JPS5858264A - Production of low yield ratio and high tensile hot dipped steel plate with zinc - Google Patents

Production of low yield ratio and high tensile hot dipped steel plate with zinc

Info

Publication number
JPS5858264A
JPS5858264A JP15695281A JP15695281A JPS5858264A JP S5858264 A JPS5858264 A JP S5858264A JP 15695281 A JP15695281 A JP 15695281A JP 15695281 A JP15695281 A JP 15695281A JP S5858264 A JPS5858264 A JP S5858264A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
yield ratio
steel plate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15695281A
Other languages
Japanese (ja)
Inventor
Norio Tsukiji
築地 憲夫
Shohei Fujita
藤田 昇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP15695281A priority Critical patent/JPS5858264A/en
Publication of JPS5858264A publication Critical patent/JPS5858264A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • C23C2/405Plates of specific length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To produce a low yield ratio and high tensile hot dipped steel plate with zinc having good workability by subjecting a steel plate of the composite structure contg. a ferrite phase and a martensite phase to dip in molten zinc by way of an intermediate stage which suppresses the quantity of strains low. CONSTITUTION:The steel plate contg. 0.01-0.15% C, 1.9-3.0% Mn, 0.005-0.10% solAl, and <=1.0% Si, further contg. >=1 kind among <=1.0% Cr, 0.01-0.10% Nb and 0.01-0.2% Ti and consisting of the balance Fe and impurities unavoidable in production is annealed by box annealing at temps. above the A1 transformation point and below the A3 transformation point to have the composite structure contg. a ferrite phase and a martensite phase. Further in an intermediate stage up to a zinc plating treatment, the quantity of the strains applied upon the steel plate is suppressed down to <=1.3%. It is possible to apply an alloying treatment of iron zinc to said hot dipped steel plate in molten zinc.

Description

【発明の詳細な説明】 本発明は、フェライト相とマルテンサイト相を含む複合
組織の鋼板を原板とする溶融亜鉛めっき鋼板の製造法に
係り、特に、この鋼板の特性の1つである低降伏比特性
が溶融亜鉛めっき処理によって損なわれないようにした
低降伏比高張力溶融亜鉛めっき鋼板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hot-dip galvanized steel sheet using a steel sheet with a composite structure containing a ferrite phase and a martensitic phase as a base plate, and particularly relates to a method for manufacturing a hot-dip galvanized steel sheet using a steel sheet having a composite structure containing a ferrite phase and a martensitic phase. The present invention relates to a method for producing a low yield ratio, high tensile strength hot dip galvanized steel sheet whose specific properties are not impaired by hot dip galvanizing.

近年、例えば自動車用材料として、錆びずに軽くて強い
材料の要請から高張力亜鉛めっき鋼板の適用が検討され
ているが、これに対応すべく、固溶強化や析出強化を利
用して強度を高めた鋼板を原板とする高強力亜鉛めっき
鋼板が提案された。
In recent years, the application of high-strength galvanized steel sheets has been considered as a material for automobiles, for example, due to the need for lightweight, strong materials that do not rust. A high-strength galvanized steel sheet using a reinforced steel sheet as the base sheet was proposed.

しかし、このような鋼板は一般に降伏比が高くまだ延性
が低いので、きびしい加工ができず、また加工後のスプ
リングバックが大きいなど、その実際の適用には問題が
残されている。
However, such steel sheets generally have a high yield ratio and low ductility, so they cannot be subjected to severe processing, and there are still problems with their actual application, such as large springback after processing.

