JPH0448062A - Production of galvannealed steel sheet - Google Patents

Production of galvannealed steel sheet

Info

Publication number
JPH0448062A
JPH0448062A JP15907390A JP15907390A JPH0448062A JP H0448062 A JPH0448062 A JP H0448062A JP 15907390 A JP15907390 A JP 15907390A JP 15907390 A JP15907390 A JP 15907390A JP H0448062 A JPH0448062 A JP H0448062A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
furnace
concentration
alloying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15907390A
Other languages
Japanese (ja)
Inventor
Toshio Hayashi
林 寿雄
Motohiro Nakayama
元宏 中山
Masato Yamada
正人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15907390A priority Critical patent/JPH0448062A/en
Publication of JPH0448062A publication Critical patent/JPH0448062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To increase the alloying speed of a steel sheet as basis material and a hot-dip galvanizing layer and to produce a galvannealed steel sheet with high productivity by subjecting a P-containing steel sheet as a basis material to continuous annealing in a specific atmosphere in a furnace and then to galvannealing. CONSTITUTION:At the time of producing a galvannealed steel sheet containing >=0.025wt.% P as a chemical component of a steel sheet as a basis material, the atmosphere in a furnace is regulated so that it has <=-30 deg.C dew point, >=3% H2 volume concentration, and <=1,000ppm O2 volume concentration in the region of >=300 deg.C steel sheet temp. in a continuous annealing furnace prior to hot dipping. By this continuous annealing, the surface concentration of P accelerated by the presence of oxidation phenomenon can be inhibited. By this method, the alloying reaction velocity of the P-added steel can be improved without increasing equipment costs and treatment costs in particular.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、素地鋼板の化学成分として0.025重量%
以上のPを含有する合金化溶融亜鉛めっき鋼板を製造す
るに際し、素地鋼板と溶融亜鉛めっき層の合金化速度を
高める方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is based on the chemical composition of a base steel sheet of 0.025% by weight.
The present invention relates to a method for increasing the rate of alloying between a base steel sheet and a hot-dip galvanized layer when producing the above alloyed hot-dip galvanized steel sheet containing P.

(従来の技術) 自動車、家電製品をはじめ各種耐久消費材の商品価値を
決める要素として、近年、耐食性の重要性は益々高まる
ばかりである。中でも合金化溶融亜鉛めっき鋼板は、塗
装後の耐食性が優れることから、塗装を前提としたかか
る産業分野において、著しい需要の伸びがある。
(Prior Art) Corrosion resistance has become increasingly important in recent years as a factor that determines the commercial value of various durable consumer products such as automobiles and home appliances. Among these, alloyed hot-dip galvanized steel sheets have excellent corrosion resistance after painting, so there is a remarkable growth in demand in such industrial fields where painting is the premise.

合金化溶融亜鉛めっき鋼板は、一般に、連続熱処理ライ
ン内で再結晶熱処理を行った後、Ag。
Alloyed hot-dip galvanized steel sheets are generally made of Ag after recrystallization heat treatment in a continuous heat treatment line.

Fcなどの微量成分を含有する溶融亜鉛浴に浸漬して溶
融亜鉛めっきを施し、かかる後、素地鋼板と亜鉛めっき
層を熱拡散処理することによって製造される。
It is manufactured by applying hot-dip galvanizing by immersing it in a hot-dip zinc bath containing trace components such as Fc, and then subjecting the base steel sheet and the galvanized layer to a thermal diffusion treatment.

該熱拡散処理に要する熱量は、素地鋼板と亜鉛めっき層
との相互拡散速度(以下、合金化反応速度と称す)に律
速され、特に、素地鋼板に含有されるPは合金化反応速
度を低下せしめる元素として知られている。
The amount of heat required for the thermal diffusion treatment is determined by the mutual diffusion rate between the base steel sheet and the galvanized layer (hereinafter referred to as alloying reaction rate), and in particular, P contained in the base steel sheet reduces the alloying reaction rate. It is known as a stimulating element.

