JPS61288374A - Organic electrolyte cell - Google Patents

Organic electrolyte cell

Info

Publication number
JPS61288374A
JPS61288374A JP60130105A JP13010585A JPS61288374A JP S61288374 A JPS61288374 A JP S61288374A JP 60130105 A JP60130105 A JP 60130105A JP 13010585 A JP13010585 A JP 13010585A JP S61288374 A JPS61288374 A JP S61288374A
Authority
JP
Japan
Prior art keywords
battery
impurities
organic electrolyte
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60130105A
Other languages
Japanese (ja)
Inventor
Toshihiko Izumikawa
泉川 敏彦
Masaki Nakai
中井 正樹
Hayashi Hayakawa
早川 林
Kiyoto Watanabe
清人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60130105A priority Critical patent/JPS61288374A/en
Publication of JPS61288374A publication Critical patent/JPS61288374A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve preserving property of a cell, by using an alkaline metal including silicone dioxide or a silicate compound as a negative electrode active substance. CONSTITUTION:To remove impurities in an organic electrolyte, such as peroxide compounds typically, and impurities melted from a positive electrode composite 4, an alkaline metal including silicone dioxide or a silicate compound is used as a negative electrode active substance. Therefore, the impurities in the organic electrolyte, peroxide compounds as a typical one, and the impurities melted from the positive electrode composite are absorbed or decomposed to make a stable compound by the silicone dioxide or the silicate compound, and so a lithium 2 surface, which is a negative electrode active substance, is not contaminated, whose active condition is maintained. Consequently, the preserving property can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in organic electrolyte batteries.

従来の技術 有機電解液電池は高エネルギー密度を有しておシ、保存
性能が他の電池系と比較して、数段すぐれていることか
ら、近年エレクトロニクス分野の発達とともに、各種エ
レクトロニクス機器の電源、特にメモリーバックアップ
用電源として注目をあびている。そのために、さらに長
期保存の信頼性、電池間のバラツキの圧縮が求められて
いる。
Conventional technology Organic electrolyte batteries have high energy density and storage performance that is much superior to other battery systems, so in recent years, with the development of the electronics field, they have become popular as power sources for various electronic devices. It is attracting attention, especially as a memory backup power supply. To this end, there is a need for further reliability in long-term storage and reduction of variations between batteries.

アルカリ金属を負極活物質とする電池では、電池内部に
水分、酸素、その他の不純物が存在すると、ガス発生、
電圧劣化、容量の低下、内部抵抗の増大(内部抵抗のバ
ラツキ大)、保存性能の劣化などの原因となる。それ故
に、前記不純物等は十分除去されることが望まれる。
In batteries that use alkali metals as negative electrode active materials, if moisture, oxygen, or other impurities are present inside the battery, gas generation,
This causes voltage deterioration, capacity reduction, increase in internal resistance (large variation in internal resistance), and deterioration in storage performance. Therefore, it is desired that the impurities and the like be sufficiently removed.