本発明はこのような問題のない降伏比が70チkg/−
以上の低降伏比高張力溶融亜鉛めっき鋼板の提供を目的
としてなされたもので、そのめっき原板として複合組織
高張力鋼を用いる場合の加工性の問題を解決したもので
ある。一般に、複合組織鋼はその焼鈍処理によってフェ
ライト相とマルテンサイト相を適切に含むように調整さ
れても、これを溶融亜鉛めっき処理すると、そのめっき
時の与熱によって降伏比が上昇する。本発明は、特にこ
の溶融亜鉛めっき時の降伏比の上昇を抑制して複合組織
鋼のもつ低降伏比特性を保持した溶融亜鉛めっき鋼板を
得ることを目的としてなされたものである。この目的に
おいて種々の実験検討を重ねだところ、溶融亜鉛めっき
処理時の複合組織鋼の降伏比の上昇の程度は溶融亜鉛め
っき処理前にこの鋼に付与される歪によって大きく影響
され、この鋼へ付与される歪の量を1.5%以下に抑制
すると降伏比を70%以下にすることができ、加工性の
良好な高張力溶融亜鉛めっき鋼板が得られることがわか
った。すなわち本発明は、A1変態点以上A3変態点以
下の温度での焼鈍処理によってフェライト相とマルテン
サイト相を含む複合組織を呈するように成分調整された
複合組織鋼板を溶融亜鉛めっきするにあたり、複合組織
を呈するように箱型焼鈍したあと溶融亜鉛めっき処理す
るまでの中間工程においてこの鋼板に付与される歪み量
を1.5%以下に抑制することを特徴とする低降伏比高
張力溶融亜鉛めっき鋼板の製造法を提供するものである
The present invention has a yield ratio of 70 cm/- without such problems.
This was made for the purpose of providing the above-mentioned low yield ratio, high tensile strength hot-dip galvanized steel sheet, and solved the problem of workability when using composite structure high tensile strength steel as the plated original sheet. In general, even if a composite structure steel is adjusted to appropriately contain a ferrite phase and a martensitic phase by annealing, when it is subjected to hot-dip galvanizing, the yield ratio increases due to the heat applied during the plating. The present invention has been made specifically for the purpose of suppressing the increase in yield ratio during hot-dip galvanizing to obtain a hot-dip galvanized steel sheet that maintains the low yield ratio characteristic of composite structure steel. After conducting various experimental studies for this purpose, we found that the degree of increase in the yield ratio of composite structure steel during hot-dip galvanizing is greatly influenced by the strain applied to this steel before hot-dip galvanizing. It has been found that when the amount of strain applied is suppressed to 1.5% or less, the yield ratio can be reduced to 70% or less, and a high-strength hot-dip galvanized steel sheet with good workability can be obtained. That is, the present invention provides a method for hot dip galvanizing a composite structure steel sheet whose composition has been adjusted to exhibit a composite structure including a ferrite phase and a martensitic phase by annealing at a temperature above A1 transformation point and below A3 transformation point. A low yield ratio, high tensile strength galvanized steel sheet characterized by suppressing the amount of strain imparted to the steel sheet to 1.5% or less in an intermediate step between box-shaped annealing and hot-dip galvanizing so that the steel sheet exhibits The present invention provides a method for manufacturing.

本発明において焼鈍処理は連続焼鈍法ではなく箱型焼鈍
(バッチ焼鈍)法を採用する。連続焼鈍法の場合には、
その理由は明らかではないが、溶融亜鉛めっき処理時の
鋼板に加わる加熱によって降伏比は非常に高くなり、低
降伏比特性が損なわれてしまう。しかし箱型焼鈍の場合
はその焼鈍処理自体による歪の付与はコイルの巻戻し程
度であり、処理操作による降伏比の上昇を助長すること
は少ない。この箱型焼鈍による焼鈍条件は、その適用す
る鋼がフェライト相とマルテンサイト相を含む複合組織
となるに必要な条件であ灯、A1変態点以上A、変態点
以下の温度である。
In the present invention, the annealing process employs a box annealing (batch annealing) method instead of a continuous annealing method. In the case of continuous annealing method,
Although the reason for this is not clear, the yield ratio becomes extremely high due to the heating applied to the steel sheet during hot-dip galvanizing, and the low yield ratio characteristics are impaired. However, in the case of box-shaped annealing, the strain imparted by the annealing process itself is limited to the extent of unwinding the coil, and does not help increase the yield ratio due to the process operation. The annealing conditions for this box annealing are the conditions necessary for the applied steel to have a composite structure containing a ferrite phase and a martensitic phase, and are a temperature of A1 above the A1 transformation point and A below the transformation point.

溶融亜鉛めっき処理は、通常の連続溶融亜鉛めっきライ
ンによって行なうことができる。例えば、鋼板コイルが
コイルルー・(−から酸洗工程、還元処理工程を経て亜
鉛浴浸漬工程に入る連続溶融亜鉛めっきラインによって
行なうことができる。
The hot-dip galvanizing process can be carried out using a normal continuous hot-dip galvanizing line. For example, galvanizing can be carried out using a continuous hot-dip galvanizing line in which a steel sheet coil is processed through a coil roux, a pickling process, a reduction treatment process, and a zinc bath immersion process.