近年の燃費向上を0指した車体軽量化ニーズの高まりの
中、鋼板強度を高めて板厚を減少させる試みが続けられ
ており、Pは最も効率的な強化元素であることから、積
極的に鋼成分として添加される傾向にある。
In recent years, as the need for lighter vehicle bodies has increased with zero focus on improving fuel efficiency, attempts have been made to increase the strength of steel sheets and reduce their thickness, and since P is the most efficient reinforcing element, active efforts are being made to It tends to be added as a steel component.

その結果、P含有鋼板を素材として合金化溶融亜鉛めっ
き鋼板を製造する際の低い合金化反応速度は、生産性を
低下させる問題として顕在化してきている。
As a result, the low alloying reaction rate when producing alloyed hot-dip galvanized steel sheets from P-containing steel sheets has become a problem that reduces productivity.

P含有鋼板と溶融亜鉛めっき層の合金化速度を高める従
来技術として、連続溶融亜鉛めっきラインを通板するに
先立ち素地鋼板上にFc、Ni等の電気めっき層を付与
して表層のP濃化層を被覆する方法(以下、プレメツキ
法と称す)等が開示されている。
As a conventional technique for increasing the alloying speed of P-containing steel sheets and hot-dip galvanized layers, an electroplating layer of Fc, Ni, etc. is applied to the base steel sheet before passing it through a continuous hot-dip galvanizing line to enrich P in the surface layer. A method of coating a layer (hereinafter referred to as a pre-plating method) and the like are disclosed.

プレメツキ法は特別な電気めっき設備を要することから
、設備コスト、処理コストの著しい上昇につながり、抜
本的な改善技術とは言えない。
Since the pre-plating method requires special electroplating equipment, it leads to a significant increase in equipment cost and processing cost, and cannot be called a fundamental improvement technology.

(発明が解決しようとする課題) 本発明の目的は、鋼板にPを含有する合金化溶融亜鉛め
っき鋼板を製造するに際し、Pの表層への濃化を抑制し
て素地鋼板と溶融亜鉛めっき層の合金化速度を高め、生
産性を向上せしめる製造方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to suppress the concentration of P in the surface layer when manufacturing an alloyed hot-dip galvanized steel sheet containing P in the steel sheet, and to The object of the present invention is to provide a manufacturing method that increases the alloying speed of the alloy and improves productivity.

(課題を解決するための手段) 本発明は、素地鋼板の化学成分として0.025重量%
以上のPを含有する合金化溶融亜鉛めっき鋼板を製造す
るに際し、溶融めっきに先立つ連続焼鈍炉内の鋼板温度
≧300℃の領域において、炉内雰囲気を露点≦−30
℃、H2体積濃度≧3%、O2体積濃度≦11000p
pとすることを特徴とする合金化溶融亜鉛めっき鋼板の
製造方法である。
(Means for Solving the Problems) The present invention provides 0.025% by weight of the chemical composition of the base steel sheet.
When manufacturing an alloyed hot-dip galvanized steel sheet containing the above P, the atmosphere in the furnace must be maintained at a dew point ≦-30°C in a range where the steel plate temperature is ≧300°C in a continuous annealing furnace prior to hot-dipping.
°C, H2 volume concentration ≧3%, O2 volume concentration ≦11000p
This is a method for manufacturing an alloyed hot-dip galvanized steel sheet, characterized in that p.

本発明者等は、まず連続溶融亜鉛めっきラインにおける
Pの表面濃化現象の基本メカニズムを詳細に検討し、以
下の新規知見を得た。
The present inventors first studied in detail the basic mechanism of the surface concentration phenomenon of P in a continuous hot-dip galvanizing line, and obtained the following new findings.