前記不純物等を除去する目的で、従来、下記のような電
池材料の前処理を行っているoリチウム電池を例にとる
と、 ■ 有機電解液 ・有機溶媒の精製(有機溶媒としては、ジメトキシエタ
ン、プロピレンカーボネイト、テトラハイドロフラン、
γ−ブチロラクトン、ジェトキシエタン、ジオキンラン
等の誘電率の高い溶媒が主に使用される0) 蒸m、”モレキュラシーブによる脱水 ・電解質(アルカリ金属塩、例えば、L L P Fe
 +LiCρ4 t LIA8F6 p LiBF4等
)真空乾燥による脱水 ■ 各種部品(ケース、封目板、ガスケット、セパレー
タ) 真空乾燥による水分除去 高湿乾燥による水分除去 ■ 活物質 ・リチウム−溶融精製 ・正極合剤(主に正極活物質、導電材、結着材よりなる
)−真空乾燥による水分除去このような前処理を行って
いるにもかかわらず、電池組立終了までに、大気中の水
分、酸素及びその他の爽雑物が電池内部に混入してくる
。又、上記のような前処理によっては除去されない不純
物も電池内部に混入する。それ故に、電池特性を充分に
向上させることができなかった0 発明が解決しようとする問題点 有機電解液電池は、水溶液系電池に比較して、各種材料
の精製、特に正極合剤及び電解液の精製が困難であシ、
種々の不純物が電池内に存在している。又、前記のごと
く大気中の水分、酸素及びその他の爽雑物も電池内部に
混入する。
Taking the example of a lithium battery, in which battery materials are conventionally pretreated in the following manner in order to remove the impurities, etc.: ■ Purification of organic electrolytes and organic solvents (dimethoxyethane is used as an organic solvent) , propylene carbonate, tetrahydrofuran,
Solvents with high dielectric constants such as γ-butyrolactone, jetoxyethane, and dioquinrane are mainly used.
+LiCρ4 t LIA8F6 p LiBF4, etc.) Dehydration by vacuum drying ■ Various parts (case, sealing plate, gasket, separator) Moisture removal by vacuum drying Moisture removal by high humidity drying ■ Active material, lithium - melt purification, positive electrode mixture (mainly (composed of cathode active material, conductive material, and binder) - Moisture removal by vacuum drying Despite this pretreatment, moisture, oxygen, and other moisture in the atmosphere are removed by the end of battery assembly. Foreign matter gets inside the battery. Furthermore, impurities that cannot be removed by the above-mentioned pretreatment also enter the battery. Therefore, the battery characteristics could not be sufficiently improved.0 Problems to be Solved by the Invention Organic electrolyte batteries, compared to aqueous batteries, require the purification of various materials, especially the positive electrode mixture and electrolyte solution. It is difficult to purify
Various impurities are present within batteries. Furthermore, as described above, moisture, oxygen, and other impurities in the atmosphere also enter the battery.

また、有機電解液電池は、リチウムに代表される活性な
アルカリ金属を負極活物質に使用している。それ故に、
電池内部に存在している不純物が、活性なリチウム金属
と反応して不働態皮膜を形成し、内部抵抗の増大、電池
容量の低下、電圧の低下等の問題があった。
Furthermore, organic electrolyte batteries use active alkali metals such as lithium as negative electrode active materials. Therefore,
Impurities present inside the battery react with active lithium metal to form a passive film, resulting in problems such as an increase in internal resistance, a decrease in battery capacity, and a decrease in voltage.

有機電解液は、通常2種類又は3種類の有機溶媒を混合
し、これに前記の電解質を溶解させることによって調製
している。前記調製工程には撹拌工程が含まれておシ、
雰囲気中の不純物が前記電解液中に混入してくる。また
、前記有機溶媒は、蒸溜及びモレキュラシーブ処理によ
って精製されているが、いずれも大気中での処理であシ
、前記溶媒中には、酸素が溶解している。また、前記撹
拌工程中にも酸素が溶解する。有機電解液中に溶解して
いる酸素は、前記有機溶媒、特にエーテル結合を有する
前記有機溶媒と反応し、パーオキサイド化合物が生成す
ることが一般に知られている。
Organic electrolytes are usually prepared by mixing two or three types of organic solvents and dissolving the electrolyte in the mixture. The preparation step includes a stirring step,
Impurities in the atmosphere mix into the electrolyte. Further, the organic solvent is purified by distillation and molecular sieve treatment, but both treatments are performed in the atmosphere, and oxygen is dissolved in the solvent. Furthermore, oxygen is dissolved during the stirring step as well. It is generally known that oxygen dissolved in an organic electrolyte reacts with the organic solvent, particularly the organic solvent having an ether bond, to produce a peroxide compound.

さらに、パーオキサイド化合物は、アルカリ金属と化合
しやすいために、電池負極活物質であるリチウムと反応
し、有機化合物の不働態皮膜がリチウム表面上に形成さ
れる。それ故に電池の内部抵抗の上昇、電圧の低下、電
池容量の低下が引き起こされる。
Furthermore, since peroxide compounds easily combine with alkali metals, they react with lithium, which is a battery negative electrode active material, and a passive film of an organic compound is formed on the lithium surface. This causes an increase in the internal resistance of the battery, a decrease in voltage, and a decrease in battery capacity.

一方、正極合剤は、正極活物質、導電材、結着材を混練
し、乾燥後、ベレット状に成型し、さらに、電池組立前
に真空乾燥を行っているが、前記工程には、乾燥工程し
か含まれておらず、前記材料中に含まれている不純物、
特に有機化合物は除中に溶出し、活性なリチウムと反応
してリチウム表面に不働態皮膜を形成し、電池保在中に
内部抵抗が上昇するという問題があった。
On the other hand, the positive electrode mixture is made by kneading the positive electrode active material, conductive material, and binding material, forming it into a pellet shape after drying, and then vacuum drying it before battery assembly. impurities contained in the material, which only includes processes;
In particular, organic compounds are eluted during removal, react with active lithium, form a passive film on the lithium surface, and there is a problem in that the internal resistance increases during storage of the battery.

