが重要であることは明らかである。
From the above points, it is clear that when manufacturing an alloyed steel sheet using ultra-low carbon steel, it is important to control the alloying ratio within an appropriate range.

この対策として、従来、溶融亜鉛めっき後の合金化処理
温度を低目に設定することでめっき層の合金化率を抑え
る方法が提案されている。
As a countermeasure against this problem, a method has conventionally been proposed in which the alloying temperature after hot-dip galvanizing is set to a low value to suppress the alloying rate of the plating layer.

(本発明が解決しようとする問題点) この方法は、即純曲げなどのような比較的軽度な加工に
対してはある程度効果が見られる。しかしながら、自動
車用途など高度なプレス加工を受ける場合には、その効
果は余シ期待できなかった。
(Problems to be Solved by the Present Invention) This method is effective to some extent for relatively light processing such as instant bending. However, when subjected to advanced press processing such as in automobile applications, the effect could not be expected.

すなわち、第4図は従来法によ90級0005wtg6
の合金化処理温度を低下させた場合のめつき層の加工性
を、90度曲はテストとドローピードテストで検討した
結果を示すものである。図中の「パウダリング狐」は、
90度曲はテストにおいては曲は抜粘着テープによる剥
離を行い、ブーツに付着しためつき片を像光X紡装諒に
よシZr+ −Kの強度を測定して求めた。また、ドロ
ービードテストの場合は、3不デスト後ダイスに付着蓄
積しためつき片をljc/、で沼解し、前記と同様にZ
n−にの強度測定を行って定電化した。
That is, Fig. 4 shows 90 grade 0005wtg6 obtained by the conventional method.
This shows the results of examining the workability of the plated layer when the alloying temperature is lowered using a 90 degree curve test and a draw speed test. The “powdering fox” in the diagram is
In the test, the 90 degree curve was removed by removing the curve using adhesive tape, and the strength of Zr+ -K was determined by removing the tacking pieces that adhered to the boot using an image light X-boss tool. In addition, in the case of the drawbead test, after 3 non-destinations, remove the accumulating pieces that adhered to the dice with ljc/, and then use Z as described above.
The intensity was measured at n- to make it constant.

この第4図から、合金化処理温度を低下させて合金化率
を低下させる方法では、めっき層別工性を十分に改善し
得ないことがわかる。
From FIG. 4, it can be seen that the method of lowering the alloying rate by lowering the alloying temperature cannot sufficiently improve the plating layer workability.

また、上記のように低温で合金化する方法は、合金化処
理炉の温度分布の不均一性やめつき被覆厚の幅方向又は
長手方向の不均一性、さらには鋼帯形状等によシ合金化
率の均一なものを得がたく、叱“の7Cめ、半合金化状
態を有する合金化ムシ(に)つきin+の色−ムラ)が
生じやすいという欠点もおった。
In addition, the method of alloying at a low temperature as described above is not suitable for alloying due to non-uniformity of the temperature distribution in the alloying furnace, non-uniformity of the coating thickness in the width direction or longitudinal direction, and even the shape of the steel strip. It was difficult to obtain a product with a uniform conversion rate, and it also had the disadvantage that it was easy to cause color unevenness due to alloying particles having a semi-alloyed state.

(問題点を解決するための一1=段) 本発明Fi、前記のような従来の問題点を屏決し、めっ
き層別工性に優れた合金化溶融亜鉛めっき鋼板の製造方
法を提供しようとするものである。
(11 = Steps for Solving Problems) The present invention Fi solves the above-mentioned conventional problems and attempts to provide a method for manufacturing an alloyed hot-dip galvanized steel sheet with excellent workability in coating layers. It is something to do.