そのさい、亜鉛浴浸漬後、鉄−亜鉛の合金層を形成させ
るための合金化処理工程を付加することもできる。
At that time, an alloying treatment step for forming an iron-zinc alloy layer may be added after immersion in the zinc bath.

箱型焼鈍処理からこの溶融亜鉛めっき処理までの間に、
通常の溶融亜鉛めっき鋼板q製造では、コイルの形状修
正のためのレベリングやスキンノくス、並びに繰返し曲
げの加わるルーツく−のロールなどによって鋼板に歪の
加わる処理が行なわれるが、このような処理によって複
合組織鋼に歪を付与すると、後記実施例で示したように
、溶融亜鉛めっき時の与熱によって降伏比が上昇する。
Between the box annealing process and this hot dip galvanizing process,
In normal production of hot-dip galvanized steel sheets, the steel sheets are subjected to processes such as leveling and skin scraping to correct the shape of the coil, and root rolls that undergo repeated bending, which add distortion to the steel sheets. When strain is imparted to the composite structure steel, the yield ratio increases due to the heat applied during hot-dip galvanizing, as shown in Examples below.

したがって本発明法では、このような鋼に歪を付与する
処理は可及的に回避すると共に、溶融亜鉛めつきライン
入側に設置されるコイルルーパーのロールもできるだけ
径の大きいものを使用して歪の量をできるたけ小さくす
る。後記実施例に示すように、鋼板の板厚をtとし、ロ
ール半径をrとしたときに、ε−t/r X 100優
)で表わされる歪み箭εが1.5以下の場合には、この
程度の歪の付与によっては、溶融亜鉛めっき時の加熱に
よっても降伏比の上昇は実用上十分な程度に抑制するこ
とができる。
Therefore, in the method of the present invention, such treatments that give strain to steel are avoided as much as possible, and the rolls of the coil looper installed at the entrance of the hot-dip galvanizing line are also made to have as large a diameter as possible. Reduce the amount of distortion as much as possible. As shown in the examples below, when the strain ε expressed as ε-t/r x 100, where t is the thickness of the steel plate and r is the roll radius, is 1.5 or less, By applying this level of strain, the increase in yield ratio can be suppressed to a practically sufficient level even by heating during hot-dip galvanizing.

次に、本発明法を適用する鋼は、c ; o、oi〜O
j596、Mn ;1.9〜5.0 %、5olJJ 
; 0,005〜0.10%、Sf ; 1.0%を含
み、さらに、1,0%以下のOr 、 0.01〜0.
10 %のNb−jたけ0.01〜0.20チのTjの
1種または2種以上を含有し、残部がFeおよび製造上
の不可避的不純物からなる鋼を使用する。
Next, the steel to which the method of the present invention is applied is c; o, oi~O
j596, Mn; 1.9-5.0%, 5olJJ
0,005 to 0.10%, Sf; 1.0%, and further contains 1.0% or less of Or, 0.01 to 0.
A steel containing 10% of Nb-j and 0.01 to 0.20% of Tj, with the remainder being Fe and impurities unavoidable during manufacturing, is used.

Cは、鋼の加工性および溶接性を向上させるには、でき
るだけ低いことが望ましいが、強度を高めるためほに不
可欠であり、高張力鋼を得るという本発明の目的には最
小限0.01%は必要である1、低下させるため、その
上限を0.15%とする。
C is preferably as low as possible in order to improve the workability and weldability of the steel, but it is extremely essential to increase the strength, and for the purpose of the present invention to obtain high tensile strength steel, it is at least 0.01. % is necessary, and in order to reduce it, the upper limit is set to 0.15%.

Mnは、低降伏比特性を得るために有効に作用する元素
で、このMn量がL9 qA未満では低降伏比を有する
組織75f得られず、一方、5(J %を越えると溶接
性、加工性を低下させるので、その範囲を1.9〜3.
0チとする。
Mn is an element that effectively acts to obtain low yield ratio characteristics. If the Mn amount is less than L9 qA, a structure with a low yield ratio of 75f cannot be obtained, whereas if it exceeds 5 (J%), weldability and workability The range is 1.9 to 3.
Let it be 0chi.

