JPH06231757A - Zinc alkaline battery - Google Patents
Zinc alkaline batteryInfo
- Publication number
- JPH06231757A JPH06231757A JP5017178A JP1717893A JPH06231757A JP H06231757 A JPH06231757 A JP H06231757A JP 5017178 A JP5017178 A JP 5017178A JP 1717893 A JP1717893 A JP 1717893A JP H06231757 A JPH06231757 A JP H06231757A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- calcium hydroxide
- battery
- negative electrode
- calcium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、負極活物質として亜
鉛、電解液としてアルカリ水溶液、正極活物質として二
酸化マンガン、酸化銀などを用いた亜鉛アルカリ電池に
関し、特に放電性能の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkaline battery using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide or the like as a positive electrode active material, and more particularly to improving discharge performance.
【0002】[0002]
【従来の技術】亜鉛のアルカリ電解液中での腐食を抑制
するため、従来から水銀を亜鉛に添加する方法が工業的
に採られてきた。しかし近年、廃電池の水銀による環境
汚染に対する社会的懸念が高まり、水銀を添加しないア
ルカリ電池が、工業化されている。この水銀は、水素過
電圧を高めて、亜鉛の腐食を抑制するはたらきに加え、
亜鉛合金粉末間に介在することにより、亜鉛合金粉末間
の電子伝導性を媒介的に高めるはたらきがあるが、水銀
無添加により電子伝導性が悪くなり電池の内部抵抗の上
昇に伴い放電性能が劣化する。これを補う手段として、
従来、炭素および/または黒鉛粉末(特開昭61−58
165号公報)あるいは金属粉末等の導電剤(特開昭6
1−96665号公報)をゲル状亜鉛負極に添加する技
術が、開示されている。2. Description of the Related Art Conventionally, a method of adding mercury to zinc has been industrially adopted in order to suppress corrosion of zinc in an alkaline electrolyte. However, in recent years, social concern over environmental pollution of mercury in waste batteries has increased, and alkaline batteries that do not contain mercury have been industrialized. This mercury increases hydrogen overvoltage and suppresses corrosion of zinc.
By interposing between zinc alloy powders, it serves to mediately enhance the electron conductivity between zinc alloy powders, but without mercury addition, the electron conductivity deteriorates and the discharge performance deteriorates as the internal resistance of the battery increases. To do. As a means to supplement this,
Conventionally, carbon and / or graphite powder (JP-A-61-58)
No. 165) or a conductive agent such as metal powder (Japanese Patent Laid-Open No. Sho 6-62).
1-96665) is added to a gel zinc negative electrode.
【0003】[0003]
【発明が解決しようとする課題】ゲル状にアルカリ電解
液に分散された亜鉛合金粉末は、放電反応の初期におい
て亜鉛の表面が放電反応により酸化されておらず、放電
反応で生成した電子は容易に負極そして集電体まで移動
できる。しかしながら、放電反応が進行するにつれて亜
鉛表面に放電生成物である水酸化酸化亜鉛、酸化亜鉛が
堆積し、亜鉛粉末粒子間および亜鉛粉末と集電体間の電
気的導通が悪くなる。そして、水銀を添加しない場合は
更に電気的導通が悪くなり、放電性能が劣化する。上記
の問題を解決するために、水銀の持つ電子伝導の媒体と
してのはたらきに替わるものとして、炭素および/また
は黒鉛粉末(特開昭61−58165号公報)あるいは
金属粉末等の導電剤(特開昭61−96665号公報)
をゲル状亜鉛負極に添加する技術が、提案されている。
しかしながら、本発明は亜鉛の放電生成物の電子伝導性
を高めることに着眼し、上記提案にあるような導電剤を
添加することなしに、電池の内部抵抗を低減させ、優れ
た放電特性を有する水銀無添加の亜鉛アルカリ電池を提
供することを目的とする。In the zinc alloy powder dispersed in the alkaline electrolyte in the form of gel, the surface of zinc is not oxidized by the discharge reaction at the initial stage of the discharge reaction, and the electrons generated by the discharge reaction are easy. It can move to the negative electrode and the collector. However, as the discharge reaction proceeds, zinc hydroxide oxide and zinc oxide, which are discharge products, are deposited on the zinc surface, and the electrical continuity between the zinc powder particles and between the zinc powder and the current collector deteriorates. If mercury is not added, the electrical continuity is further deteriorated and the discharge performance is deteriorated. In order to solve the above-mentioned problems, as an alternative to the function of mercury as an electron conducting medium, carbon and / or graphite powder (JP-A-61-58165) or a conductive agent such as metal powder (JP-A-61-58165). (Sho 61-96665)
There has been proposed a technique of adding the above to a gel zinc negative electrode.