即ち、第一に、P添加鋼の合金化反応速度が劣る理由は
、素地鋼板の表面に濃化したPが亜鉛浴中のAgと強固
な障壁を形成し、素地鉄と溶融亜鉛の相互拡散を極端に
抑制するためである。第二に、Pは界面に偏析する元素
としてよく知られるが、その濃化程度は粒界、表面で異
なり、表面には濃化が著しいこと、第三に、表面への濃
化は単に表面がより自由な界面であること以外に、酸化
現象の介在によって著しく促進されていることである。
Firstly, the reason why the alloying reaction rate of P-added steel is inferior is that the concentrated P on the surface of the base steel plate forms a strong barrier with the Ag in the zinc bath, and the mutual diffusion of the base steel and molten zinc is inhibited. This is to extremely suppress the Second, P is well known as an element that segregates at interfaces, but the degree of concentration differs between grain boundaries and the surface, with significant concentration occurring on the surface. Third, concentration on the surface is simply due to the concentration on the surface. Besides being a freer interface, it is also significantly promoted by the intervention of oxidation phenomena.

更に、かかる酸化現象の介在によって促進されるPの表
面濃化は、溶融亜鉛めっきに先立つ連続焼鈍炉内の雰囲
気を制御すること、具体的には、鋼板温度≧300℃の
領域において、炉内雰囲気を露点≦−30℃、H2体積
濃度≧3%、O2体積濃度≦11000ppとすること
によって抑制できることである。
Furthermore, the surface concentration of P promoted by the intervention of such an oxidation phenomenon can be prevented by controlling the atmosphere in the continuous annealing furnace prior to hot-dip galvanizing. This can be suppressed by setting the atmosphere to have a dew point≦-30°C, a H2 volume concentration≧3%, and an O2 volume concentration≦11000pp.

以上の新規知見に基づき、本発明は完成されたものであ
る。
The present invention has been completed based on the above new findings.

素地鋼板の化学成分としてP含有量を0.025ffi
量%以上とするのは、該P含有量範囲において合金化反
応速度の低下が実用的に顕在化するためである。
The P content is 0.025ffi as a chemical component of the base steel sheet.
The reason why the amount is set at % or more is because the reduction in the alloying reaction rate becomes practically noticeable in the P content range.

連続焼鈍炉内で雰囲気を制御する領域を鋼板温度が30
0℃以上になる領域とする理由は、300℃以上の温度
範囲で鋼板の酸化およびPの表面濃化が顕著になること
による。より低い温度においても同様の雰囲気制御を行
うことは可能である。
The area where the atmosphere is controlled in the continuous annealing furnace has a steel plate temperature of 30
The reason for setting the temperature in the range of 0°C or higher is that oxidation of the steel sheet and surface concentration of P become noticeable in the temperature range of 300°C or higher. It is possible to perform similar atmosphere control even at lower temperatures.

炉内雰囲気を露点≦−30℃、H2体vtfIi度≧3
%、02体積濃度≦11000ppとするのは、該条件
範囲を同時に満たすとPの表面濃化抑制が確実にできる
ためである。露点は雰囲気中のH2O量に対応する指標
であり、H2体積濃度は温度、露点との相対関係によっ
て鋼板表面の酸化・還元程度に影響する。
The atmosphere in the furnace is dew point ≦-30℃, H2 body vtfIi degree ≧3
%, 02 volume concentration≦11,000 pp is because if the above condition ranges are simultaneously satisfied, the surface concentration of P can be reliably suppressed. The dew point is an index corresponding to the amount of H2O in the atmosphere, and the H2 volume concentration affects the degree of oxidation/reduction on the surface of the steel sheet depending on the relative relationship with the temperature and dew point.

0゜体積濃度も表面酸化程度をきめる指標であり、本発
明者等の検討結果によれば、上記雰囲気条件の範囲でP
の表面濃化は実質的に問題のないレベルに低下するが、
望ましくは、鋼板温度が300℃以上になる領域で炉内
雰囲気を露点≦−40℃、H体積濃度≧4%、02体積
濃度≦200pp−である。
The 0° volume concentration is also an index for determining the degree of surface oxidation, and according to the study results of the present inventors, within the above atmospheric conditions, P
surface concentration is reduced to a virtually non-problematic level, but
Desirably, in a region where the steel plate temperature is 300°C or higher, the atmosphere in the furnace is such that the dew point is ≦-40°C, the H volume concentration is ≧4%, and the 02 volume concentration is ≦200 pp-.