本発明は、上記のような従来の問題点を解消し、保存性
能が優れ、かつ電池特性の優れた有機電解液電池を提供
することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and provide an organic electrolyte battery with excellent storage performance and excellent battery characteristics.

問題点を解決するための手段 この問題点を解決するために本発明は、パーオキサイド
化合物に代表される有機電解液中の不純物及び、正極合
剤より溶出する不純物を除去するために、二酸化ケイ素
又はケイ酸塩化合物を含んだアルカリ金属を負極活物質
として用いたものである。
Means for Solving the Problem In order to solve this problem, the present invention uses silicon dioxide to remove impurities in the organic electrolyte represented by peroxide compounds and impurities eluted from the positive electrode mixture. Alternatively, an alkali metal containing a silicate compound is used as a negative electrode active material.

作  用 この構成によれば、有機電解液中に含まれるパーオキサ
イド化合物に代表される不純物及び正極合剤から浴出す
る不純物を、二酸化ケイ素又はケイ酸塩化合物が吸着又
は分解して安定な化合物となるために、負極活物質であ
るリチウム表面は汚染されず、活性な状態が保たれる。
Function: According to this configuration, the silicon dioxide or silicate compound adsorbs or decomposes impurities represented by peroxide compounds contained in the organic electrolyte and impurities leached from the positive electrode mixture, thereby converting them into stable compounds. Therefore, the surface of lithium, which is the negative electrode active material, is not contaminated and remains active.

それ故に、前記内部抵抗の増大や電圧の低下は解消され
、保存特性が飛躍的に向上する。
Therefore, the increase in internal resistance and drop in voltage are eliminated, and the storage characteristics are dramatically improved.

実施例 以下本発明の実施例を第1図を参照して説明する。第1
図は、リチウム−フッ化炭素系の扁平形有機電解液電池
であシ、その容量は250m1辿である。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIG. 1st
The figure shows a lithium-fluorocarbon type flat organic electrolyte battery, and its capacity is 250 m1.

図中1は、厚さ0.30ffllのステンレス鋼板を外
径22.7fflllに打抜き加工した封口板、2は本
発明の二酸化ケイ素を100 ppm含んだリチウムで
あシ、直径20jrj!、厚さo、5oarzに加工し
て、前記封口板1に圧着している。3はポリプロピレン
ヨシなるセパレータで、厚さ0.40fflのシートを
外径23.5 MMに打抜き、コツプ状に形成し、前記
封口板内に挿入している。
In the figure, 1 is a sealing plate made by punching a stainless steel plate with a thickness of 0.30 ffll to an outer diameter of 22.7 fflll, and 2 is a sealing plate made of lithium containing 100 ppm of silicon dioxide of the present invention, with a diameter of 20 jrj! , thickness o, 5 oarz and press-bonded to the sealing plate 1. Reference numeral 3 denotes a separator made of polypropylene reed, which was punched out from a sheet with a thickness of 0.40 ffl to an outer diameter of 23.5 mm, formed into a pot shape, and inserted into the sealing plate.

4は正極合剤ペレットであシ、フッ化炭素100重量部
に、アセチレンブラック10重量部、フッ素樹脂、14
重量部を混練し、乾燥粉砕後ベレット状に成型したもの
であシ、その重量は450ダである。
4 is a positive electrode mixture pellet, 100 parts by weight of fluorocarbon, 10 parts by weight of acetylene black, fluororesin, 14
Parts by weight were kneaded, dried and pulverized, and then molded into a pellet shape, and the weight was 450 Da.

5は絶縁バッキングで8シ、断面り字状にポリプロピレ
ンを成型した後、主にブロンアスファルトよシなる封止
剤を内側に塗布し、前記封口板との周縁に嵌合しである
。6は正極端子を兼ねる正極ケースであシ、ステンレス
鋼板を外型24,4fl。
5 is an insulating backing, after molding polypropylene into a cross-sectional shape, a sealing agent mainly made of blown asphalt is applied to the inside, and it is fitted to the periphery of the sealing plate. 6 is a positive electrode case which also serves as a positive electrode terminal, and the outer mold is 24.4fl made of stainless steel plate.