However, the present invention focuses on enhancing the electronic conductivity of the discharge product of zinc, reduces the internal resistance of the battery and has excellent discharge characteristics without adding a conductive agent as proposed above. An object is to provide a zinc-alkali battery containing no mercury.
【0004】[0004]
【問題を解決するための手段】本発明の亜鉛アルカリ電
池は、放電途中の電池の内部抵抗を低減させるため、導
電添加剤として水酸化カルシウムおよび/または酸化カ
ルシウムを亜鉛に対して水酸化カルシウムとして0.0
05〜0.1%をゲル状亜鉛負極に添加したことを特徴
とするものである。In order to reduce the internal resistance of the battery during discharge, the zinc-alkaline battery of the present invention uses calcium hydroxide and / or calcium oxide as a conductive additive in the form of calcium hydroxide with respect to zinc. 0.0
It is characterized in that 05 to 0.1% was added to the gelled zinc negative electrode.
【0005】[0005]
【作用】ゲル状亜鉛負極中に水酸化カルシウムおよび/
または酸化カルシウムを添加することで、亜鉛の放電反
応生成物である水酸化亜鉛もしくは酸化亜鉛の電子伝導
性を高めることで、電池の内部抵抗を減少させることが
可能となり、結果として電池の放電性能が向上する。こ
の作用効果は充分に解明されていないが、以下のように
推定される。亜鉛の放電反応は、次式で進行する。[Function] Calcium hydroxide and /
Alternatively, by adding calcium oxide, it becomes possible to reduce the internal resistance of the battery by increasing the electronic conductivity of zinc hydroxide or zinc oxide, which is the discharge reaction product of zinc, and as a result, the discharge performance of the battery. Is improved. Although its action and effect have not been fully clarified, it is presumed as follows. The discharge reaction of zinc proceeds according to the following equation.
【0006】[0006]
【化1】 [Chemical 1]
【0007】ここで生成する亜鉛酸錯イオンは放電が進
み亜鉛表面で濃度が増していくと(化2)、(化3)に
示すように亜鉛表面で水酸化亜鉛ないし酸化亜鉛が生成
し不動態化皮膜として堆積していく。When the zinc acid complex ions generated here are discharged and the concentration increases on the zinc surface (Chemical formula 2), zinc hydroxide or zinc oxide is generated on the zinc surface as shown in (Chemical formula 3). It is deposited as a passivation film.
【0008】[0008]
【化2】 [Chemical 2]
【0009】[0009]
【化3】 [Chemical 3]
【0010】一方、亜鉛アルカリ電池で用いられる強ア
ルカリ電解液中では、水酸化カルシウムの状態で安定で
あるカルシウムが、ゲル状亜鉛負極中に存在すると、亜
鉛酸錯イオンが水酸化亜鉛ないし酸化亜鉛になるときに
水酸化カルシウムを取りこみながら亜鉛とカルシウムの
複合水酸化物を生成し、前述の不動態化皮膜の生成を抑
え、放電反応が進行しやすくさせるとともに、電子伝導
性を高めるものと考えられる。On the other hand, in strong alkaline electrolytes used in zinc-alkaline batteries, when calcium, which is stable in the state of calcium hydroxide, is present in the gel zinc negative electrode, the zinc acid complex ions form zinc hydroxide or zinc oxide. When it becomes, it is thought that it forms a composite hydroxide of zinc and calcium while taking in calcium hydroxide, suppresses the formation of the above-mentioned passivation film, facilitates the discharge reaction, and enhances the electron conductivity. To be
【0011】[0011]
【実施例】以下、実施例によりこの発明の効果を説明す
る。(図1)は、本実施例で用いたアルカリ電池LR6
の構造断面図である。(図1)において1はラベル外
装、2は正極ケ−ス、3は正極合剤、4はセパレータ
ー、5はゲル負極、6は集電子、7は樹脂封口体、8は
絶縁ワッシャー、9は絶縁樹脂、10は底板である。EXAMPLES The effects of the present invention will be described below with reference to examples. (FIG. 1) is an alkaline battery LR6 used in this example.
3 is a structural cross-sectional view of FIG. In FIG. 1, 1 is a label exterior, 2 is a positive electrode case, 3 is a positive electrode mixture, 4 is a separator, 5 is a gel negative electrode, 6 is a current collector, 7 is a resin sealing body, 8 is an insulating washer, and 9 is Insulating resin 10 is a bottom plate.