Crは降伏比を下げる作用を有するが、1%を越えて含
有させてもその効果が飽和する。
Cr has the effect of lowering the yield ratio, but even if it is contained in an amount exceeding 1%, the effect is saturated.

Siは、加工性を損なうことなく、引張強さを向上させ
るに最も適した元素であるが、Siを多量に含有させる
とめっき後の表面外観が悪くなるとともに、不めっきの
発生率も著しくなるので、その上限を1.0チとするの
がよい。
Si is the most suitable element for improving tensile strength without impairing workability, but if a large amount of Si is contained, the surface appearance after plating will deteriorate and the incidence of unplated parts will be significant. Therefore, it is better to set the upper limit to 1.0ch.

Bol 、A1.は脱酸材として必要で、0.0[15
%未満では脱酸効果が小さく、他方、o、io%を越え
るとアルミナ系の介在物が増加し、鋼の材質特性と表面
外観を低下させるのでしその範囲を0.005〜0.1
0チとする。
Bol, A1. is necessary as a deoxidizer, and 0.0[15
If the deoxidizing effect is less than 0.0%, the deoxidizing effect will be small, while if it exceeds o or io%, alumina-based inclusions will increase, degrading the material properties and surface appearance of the steel.
Let it be 0chi.

NbとT1は必要に応じて含有させればよく、特に引張
強さを高くする場合に有効である。Nbは0.01%未
満では引張強さを増加させる効果が小さく、0.10 
%を越えて含有させてもその効果が飽和するので、その
範囲を0.01〜0.10%とするのがよい。T1は介
在物の形態制御効果があり、鋼の加工性向上にも有効で
あるが、0.01−未満では引張強さの増加効果が小さ
く、0.20 %を越えて含有させてもその効果が飽和
するので、その範囲を0.01〜0.20%とするのが
よい。
Nb and T1 may be contained as necessary, and are particularly effective in increasing the tensile strength. If Nb is less than 0.01%, the effect of increasing tensile strength is small;
Since the effect is saturated even if the content exceeds 0.01% to 0.10%. T1 has the effect of controlling the form of inclusions and is also effective in improving the workability of steel, but if it is less than 0.01%, the effect of increasing tensile strength is small, and even if it is contained in excess of 0.20%, the effect of increasing the tensile strength is small. Since the effect is saturated, the range is preferably 0.01 to 0.20%.

以下に実施例を挙げて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例1 第1表に示す化学成分の板厚t = 2.0諺の鋼板を
750℃で5時間焼鈍し、同表に示す低降伏比の複合組
織鋼板をえた。この鋼板を半径r=75〜500寵の円
筒の外周にそって曲げ、次に、同様にして逆方向に曲げ
た後に平板状とした。この時の鋼板の歪み量εをε−−
×100(9))で求めた。この試料を、連続溶融亜鉛
めっき相当の熱処理として、450℃、600’Cに2
分間加熱した後、降伏第2表の結果から明らかなように
歪み量が大きくなると降伏比が高くなり、歪み量が1゜
3チを越えると降伏比が70%以上となり、複合組織鋼
の低降伏特性がそこなわれる。
Example 1 A steel plate having the chemical composition shown in Table 1 and having a thickness t=2.0 was annealed at 750°C for 5 hours to obtain a composite structure steel plate having a low yield ratio shown in Table 1. This steel plate was bent along the outer periphery of a cylinder with radius r = 75 to 500 cm, and then similarly bent in the opposite direction to form a flat plate. The amount of strain ε on the steel plate at this time is ε−−
×100(9)). This sample was subjected to heat treatment equivalent to continuous hot-dip galvanizing at 450℃ and 600'C for 2 hours.
As is clear from the results in Table 2, the yield ratio increases as the amount of strain increases, and when the amount of strain exceeds 1.3 inches, the yield ratio increases to 70% or more. Yield characteristics are impaired.