炉内の他の微量ガス成分は一般的に用いられているもの
でよい。
Other trace gas components in the furnace may be those commonly used.

素地鋼板の製造方法に関して、その機械的性質を高める
目的から熱間圧延後に700℃以上程度の高温で捲取処
理を実施したり、あるいは、連続溶融亜鉛めっきライン
を通板するに先立って箱型焼鈍を施す場合がある。かか
る場合には、これら工程で既にPの表面濃化が起こり、
本発明は、かかる製造プロセスに対しても有効である。
Regarding the manufacturing method of the base steel sheet, in order to improve its mechanical properties, after hot rolling it is rolled at a high temperature of 700℃ or higher, or it is rolled into a box shape before being passed through a continuous hot-dip galvanizing line. Annealing may be applied. In such a case, surface concentration of P has already occurred in these steps,
The present invention is also effective for such manufacturing processes.

また、素地鋼板の表面に濃化したPを機械的あるいは化
学的に除去するために、連続溶融亜鉛めっきラインの入
側もしくは他の特別な設備を利・用して、表面研削、酸
洗等の化学処理を実施する場合がある。本発明は、かか
る処理と併用した場合にも効果的であり、むしろ、より
著しい効果が得られるものである。
In addition, in order to mechanically or chemically remove P concentrated on the surface of the base steel sheet, surface grinding, pickling, etc. Chemical treatment may be carried out. The present invention is also effective when used in combination with such treatment, and in fact, even more significant effects can be obtained.

合金化反応速度に関しては、洛中のAn)濃度が影響を
与えることが知られており、洛中のAfi濃度を低い範
囲に制限することによりP添加鋼の合金化速度は向上す
る。Apをはじめとする浴中微量成分を制約した場合に
も、本発明は効果を発揮する。また、浴への侵入板温度
、浴温度等も全ての範囲に対して適用可能である。
It is known that the alloying reaction rate is influenced by the An) concentration in the alloy, and by limiting the Afi concentration in the alloy to a low range, the alloying rate of P-added steel can be improved. The present invention is also effective when limiting trace components such as Ap in the bath. Further, the plate temperature entering the bath, the bath temperature, etc. can also be applied to all ranges.

連続焼鈍炉の形式は、該雰囲気条件を満足する観点から
、ラジアントチューブによる間接加熱方式、還元炎を利
用した直火加熱方式、あるいは両者の併用型が望ましい
From the viewpoint of satisfying the atmospheric conditions, the continuous annealing furnace is preferably an indirect heating method using a radiant tube, a direct heating method using a reducing flame, or a combination of both.

以上述べた本発明により、特別な設備コスト、処理コス
トの上昇を招くことなく、P添加鋼の合金化反応速度向
上が可能となるものである。
The present invention described above makes it possible to improve the alloying reaction rate of P-added steel without increasing special equipment costs or processing costs.

(実 施 例) 第1表に示すP含有量の鋼板を素材として溶融亜鉛めっ
きラインを通板し、合金化溶融亜鉛めっき鋼板を製造し
た。
(Example) Steel sheets having P contents shown in Table 1 were passed through a hot-dip galvanizing line to produce alloyed hot-dip galvanized steel sheets.

P以外の鋼中化学成分は、C: 0.0015〜0.0
48、S I:0.旧〜0.65、Mn:0.10〜!
、00、S :O,OOl 〜0.050 、l :0
.001〜0.080 、N : 0.0005〜o、
ooeo、Nb:O〜0.035、TI:0〜0.09
0、B:0〜0.050(重量%)、および他の不可避
的不純物からなり、以下の実施例では、合金化速度に対
してPが最も支配的な影響を示した。
Chemical components in steel other than P are C: 0.0015 to 0.0
48, SI: 0. Old~0.65, Mn:0.10~!
,00,S:O,OOl~0.050,l:0
.. 001~0.080, N: 0.0005~o,
ooeo, Nb: O ~ 0.035, TI: 0 ~ 0.09
0, B: 0 to 0.050 (wt%), and other unavoidable impurities, with P showing the most dominant influence on the alloying rate in the following examples.