【0012】まず、本発明の効果を調べるために、放電
性能に対する効果をゲル状亜鉛負極に添加する水酸化カ
ルシウムの添加量について調べた。すなわち、亜鉛合金
粉末66Wt%、ゲル化剤1Wt%、アルカリ濃度38
%のアルカリ電解液33Wt%、水酸化カルシウムを
(表1)に示す量で混合し、ゲル状亜鉛負極を作成し
た。First, in order to investigate the effect of the present invention, the effect on the discharge performance was examined with respect to the amount of calcium hydroxide added to the gel zinc negative electrode. That is, zinc alloy powder 66 Wt%, gelling agent 1 Wt%, alkali concentration 38
% Alkaline electrolyte solution 33 Wt% and calcium hydroxide were mixed in the amounts shown in (Table 1) to prepare a gelled zinc negative electrode.
【0013】[0013]
【表1】 [Table 1]
【0014】このゲル状亜鉛負極を用いて単3形アルカ
リ乾電池を製造し、10Ω1時間/日の放電持続時間な
らびに放電途中の電池の内部抵抗を測定し、その結果を
(表1)に示した。(表1)から明らかなように、水酸
化カルシウムを亜鉛に対して0.005%以上添加する
ことで、放電末期の電池内部抵抗の上昇が抑制され放電
性能が改良されることがわかる。Using this gel zinc negative electrode, an AA alkaline battery was manufactured, the discharge duration of 10 Ω1 hour / day and the internal resistance of the battery during discharge were measured, and the results are shown in (Table 1). . As is clear from (Table 1), the addition of 0.005% or more of calcium hydroxide to zinc suppresses an increase in the internal resistance of the battery at the end of discharge and improves the discharge performance.
【0015】また、併せて3.9Ω5分間/日の放電持
続時間を測定し、その結果を(表2)に示した。In addition, the discharge duration of 3.9Ω for 5 minutes / day was also measured, and the results are shown in (Table 2).
【0016】[0016]
【表2】 [Table 2]
【0017】(表2)から明らかなように、水酸化カル
シウムの添加量が、亜鉛に対して0.1%以上では、セ
パレーター内に良導電性のデンドライトが生成し電池内
部の短絡が発生し、放電性能が低下した。As is clear from (Table 2), when the amount of calcium hydroxide added is 0.1% or more with respect to zinc, a dendrite of good conductivity is generated in the separator and a short circuit occurs inside the battery. , The discharge performance deteriorated.
【0018】さらに、ここで製造したアルカリ乾電池を
60℃で1ヶ月貯蔵し、漏液発生状況を調べた。その結
果を(表2)に示した。(表2)に示すように、水酸化
カルシウムの添加による漏液現象は見られず、高い耐漏
液性を有することができる。Further, the alkaline dry battery produced here was stored at 60 ° C. for one month, and the occurrence of leakage was examined. The results are shown in (Table 2). As shown in (Table 2), no liquid leakage phenomenon due to addition of calcium hydroxide is observed, and high liquid leakage resistance can be obtained.
【0019】以上のように、本実施例によれば、水酸化
カルシウムを亜鉛に対して、0.005〜0.1%の範
囲で添加したゲル状亜鉛負極を用いることにより、放電
性能の優れた亜鉛アルカリ電池を提供することができ
る。As described above, according to this embodiment, by using the gelled zinc negative electrode to which calcium hydroxide was added in the range of 0.005 to 0.1% with respect to zinc, excellent discharge performance was obtained. A zinc alkaline battery can be provided.
【0020】[0020]
【発明の効果】以上のように、本発明のゲル状亜鉛負極
を用いた電池は水銀無添加で、従来の電池に比べて、負
荷接続した時の放電持続時間も長く、耐漏液性に優れた
電池を提供することができる。As described above, the battery using the gelled zinc negative electrode of the present invention does not contain mercury, and has a longer discharge duration when connected to a load than that of a conventional battery, and is excellent in leakage resistance. Battery can be provided.
【0021】なお、実施例では、水酸化カルシウムを用
いたが、アルカリ電池で用いられる強アルカリ電解液中
では、カルシウムは水酸化カルシウムとして安定である
ので、ゲル状亜鉛に添加する際、酸化カルシウムあるい
は、カルシウムを添加しても、水酸化カルシウムに変化
するのでほとんど同じ結果が得られた。また、ボタン形
アルカリマンガン電池、酸化銀電池などの他の型式の電
池についても同様の結果が得られた。Although calcium hydroxide was used in the examples, calcium is stable as calcium hydroxide in the strong alkaline electrolyte used in alkaline batteries. Therefore, when calcium hydroxide is added to gel zinc, calcium oxide is used. Alternatively, even if calcium was added, almost the same result was obtained because it changed to calcium hydroxide. Similar results were obtained for other types of batteries such as button type alkaline manganese batteries and silver oxide batteries.