実施例 2 第3表に示す化学成分の板厚t = 2.0朋の鋼板f
ニア30 Cで5時間箱型焼鈍し、同表に示す低降伏比
の複合組織鋼板を得た。この鋼板を半径r=100mm
 (ε= t/r=20%)、600朋(ε=−=Q、
07チ)の円筒の外周にそって、実施例1と同様の曲げ
歪みを導入後、酸洗−還元式の連続溶融亜鉛めっきに相
当する第1図に示す熱処理を加えた。このようにしてえ
た鋼板の引張試験値を第4表に示す。
Example 2 Steel plate f with chemical composition shown in Table 3, plate thickness t = 2.0 mm
Box annealing was performed at 30 C for 5 hours to obtain a composite structure steel sheet with a low yield ratio shown in the same table. This steel plate has a radius r = 100mm
(ε=t/r=20%), 600 ho(ε=-=Q,
After introducing the same bending strain as in Example 1 along the outer periphery of the cylinder of No. 07 H), the heat treatment shown in FIG. 1, which corresponds to pickling-reduction continuous hot-dip galvanizing, was applied. Table 4 shows the tensile test values of the steel plates thus obtained.

第4表の結果から、本発明範囲の歪み量ε−1r −〇、67%の鋼板はいずれも70チ以下の降伏比を示
すのに対して、本発明範囲外のε−t/r = 2.0
チの鋼板はいずれも70%を越える降伏比を示している
ことが明らかである。
From the results in Table 4, it can be seen that the steel plates with a strain amount of ε-1r −〇 and 67% within the range of the present invention all exhibit a yield ratio of 70 inches or less, whereas ε-t/r = outside the range of the present invention. 2.0
It is clear that all of the steel plates shown in Table 1 have yield ratios exceeding 70%.

実施例 3 第5表に示す化学成分の鋼を転炉脱ガス設備で溶製し、
連鋳、熱延金紗て板厚t=2.0m7Hと4.5mm0
熱延コイルとした。このコイルに酸洗後、725Cで1
0時間のタイトコイル式箱型焼鈍を施し、第6表に示す
低降伏比の複合組織鋼帯をえた。次に、このコイルにレ
ベリング、スキンパス圧延金施すことなく、半径r:3
00m、のロールを6ケ有するコイルルーパーを通し酸
洗後、500〜620Cの温度で還元処理し、460C
の溶融亜鉛めっき浴に浸漬した後、合金化処理音節す連
続溶融亜鉛めっきを施した。このようにしてえた溶融亜
鉛めっき鋼板の引張試験値を同じく第6表に示す。
Example 3 Steel with the chemical composition shown in Table 5 was melted in a converter degassing facility,
Continuous casting, hot rolled gauze plate thickness t=2.0m7H and 4.5mm0
It was made into a hot rolled coil. After pickling this coil, it was heated to 725C for 1
Tight coil box type annealing was performed for 0 hours to obtain a composite structure steel strip with a low yield ratio shown in Table 6. Next, the radius r: 3 is applied to this coil without leveling or skin pass rolling.
After pickling through a coil looper with 6 rolls of 0.00 m, reduction treatment is performed at a temperature of 500 to 620 C, and 460 C.
After being immersed in a hot-dip galvanizing bath, the alloyed syllables were subjected to continuous hot-dip galvanizing. The tensile test values of the hot-dip galvanized steel sheets thus obtained are also shown in Table 6.

第6表の板厚2.1] mlの材料はコイルルーパーに
よって、εぞt/r X 100 = 0.67係の歪
を付与され、板欅4.5朋の材料はε= t/r X 
100 = 1.5チの歪を付与されたものであるが、
εが1.3%ヲ越える後者の材料は降伏比が70%以上
の高い降伏比を示した。
The material with a plate thickness of 2.1 ml in Table 6 is given a strain of ε = t/r X
100 = 1.5chi strain is applied,
The latter material with ε exceeding 1.3% showed a high yield ratio of 70% or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例における溶融亜鉛めっき処理での
熱処理例を示す図である。 出願人  日新製鋼株式会社 第1Wj 時間(秒)
FIG. 1 is a diagram showing an example of heat treatment in hot-dip galvanizing treatment in an embodiment of the present invention. Applicant: Nisshin Steel Co., Ltd. 1st Wj Time (seconds)

Claims (1)