該化学成分の素地鋼を、加熱温度: 1250℃、仕上
げ温度:920℃、巻取り温度=730℃で板厚4.0
mmに熱間圧延した後、塩酸酸洗にて脱スケール処理し
、80%の冷間圧延を施して、板厚0.l1mmに溶融
亜鉛めっき用素材とした。溶融亜鉛めっきラインでは、
第1表に示す連続焼鈍炉内雰囲気条件で焼鈍した。
The base steel having the chemical composition was heated to a thickness of 4.0 at a heating temperature of 1250°C, a finishing temperature of 920°C, and a winding temperature of 730°C.
After hot rolling to a thickness of 0.2 mm, descaling treatment was performed by pickling with hydrochloric acid, and cold rolling was performed to a thickness of 0.2 mm. It was used as a material for hot-dip galvanizing to 1 mm. In the hot dip galvanizing line,
Annealing was performed under the atmospheric conditions in the continuous annealing furnace shown in Table 1.

連続炉形式は、NO,I2がラジアントチューブ方式に
よる間接加熱炉、No、7.14が還元炎による直火加
熱とラジアントチューブ方式による間接加熱の併用、他
は無酸化炉(NOF) 、間接加熱炉の併用である(併
用型の場合は、間接加熱を高温域に採用)。最高板温は
、750〜850℃である。浴への侵入板温度は460
〜520℃、浴温度:450〜470℃であり、浴成分
は第1表に示す。
Continuous furnace types include: NO and I2 are indirect heating furnaces using a radiant tube method, No. 7.14 is a combination of direct heating using a reducing flame and indirect heating using a radiant tube method, and the others are non-oxidizing furnaces (NOF) and indirect heating. A furnace is used in combination (in the case of a combination type, indirect heating is used in the high temperature range). The maximum plate temperature is 750 to 850°C. The temperature of the plate entering the bath is 460
~520°C, bath temperature: 450~470°C, and bath components are shown in Table 1.

亜鉛めっき間を60〜62g/dに制御し、一定の熱量
を与えて合金化処理を実施した。本実施例範囲の侵入板
温度、浴温度は合金化速度に有意な差を与えなかった。
Alloying treatment was carried out by controlling the galvanizing distance to 60 to 62 g/d and applying a constant amount of heat. The interstitial plate temperature and bath temperature within the range of this example did not give any significant difference in the alloying rate.

合金化速度は、表面まで合金化が完了する最高ライン速
度(合金化に要する時間の逆数)でif価した。
The alloying speed was determined by the maximum line speed (reciprocal of the time required for alloying) at which alloying to the surface was completed.

第1表に示す結果より、本発明によれば、P添加鋼の溶
融亜鉛めっき層との合金化反応速度が著しく向上するこ
とが明らかである。
From the results shown in Table 1, it is clear that according to the present invention, the alloying reaction rate of P-added steel with the hot-dip galvanized layer is significantly improved.

(発明の効果) 本発明は、P添加鋼を素材として合金化溶融亜鉛めっき
鋼板を製造する場合の高生産性製造を可能にするもので
あり、その意義は極めて大きいものがある。
(Effects of the Invention) The present invention enables highly productive production of alloyed hot-dip galvanized steel sheets using P-added steel as a raw material, and has extremely great significance.