【図1】本発明の実施例におけるアルカリ乾電池LR6
の断面図を示す。FIG. 1 is an alkaline dry battery LR6 according to an embodiment of the present invention.
FIG.
3 正極合剤 4 セパレーター 5 ゲル負極 3 Positive electrode mixture 4 Separator 5 Gel negative electrode
Claims (2)
金粉末をゲル状にアルカリ電解液に分散したゲル状亜鉛
負極を備えたアルカリ電池であって、前記ゲル状亜鉛負
極中に水酸化カルシウムおよび/または酸化カルシウム
を添加した亜鉛アルカリ電池。1. An alkaline battery provided with a gelled zinc negative electrode in which a mercury-free zinc alloy powder is dispersed in a gelled state in an alkaline electrolyte as a main active material of the negative electrode. A zinc alkaline battery containing calcium and / or calcium oxide.
対して水酸化カルシウムとして0.005〜0.1%で
ある請求項1記載の亜鉛アルカリ電池。2. The zinc alkaline battery according to claim 1, wherein the amount of calcium hydroxide added is 0.005 to 0.1% as calcium hydroxide relative to zinc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5017178A JPH06231757A (en) | 1993-02-04 | 1993-02-04 | Zinc alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5017178A JPH06231757A (en) | 1993-02-04 | 1993-02-04 | Zinc alkaline battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06231757A true JPH06231757A (en) | 1994-08-19 |
Family
ID=11936702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5017178A Pending JPH06231757A (en) | 1993-02-04 | 1993-02-04 | Zinc alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06231757A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001060458A (en) * | 1999-08-23 | 2001-03-06 | Toshiba Battery Co Ltd | Alkaline battery |
JP2006004900A (en) * | 2004-05-20 | 2006-01-05 | Sony Corp | Alkaline dry battery |
JP2014026951A (en) * | 2011-08-23 | 2014-02-06 | Nippon Shokubai Co Ltd | Zinc negative electrode mixture, and battery arranged by use thereof |
CN114759169A (en) * | 2022-04-21 | 2022-07-15 | 山东合泰新能源有限公司 | Zinc electrode containing zinc corrosion inhibitor triton X-100 and preparation method thereof |
-
1993
- 1993-02-04 JP JP5017178A patent/JPH06231757A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001060458A (en) * | 1999-08-23 | 2001-03-06 | Toshiba Battery Co Ltd | Alkaline battery |
JP2006004900A (en) * | 2004-05-20 | 2006-01-05 | Sony Corp | Alkaline dry battery |
JP2014026951A (en) * | 2011-08-23 | 2014-02-06 | Nippon Shokubai Co Ltd | Zinc negative electrode mixture, and battery arranged by use thereof |
CN114759169A (en) * | 2022-04-21 | 2022-07-15 | 山东合泰新能源有限公司 | Zinc electrode containing zinc corrosion inhibitor triton X-100 and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3215448B2 (en) | Zinc alkaline battery | |
JP3215446B2 (en) | Zinc alkaline battery | |
JP4222488B2 (en) | Alkaline battery | |
JP3215447B2 (en) | Zinc alkaline battery | |
JPH06231757A (en) | Zinc alkaline battery | |
Herbert | The alkaline manganese dioxide dry cell | |
JPH0778632A (en) | Lithium secondary battery | |
JPH0562683A (en) | Alkaline battery | |
US20120070739A1 (en) | Galvanic element having a mercury-free negative electrode | |
KR20150041696A (en) | Zinc air cell, anode for zinc air cell and method of preparing the same | |
JP3187266B2 (en) | Gelled zinc negative electrode for alkaline batteries | |
JP3968248B2 (en) | Aluminum battery | |
JPH0513070A (en) | Alkaline battery | |
JP3315530B2 (en) | Alkaline battery | |
JP3111773B2 (en) | Mercury-free alkaline battery and its manufacturing method | |
JPH05190204A (en) | Lithium secondary battery | |
JPH0562682A (en) | Alkaline battery | |
JPS6151749A (en) | Nonaqueous electrolyte battery | |
JPH06223829A (en) | Zinc alkaline battery | |
KR800001519B1 (en) | Polar plate of alkaline storage cell | |
JP4733816B2 (en) | Negative electrode for alkaline battery and alkaline battery using the same | |
JPH05121079A (en) | Cylindrical alkaline battery | |
JPH06338319A (en) | Zinc-alkaline battery | |
JPH0582022B2 (en) | ||
JPH10162812A (en) | Alkaline battery |