【特許請求の範囲】 (11A+変忰へ以上A3変態点以下の温度での焼鈍処
理によってフェライト相とマルテンサイト相を含む複合
組織を呈するように成分調整された複合組織鋼板を溶融
亜鉛めっきするにあたり、抱合組織を呈するように箱型
焼鈍したあと溶融亜鉛めっき処理するまでの中間工程に
おいてこの鋼板に付与される歪み量を1.6%以下に抑
制することを特徴とする低降伏比高張力溶融亜鉛めっき
鋼板の製造法。 (2)鋼板は、C; 0.01〜0.15%、Mn ;
 1.9〜3.0チ、sol、At; 0.005〜0
.10%、Si ; 1.0%以下を含み、さらに、1
.0%以下のOr、0.01〜0.10チのNbまたは
0.01〜0.20%のT1の1梯または2種以上を含
有し、残部がFeおよび製造上の不可避的不純物からな
るものである特許請求の範囲第1項記載の低降伏比高張
力溶融亜鉛めっき鋼板の製造法。 (3)溶融亜鉛めっき処理は、酸洗工程、還元処理工程
および亜鉛浴浸漬工程からなる連続処理ラインでの処理
である特許請求の範囲第1項または第2項記載の低降伏
比高張力溶融亜鉛めっき鋼板の製造法。 f41  A、変態点以上A3変態点以下の温度までの
焼鈍処理によってフェライト相とマルテンサイト相を含
む複合組織を呈するように成分調整された複合組織鋼板
を溶融亜鉛めっきし、さらに鉄亜鉛の合金化処理を施す
にあたり、複合組織を呈するように箱型焼鈍したあと溶
融亜鉛めっき処理するまでの中間工程においてこの鋼板
に付与される歪み量を1,3チ以下に抑制することを特
徴とする低降伏比高張力溶融亜鉛めっき鋼板の製造法。 (5)鋼板は、C; 0,01〜0.15%、Mn ;
 1.9〜3.0チ、sol、A7 ; 0.005〜
0.10%、Sj ; 1.0チ以下を含み、さらに、
1.0%以下のOr、0.01〜0.10%のNT)ま
たは0.01〜0.20%のT1の1種または2種以上
を含有し、残部がFeおよび製造上の不可避的不純物か
らなるものである特許請求の範囲第4項記載の低降伏比
高張力溶融亜鉛めっき鋼板の製造法。
[Claims] (In hot dip galvanizing a composite structure steel sheet whose composition has been adjusted to exhibit a composite structure including a ferrite phase and a martensitic phase by annealing at a temperature above 11A+transformation point and below A3 transformation point) A low-yield ratio, high-tensile welding process characterized by suppressing the amount of strain imparted to the steel sheet to 1.6% or less in an intermediate process from box-shaped annealing to exhibit a conjugated structure to hot-dip galvanizing. Method for producing galvanized steel sheet. (2) Steel sheet contains C; 0.01 to 0.15%, Mn;
1.9~3.0chi, sol, At; 0.005~0
.. 10%, Si; Contains 1.0% or less, and further contains 1
.. Contains one or more types of 0% or less Or, 0.01 to 0.10% Nb, or 0.01 to 0.20% T1, and the remainder consists of Fe and unavoidable impurities during manufacturing. A method for producing a low yield ratio, high tensile strength hot-dip galvanized steel sheet according to claim 1. (3) The hot-dip galvanizing process is performed in a continuous process line consisting of a pickling process, a reduction process, and a zinc bath immersion process. Manufacturing method of galvanized steel sheet. f41 A, a composite structure steel sheet whose composition has been adjusted to exhibit a complex structure including a ferrite phase and a martensitic phase by annealing at a temperature above the transformation point and below the A3 transformation point, is hot-dip galvanized, and further alloyed with iron-zinc. When performing the treatment, the strain applied to the steel sheet is suppressed to 1.3 inches or less in the intermediate process between box-shaped annealing to create a composite structure and hot-dip galvanizing. Manufacturing method of specific high tensile strength hot-dip galvanized steel sheet. (5) Steel plate contains C; 0.01 to 0.15%, Mn;
1.9~3.0chi, sol, A7; 0.005~
0.10%, Sj; Contains 1.0ch or less, and further,
Contains one or more of 1.0% or less of Or, 0.01 to 0.10% of NT) or 0.01 to 0.20% of T1, with the remainder being Fe and unavoidable in production. A method for producing a low yield ratio, high tensile strength hot-dip galvanized steel sheet according to claim 4, which comprises impurities.
JP15695281A 1981-10-03 1981-10-03 Production of low yield ratio and high tensile hot dipped steel plate with zinc Pending JPS5858264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15695281A JPS5858264A (en) 1981-10-03 1981-10-03 Production of low yield ratio and high tensile hot dipped steel plate with zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15695281A JPS5858264A (en) 1981-10-03 1981-10-03 Production of low yield ratio and high tensile hot dipped steel plate with zinc