Claims (1)

【特許請求の範囲】[Claims]  素地鋼板の化学成分として0.025重量%以上のP
を含有する合金化溶融亜鉛めっき鋼板を製造するに際し
、溶融めっきに先立つ連続焼鈍炉内の鋼板温度≧300
℃の領域において、炉内雰囲気を露点≦−30℃、H_
2体積濃度≧3%、O_2体積濃度≦1000ppmと
することを特徴とする合金化溶融亜鉛めっき鋼板の製造
方法。
0.025% by weight or more of P as a chemical component of the base steel sheet
When manufacturing an alloyed hot-dip galvanized steel sheet containing
In the range of °C, the atmosphere inside the furnace has a dew point ≦ -30 °C, H_
2 volume concentration≧3% and O_2 volume concentration≦1000 ppm.
JP15907390A 1990-06-18 1990-06-18 Production of galvannealed steel sheet Pending JPH0448062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15907390A JPH0448062A (en) 1990-06-18 1990-06-18 Production of galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15907390A JPH0448062A (en) 1990-06-18 1990-06-18 Production of galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JPH0448062A true JPH0448062A (en) 1992-02-18

Family

ID=15685630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15907390A Pending JPH0448062A (en) 1990-06-18 1990-06-18 Production of galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JPH0448062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534537A (en) * 2006-04-26 2009-09-24 ティッセンクルップ スチール アクチェンゲゼルシャフト Method of melt dip coating of flat steel products made of high toughness steel
CN115613030A (en) * 2022-05-05 2023-01-17 首钢集团有限公司 Production method of phosphorus-containing galvanized steel with excellent surface quality for automobiles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534537A (en) * 2006-04-26 2009-09-24 ティッセンクルップ スチール アクチェンゲゼルシャフト Method of melt dip coating of flat steel products made of high toughness steel
CN115613030A (en) * 2022-05-05 2023-01-17 首钢集团有限公司 Production method of phosphorus-containing galvanized steel with excellent surface quality for automobiles
CN115613030B (en) * 2022-05-05 2024-10-18 首钢集团有限公司 Production method of phosphorus-containing galvanized steel with excellent surface quality for automobiles

Similar Documents

Publication Publication Date Title
JP2587724B2 (en) Method for producing high Si content high tensile galvanized steel sheet with good plating adhesion
CN110863137B (en) Method for manufacturing hot-dip aluminum-zinc steel plate
US9677148B2 (en) Method for manufacturing galvanized steel sheet
JP2587725B2 (en) Method for producing P-containing high tensile alloyed hot-dip galvanized steel sheet
WO2013042356A1 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating
JPH11131145A (en) Production of high strength and high ductility hot-dip galvanized steel sheet
JPH11293396A (en) High strength hot dip galvanized steel sheet, galvannealed steel sheet, and their production
JPH0448062A (en) Production of galvannealed steel sheet
JP2705386B2 (en) Hot-dip galvanizing method for Si-containing steel sheet
JP2695260B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP2674429B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
JPH04176854A (en) Production of aluminized steel sheet excellent in adhesive strength of plating and external appearance characteristic
JP2001026852A (en) Production of galvanized steel sheet and galvannealed steel sheet
JP3446002B2 (en) Method for producing thin steel sheet for paint base with excellent surface appearance and press formability
US4878960A (en) Process for preparing alloyed-zinc-plated titanium-killed steel sheet having excellent deep-drawability
JP3166568B2 (en) Manufacturing method of hot-dip galvanized steel
JP2540089B2 (en) Method for producing hot-dip galvanized steel sheet having excellent bake hardenability
KR940000873B1 (en) Method for making a hot-dipped zinc coating steel sheet of high strength steel
KR910007949B1 (en) Process for preparing alloyed - zinc - plated titanium - killed steel sheet having excellent deep - drawability
KR900004853B1 (en) Making process for steel plate for galvanization
JPH03191046A (en) Manufacture of alloyed hot-dip galvanized steel sheet having excellent film workability
JPH04276027A (en) Manufacture of galvanized hot rolled steel sheet excellent in deep drawability and baking hardenability
JPH05279829A (en) Production of high tensile strength galvannealed steel sheet
JPH02159355A (en) Production of plated steel sheet having excellent deep drawability