この目的のため不発明は、溶融亜鉛めっき浴中のA、を
濃度に着目し、この人を濃度を一般的な低炭素Atキル
ド鋼のめつき時に比べ高めに設定することによp、Fe
−Znの合金化反応速度を一般鋼なみに低下させ、これ
によシ合金化処理後、のめつき層別工性を向上させるこ
とに成功したもので、すなわち、鋼中のC量が0.00
5wt%以下の極低炭素鋼の鋼帯を浴中の448度が0
14〜0.17wt% の溶融亜鉛めっき浴中でめっき
した後、直ちにめっき量を所定量に制御し、引続きこの
鋼帯を板温で530〜580℃の温度で5〜15秒間加
熱することを特徴とするものである。
For this purpose, the inventor focused on the concentration of A in the hot-dip galvanizing bath and set the concentration higher than that when plating general low carbon At-killed steel.
- The alloying reaction rate of Zn has been reduced to the same level as that of ordinary steel, and this has succeeded in improving the workability of plating and layering after alloying treatment. .00
A steel strip of ultra-low carbon steel of 5 wt% or less is heated to 448 degrees in a bath.
After plating in a hot-dip galvanizing bath of 14 to 0.17 wt%, immediately control the plating amount to a predetermined amount, and then heat the steel strip at a plate temperature of 530 to 580 ° C for 5 to 15 seconds. This is a characteristic feature.

以下本発明を添付図面に基づき詳細に説明する。Hereinafter, the present invention will be explained in detail based on the accompanying drawings.

極低炭素鋼は亜鉛との反応性が高いため、合金化処理し
た場合に合金化率が高くなシ、これによシめつき層別工
性が劣化する傾向となる。
Ultra-low carbon steel has high reactivity with zinc, so when it is alloyed, the alloying rate is not high, which tends to deteriorate the workability of plating and layering.

この対策として、処理過程で合金化率をコントロールし
ても、めっき層の加工性を十分に改善できないのは極低
炭素鋼の場合、上記合金化処理以前に、すでにめっき浴
通過の段階で合金層の成長過程が他の鋼種と決定的に異
なるためである。
As a countermeasure for this, even if the alloying rate is controlled during the processing process, the workability of the plating layer cannot be sufficiently improved in the case of ultra-low carbon steel. This is because the layer growth process is definitely different from other steel types.

このことは、めっき浴通過時の合金層形成を通常鋼種な
みに行わせることができれば、後工程の合金化処理以前
(ガルバニール温度)を変更せずとも、極低炭素鋼の合
金化率を適正にコントロールできることit味する。
This means that if the alloy layer formation when passing through the plating bath can be made to the same level as normal steel, the alloying ratio of ultra-low carbon steel can be maintained at an appropriate level without changing the post-alloying process (galvanil temperature). I enjoy being able to control it.

そこで本発明者らは、溶融亜鉛めっき浴通過時における
合金層生成の変化について数多くの実験と調査を繰返し
た。その結果、溶融亜鉛めっき浴のA−を濃度を局める
と合金層の急成長が抑制され、引続く合金化処理におい
ても適正な合金化率にコントロールすることができ、し
かも、めっき層の加工性はドロービ−ドテストでも通常
鋼種よシも優れていることが確認された。
Therefore, the present inventors repeatedly conducted numerous experiments and investigations regarding changes in alloy layer formation during passage through a hot-dip galvanizing bath. As a result, by controlling the concentration of A- in the hot-dip galvanizing bath, the rapid growth of the alloy layer can be suppressed, and the alloying rate can be controlled to an appropriate level in the subsequent alloying process. It was confirmed in the drawbead test that the workability is superior to that of ordinary steel.