Publications (1)

Publication Number Publication Date
JPS5858264A true JPS5858264A (en) 1983-04-06

Family

ID=15638912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15695281A Pending JPS5858264A (en) 1981-10-03 1981-10-03 Production of low yield ratio and high tensile hot dipped steel plate with zinc

Country Status (1)

Country Link
JP (1) JPS5858264A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243751A (en) * 1990-02-21 1991-10-30 Nippon Steel Corp Production of alloyed galvanized steel sheet
US7442268B2 (en) * 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US7608155B2 (en) * 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
WO2010011790A3 (en) * 2008-07-22 2010-04-29 Nucor Corporation Cold rolled dual phase steel sheet having high formability and method of making the same
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US8435363B2 (en) 2007-10-10 2013-05-07 Nucor Corporation Complex metallographic structured high strength steel and manufacturing same
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243751A (en) * 1990-02-21 1991-10-30 Nippon Steel Corp Production of alloyed galvanized steel sheet
US7442268B2 (en) * 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US7879160B2 (en) 2004-11-24 2011-02-01 Nucor Corporation Cold rolled dual-phase steel sheet
US7959747B2 (en) 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US8366844B2 (en) 2004-11-24 2013-02-05 Nucor Corporation Method of making hot rolled dual phase steel sheet
US7608155B2 (en) * 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US8435363B2 (en) 2007-10-10 2013-05-07 Nucor Corporation Complex metallographic structured high strength steel and manufacturing same
US9157138B2 (en) 2007-10-10 2015-10-13 Nucor Corporation Complex metallographic structured high strength steel and method of manufacturing
WO2010011790A3 (en) * 2008-07-22 2010-04-29 Nucor Corporation Cold rolled dual phase steel sheet having high formability and method of making the same

Similar Documents

Publication Publication Date Title
US5855696A (en) Ultra low carbon, cold rolled steel sheet and galvanized steel sheet having improved fatigue properties and processes for producing the same
JPH0913147A (en) High strength galvannealed steel plate excellent in formability and plating adhesion and its production
KR100264258B1 (en) Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof
EP0572666B1 (en) Cold-rolled steel sheet and galvanized cold-rolled steel sheet which are excellent in formability and baking hardenability, and production thereof
JPS5858264A (en) Production of low yield ratio and high tensile hot dipped steel plate with zinc
JP2014114489A (en) Method of producing molten zinc plated steel plate
JPS5974231A (en) Production of ultradeep drawing galvanized steel sheet
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JPH0567684B2 (en)
JP2002146475A (en) Galvannealed steel sheet
JP2010215998A (en) Method for producing high strength hot dip galvanized steel sheet, and method for producing high strength hot dip galvannealed steel sheet
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JP3001286B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent hole expandability
JP3912764B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JPH0832952B2 (en) Manufacturing method of cold-rolled steel sheet for press work with excellent chemical conversion treatability, weldability, punchability and slidability
JP3841567B2 (en) Method for producing hot dip galvanized steel sheet having high yield ratio
JP2827739B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JPS6213415B2 (en)
JPS633930B2 (en)
JPH0621334B2 (en) High strength alloyed hot dip galvanized steel sheet with excellent deep drawability and method for producing the same
JPH01123058A (en) Alloying hot dip galvanized steel sheet for superdrawing excellent in resistance to secondary working brittleness and its production
JPH04301060A (en) High strength alloyed galvanized steel sheet having seizing hardenability and excellent in powdering resistance and its production
JPH05140653A (en) Manufacture of low yield ratio cold rolled high tensile strength galvanized steel sheet excellent in pitting corrosion resistance
JPH05331596A (en) Galvannealed steel plate, using high strength hot rolled starting plate, excellent in fatigue characteristic in weld zone and its production
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value