高さ3.2M肩に打抜き加工している。了は正極集電体
であり幅12.0ff*、厚さ0.1o朋のチタンシー
トを12.Off1l!角に切り抜き、折シ曲げてバネ
状とし、前記正極ケースに溶接している。さらに、その
表面には、前記正極ベレットとの接触を良好にする目的
で、炭素被膜を形成している。電解液には、1.2−ジ
ェトキシエタン、グロビレンカーボネイト等の容積混合
溶媒にホウフッ化リチウムを1モル/lの割合で溶解し
たものを使用している。
It is punched into a shoulder with a height of 3.2M. The positive electrode current collector is a titanium sheet with a width of 12.0 ff* and a thickness of 0.1 mm. Off1l! It is cut out into corners, bent to form a spring shape, and welded to the positive electrode case. Further, a carbon film is formed on the surface of the electrode for the purpose of improving contact with the positive electrode pellet. The electrolytic solution used is one in which lithium borofluoride is dissolved in a volumetric mixed solvent such as 1,2-jethoxyethane and globylene carbonate at a ratio of 1 mol/l.

なお、この例では、正極活物質として、フッ化炭素を用
いたが、この他に有機電解液電池の活物質として知られ
ている、酸化銅、硫化鉄、二酸化マンガン、クロム酸銀
などを使用する電池系においても同様に適用できる。
In this example, carbon fluoride was used as the positive electrode active material, but other materials known as active materials for organic electrolyte batteries, such as copper oxide, iron sulfide, manganese dioxide, and silver chromate, were also used. It can be similarly applied to battery systems.

次に本実施例の電池をA、従来例をBとし、組立直後及
びso’Cに6力月保存後の電池特性を次の第1表に示
す。
Next, the battery of this embodiment is designated as A, and the conventional example is designated as B, and the battery characteristics immediately after assembly and after storage in SO'C for 6 months are shown in Table 1 below.

第  1  表 nミ各50個 この第1表よシ明らかなように、本実施例の電池は組立
直後において、従来例よりも静特性が安定しておシ、放
電容量も従来例よシ向上している。
Table 1: 50 units each for n types As is clear from Table 1, immediately after assembly, the battery of this example has more stable static characteristics than the conventional example, and the discharge capacity is also higher than that of the conventional example. are doing.

又、60℃6ケ月保存後においても、本実施例の電池は
、従来例に比較して、すぐれた特性を有していることを
示している。
Furthermore, even after storage at 60° C. for 6 months, the battery of this example shows superior characteristics compared to the conventional example.

第2図は、本実施例の電池A及び従来例の電池Bの60
℃保存における内部抵抗、開路電圧の推移を示している
Figure 2 shows battery A of this embodiment and battery B of a conventional example.
It shows the changes in internal resistance and open circuit voltage during storage at ℃.

図よシ明らかなように、本実流側品Aは、保存中の内部
抵抗の上昇およびバラツキが小さく、安定している。又
、開路電圧についても同様である。
As is clear from the figure, the actual product A is stable with little increase and variation in internal resistance during storage. The same applies to the open circuit voltage.

本実施例では、二酸化ケイ素を含んだリチウムを用いて
たが、ケイ酸塩化合物を含んだリチウムを用いてもP1
様の効果が得られる。
In this example, lithium containing silicon dioxide was used, but even if lithium containing a silicate compound was used, the P1
Similar effects can be obtained.

本発明の二酸化ケイ素又はケイ酸塩化合物の負極活物質
中における最適含有量を決定するために、含有量を変化
させ、内部抵抗のバラツキと、放電容量を確認した。そ
の結果は第2表のとおシであった。なお、表中××は極
めて悪い、×は悪い、○は良、Δはやや不良を示す。
In order to determine the optimal content of the silicon dioxide or silicate compound of the present invention in the negative electrode active material, the content was varied and variations in internal resistance and discharge capacity were confirmed. The results were as shown in Table 2. In the table, XX indicates extremely poor, × indicates poor, ○ indicates good, and Δ indicates slightly poor.

第  2  表 以上の結果よシ、二酸化ケイ素又はケイ酸塩化合物の含
有量は50 ppm 〜800 ppmが最適であるこ
とがわかる。
From the results shown in Table 2 and above, it can be seen that the optimum content of silicon dioxide or silicate compound is 50 ppm to 800 ppm.