第1図は、本発明者らによシ、溶融亜鉛めっき浴のAt
濃度と合金化の難易とめっき層別工性の関係を検討した
結果を示すもので、C量が0.045wtq6と0.0
05 wt%の2種の極低炭素鋼の鋼帯を、AtlA度
0.11〜0.18 wt % ノ溶融亜鉛めっき浴で
めっきした後、550℃(均熱温度)で0〜30秒間加
熱し、合金化率を11〜12%に割引1したテークであ
り、図中A域は低炭素系鋼の合金化適正域である。
Figure 1 shows the At
This shows the results of examining the relationship between concentration, difficulty of alloying, and plating layer workability.
After plating two types of ultra-low carbon steel strips of 0.05 wt% in a hot-dip galvanizing bath with an AtlA degree of 0.11 to 0.18 wt%, they were heated at 550°C (soaking temperature) for 0 to 30 seconds. However, the alloying ratio is discounted to 11 to 12%, and area A in the figure is the appropriate alloying area for low carbon steel.

この第1図から明らかなように、めっき浴のAt濃度は
めっき層別工性と合金化に大きな影響を与え、低炭素系
鋼の合金化適正域にとった場合はめっき層別工性が悪く
、極低炭素鋼はこれよりも高めの1’d、fa度が適し
ていることがわかる。しかし、At濃度をあ丑シ高めに
1     すると合金化が困難となる。
As is clear from Fig. 1, the At concentration in the plating bath has a great effect on the workability of plating layers and alloying. However, it can be seen that a higher 1'd and fa degree than this is suitable for ultra-low carbon steel. However, if the At concentration is made too high, alloying becomes difficult.

そこで、本発明はめつき浴のA7濃度を所定の範囲に設
定するもので、具体的には0.14≦M≦0.17wt
%の範囲でコントロールすることが望ましい。めっき浴
αM濃度が0.14wt%未満では合金化抑制効果が十
分でなく、めっき層別工性の改善という点で物足9ない
。また、At濃度が0.17wt係を超える場合には、
Fe−Znの合金化反応が極端に抑制されるため、CG
 Lライン内での付合化が困難となる。さらにこの条件
で合金化させると高温、長時間加熱条件となり、コスト
上昇と能率低下を避けられない。
Therefore, the present invention sets the A7 concentration of the plating bath within a predetermined range, specifically 0.14≦M≦0.17wt.
It is desirable to control within a range of %. When the αM concentration in the plating bath is less than 0.14 wt%, the effect of suppressing alloying is insufficient, and the improvement in workability of plating layers is unsatisfactory. In addition, when the At concentration exceeds 0.17wt,
Since the Fe-Zn alloying reaction is extremely suppressed, CG
It becomes difficult to combine within the L line. Furthermore, alloying under these conditions results in high-temperature and long-time heating conditions, which inevitably increases costs and reduces efficiency.

次いで本発明は、めっき浴通過後厘ちにめっきitを所
定量に制御し、引続いてめっき鋼帯を530〜580℃
の温度(板温)に5〜15秒間加熱する合金化処理を行
う。
Next, the present invention controls the plating amount to a predetermined amount immediately after passing through the plating bath, and subsequently heats the plated steel strip to 530 to 580°C.
Alloying treatment is performed by heating to a temperature (plate temperature) for 5 to 15 seconds.

ここで、加熱温度の下限を530℃としたのは、これ以
下では加熱時間が長時間になるため能率的でなく、また
合金化処理ムラが生じやすいからである。上限を580
℃としたのは、これ以上では操業上の変化たとえば通板
速度の変化やめつき童の変化によって合金化率が変動し
やすく、これによりめっき層の加工性も安定しないから
である。
Here, the lower limit of the heating temperature is set to 530° C. because if the heating temperature is lower than this, the heating time becomes long, which is not efficient, and also tends to cause uneven alloying treatment. Upper limit is 580
℃ because above this temperature, the alloying ratio is likely to fluctuate due to operational changes such as changes in sheet threading speed and change in thickness, and as a result, the workability of the plating layer is not stable.

加熱時間の下限を5秒間としたのは、これ以下の短時間
加熱では合金化が不完全となシやすいためである。加熱
時間の上限を15秒間としたのは、これ以上の加熱時間
は合金化が過度となシ、加工性の劣化を引起すからであ
plまた実際問題としてライン内での合金化処理設備の
上限とも考えられるからである。
The reason why the lower limit of the heating time is set to 5 seconds is that heating for a shorter time than this tends to result in incomplete alloying. The upper limit of the heating time was set at 15 seconds because longer heating times would result in excessive alloying and deterioration of workability; This is because it can be considered as an upper limit.

(実施例) 不発明により極低炭素鋼を溶融亜鉛めっきした実施例を
、低炭素Atキルド鋼の溶融亜鉛めっき法および合金化
処理温度を低下させる従来法と比較して示すと、下記第
1表のとおシである。なお、各サンプルともめつき量は
すべて4597m”とした。
(Example) An example of hot-dip galvanizing ultra-low carbon steel according to the invention will be compared with the hot-dip galvanizing method of low-carbon At-killed steel and the conventional method of lowering the alloying temperature. This is the front page. The amount of plating for each sample was 4597 m''.

この第1表から明らかなように、本発明によれはl”e
 −Znの合金化反応速度が適正化されるため、合金化
処理後のめっき層別工性が向上していることがわかる。
As is clear from Table 1, according to the present invention, l”e
It can be seen that the workability of plating layers after alloying treatment is improved because the alloying reaction rate of -Zn is optimized.

(発明の効果) 以上説明した本発明によるときにね1、スタビライズド
鋼を含む鋼中のC量が0.005wt%以下の極低炭素
鋼の溶融亜鉛めっきにおいて、合金化率を適正にコント
ロールし、めっき層の加工性が優れ、また合金化ムラの
生じない良質の合金化溶融亜鉛めっき銅板を製造できる
というすぐれた効果が得られる。
(Effects of the Invention) According to the present invention as described above, the alloying ratio can be properly controlled in hot-dip galvanizing of ultra-low carbon steel including stabilized steel with a C content of 0.005 wt% or less. However, the processability of the plating layer is excellent, and an excellent effect can be obtained in that a high-quality alloyed hot-dip galvanized copper plate without uneven alloying can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法によるめっき層M濃度と加工性及び合
金化の難易の関係を示すグラフ、第2図は鋼中C量と合
金化速度比の関係を示すグラフ、第3図はめつき層の合
金化率と加工性の関係を示すグラフ、第4図は従来法に
よる合金化率低下とパウダリング性の関係を示すグラフ
である。 特m′lH出願人  1」本鋼管株式会社発  明  
者   神   原   繁   雄回       
   史   山        健同       
  阿   部   雅   樹代理人弁理士   吉
   涼   省   三同   同      高 
  橘        消量  ノF譲士   吉  
 原   弘   子第 1 図 めりさ;λ計aA(lぢ良&(wt%)第2図 特開昭6l−56270(5) 第3図 第4図
Figure 1 is a graph showing the relationship between the M concentration in the plating layer and workability and difficulty of alloying according to the method of the present invention, Figure 2 is a graph showing the relationship between the amount of C in steel and the alloying rate ratio, and Figure 3 is a graph showing the relationship between the M concentration in the plating layer and workability and difficulty of alloying. FIG. 4 is a graph showing the relationship between the alloying rate of a layer and workability. FIG. 4 is a graph showing the relationship between the decrease in alloying rate and powdering property according to the conventional method. Special m'lH Applicant 1" Honkoukan Co., Ltd. Invention
Person: Shigeru Kamihara
Kendo Fumiyama
Masaki Abe, Patent Attorney, Ryosho Yoshi, High School Sando
Tachibana Keiyo no F Joji Yoshi
Hiroko Hara No. 1 Figure Merisa; λ meter aA (ljira & (wt%) Figure 2 JP-A-6L-56270 (5) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 鋼中のC量が0.005wt%以下の極低炭素鋼の合金
化溶融亜鉛めっき鋼板を製造す るにあたり、前記C量の鋼帯を、浴中のAl濃度が0.
14〜0.17wt%の溶融亜鉛めっき浴でめっきした
後、直ちにめっき量を所定 量に制御し、次いで該鋼帯を板温で530〜580℃の
温度で5〜15秒間加熱することを特徴とする極低炭素
鋼の溶融亜鉛めっき 方法。
[Claims] In producing an alloyed hot-dip galvanized steel sheet of ultra-low carbon steel in which the amount of C in the steel is 0.005 wt% or less, the steel strip with the above amount of C is mixed with an Al concentration in the bath of 0.005 wt% or less.
After plating with a 14-0.17 wt% hot-dip galvanizing bath, the amount of plating is immediately controlled to a predetermined amount, and then the steel strip is heated at a plate temperature of 530-580°C for 5-15 seconds. Hot-dip galvanizing method for ultra-low carbon steel.
JP59175133A 1984-08-24 1984-08-24 Method for hot dip galvanizing dead soft steel Pending JPS6156270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175133A JPS6156270A (en) 1984-08-24 1984-08-24 Method for hot dip galvanizing dead soft steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175133A JPS6156270A (en) 1984-08-24 1984-08-24 Method for hot dip galvanizing dead soft steel