発明の効果 以上の説明よシ明らかなように、50ppm〜800 
ppmの二酸化ケイ素又はケイ酸塩化合物を含んだアル
カリ金属を負極活物質とした本発明の電池は、電池内部
に混入した不純物を吸着又は分解する効果を二酸化ケイ
素又はケイ酸塩化合物が有するために、内部抵抗の上昇
、電圧の低下、電池容量の低下が解消され、保存特性が
向上するという効果が得られる。
As is clear from the explanation beyond the effects of the invention, 50 ppm to 800
The battery of the present invention uses an alkali metal as a negative electrode active material containing ppm of silicon dioxide or a silicate compound because the silicon dioxide or silicate compound has the effect of adsorbing or decomposing impurities mixed inside the battery. , the increase in internal resistance, the decrease in voltage, and the decrease in battery capacity are eliminated, and the storage characteristics are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例における扁平形有機電解液電
池の縦断面、第2図は同電池の60’C保存における開
路電圧と内部抵抗の推移を示す図である。 1・・・・・・封口板、2−・・・−・リチウム負極、
3・・・・・・セパレータ、4・・・・・・正極合剤ペ
レット。
FIG. 1 is a longitudinal cross-section of a flat organic electrolyte battery according to an example of the present invention, and FIG. 2 is a diagram showing changes in open circuit voltage and internal resistance of the same battery when stored at 60'C. 1...Sealing plate, 2-...--Lithium negative electrode,
3... Separator, 4... Positive electrode mixture pellet.

Claims (2)

【特許請求の範囲】[Claims] (1)金属酸化物、ハロゲン化物及びカルコゲン化合物
のいずれかよりなる正極活物質と、有機電解液と、二酸
化ケイ素又は、ケイ酸塩化合物を含んだアルカリ金属よ
りなる負極活物質とを備えた有機電解液電池。
(1) An organic material comprising a positive electrode active material made of any one of a metal oxide, a halide, or a chalcogen compound, an organic electrolyte, and a negative electrode active material made of an alkali metal containing silicon dioxide or a silicate compound. electrolyte battery.
(2)アルカリ金属に含まれる二酸化ケイ素又はケイ酸
塩化合物の量が50ppm〜800ppmである特許請
求の範囲第1項記載の有機電解液電池。
(2) The organic electrolyte battery according to claim 1, wherein the amount of silicon dioxide or silicate compound contained in the alkali metal is 50 ppm to 800 ppm.
JP60130105A 1985-06-14 1985-06-14 Organic electrolyte cell Pending JPS61288374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60130105A JPS61288374A (en) 1985-06-14 1985-06-14 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60130105A JPS61288374A (en) 1985-06-14 1985-06-14 Organic electrolyte cell

Publications (1)

Publication Number Publication Date
JPS61288374A true JPS61288374A (en) 1986-12-18

Family

ID=15026067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60130105A Pending JPS61288374A (en) 1985-06-14 1985-06-14 Organic electrolyte cell

Country Status (1)

Country Link
JP (1) JPS61288374A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
JP2008181726A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
JP2008181726A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method

Similar Documents

Publication Publication Date Title
GB2329513A (en) A method of preparing an electrode for lithium based secondary cell
JPS61288374A (en) Organic electrolyte cell
EP4395021A1 (en) Button cell, preparation method therefor and electronic device
JP2005197230A (en) Button type alkaline battery and method of manufacturing the same
JP2021180064A (en) Lithium primary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
CN217158273U (en) Button type battery and electronic equipment
JPS61135056A (en) Manufacture of organic electrolyte cell
JPS61284061A (en) Organic electrolyte battery
JPS62186470A (en) Non-aqueous electrolytic solution cell
JPH0251218B2 (en)
JPH0640492B2 (en) Organic electrolyte battery
JPH06231757A (en) Zinc alkaline battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPH0935716A (en) Lithium battery
JPS63307662A (en) Organic electrolyte battery
JPS5998460A (en) Nonaqueous electrolyte battery
JPS62170147A (en) Organic electrolyte battery
JPH07226231A (en) Lithium secondary battery
JPH04101357A (en) Organic electrolytic battery
JPS61237369A (en) Organic electrolyte cell
JPS6025156A (en) Flat organic electrolyte battery
JPS6264064A (en) Nonaqueous electrolyte battery