Publications (1)

Publication Number Publication Date
JPS6156270A true JPS6156270A (en) 1986-03-20

Family

ID=15990860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175133A Pending JPS6156270A (en) 1984-08-24 1984-08-24 Method for hot dip galvanizing dead soft steel

Country Status (1)

Country Link
JP (1) JPS6156270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220651A (en) * 2001-01-29 2002-08-09 Nkk Corp Method for manufacturing hot-dip galvanized steel sheet
WO2009119475A1 (en) * 2008-03-27 2009-10-01 株式会社神戸製鋼所 Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623264A (en) * 1979-08-02 1981-03-05 Kobe Steel Ltd Production of galvanized steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623264A (en) * 1979-08-02 1981-03-05 Kobe Steel Ltd Production of galvanized steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220651A (en) * 2001-01-29 2002-08-09 Nkk Corp Method for manufacturing hot-dip galvanized steel sheet
JP4631176B2 (en) * 2001-01-29 2011-02-16 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
WO2009119475A1 (en) * 2008-03-27 2009-10-01 株式会社神戸製鋼所 Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance

Similar Documents

Publication Publication Date Title
JP2513532B2 (en) Method for producing high-strength hot-dip galvanized steel sheet of high Si content steel
JP2530939B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si
JP2587725B2 (en) Method for producing P-containing high tensile alloyed hot-dip galvanized steel sheet
JPS6156270A (en) Method for hot dip galvanizing dead soft steel
JPH0748662A (en) Production of galvanized steel sheet excellent in plating adhesion and appearance
JPS5858264A (en) Production of low yield ratio and high tensile hot dipped steel plate with zinc
JPH0128097B2 (en)
JPH1018011A (en) Galvannealed steel sheet and its production
JP2704819B2 (en) Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPS5834168A (en) Treatment for fe-zn alloying of zinc hot dipped steel plate
JP3166568B2 (en) Manufacturing method of hot-dip galvanized steel
JPS63171871A (en) Production of high strength steel plated with zinc by vapor deposition
JPS6240353A (en) Production of alloyed zinc plated steel sheet
JP2008056995A (en) Hot dip galvannealed steel sheet having excellent appearance quality and its production method
KR900004853B1 (en) Making process for steel plate for galvanization
JPH0354186B2 (en)
JPS62196364A (en) Manufacture of alloyed hot dip galvanized steel sheet
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPS59173255A (en) Preparation of alloying molten zinc plated steel plate
JP2618306B2 (en) High P content high tensile galvanized steel sheet
JPH04276055A (en) Manufacture of differential galvannealed steel
JPS59140390A (en) Manufacture of stainless steel sheet
KR100287921B1 (en) Method for manufacturing galvannealed steel sheet
JPH0794704B2 (en) Method for producing galvannealed steel sheet
JPH0448062A (en) Production of galvannealed steel sheet