JPH0513070A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH0513070A
JPH0513070A JP18922991A JP18922991A JPH0513070A JP H0513070 A JPH0513070 A JP H0513070A JP 18922991 A JP18922991 A JP 18922991A JP 18922991 A JP18922991 A JP 18922991A JP H0513070 A JPH0513070 A JP H0513070A
Authority
JP
Japan
Prior art keywords
zinc
corrosion
negative electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18922991A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Watanabe
光俊 渡辺
Hiroshi Ishiuchi
博 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP18922991A priority Critical patent/JPH0513070A/en
Publication of JPH0513070A publication Critical patent/JPH0513070A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To restrain the corrosion of zinc, and hydrogen gas generated therefrom by using a fluorine compound containing the specified hydrogen or alkaline metal, as a corrosion inhibitor for the zinc used as a negative electrode active material. CONSTITUTION:A fluorine compound expressed by the formula is used as a corrosion inhibitor for zinc in a negative electrode material 4 comprising paste zinc as a negative electrode active material. In the formula, M stands for hydrogen or alkaline metal, and (n) means numerals of 2 to 18. In addition, the fluorine compound thereby expressed has a chain structure of parfluoro system. Thus, the compound is stable in alkaline electrolytic liquid, and highly durable to maintain a corrosion inhibiting effect. A positive electrode compound 1 contains manganese dioxide as a positive electrode active material, and is inserted in a positive electrode can 2 after added with crystalline graphite as a conductive assistant and a binder, thereby constituting a battery, together with a separator 3, a negative electrode current collector 5 and the like. According to this construction, state free from mercury can be attained and the corrosion of the zinc can be restrained. Also, hydrogen gas generation from the zinc can be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は負極活物質として亜鉛を
用いるアルカリ電池に関する。
TECHNICAL FIELD The present invention relates to an alkaline battery using zinc as a negative electrode active material.

【0002】[0002]

【従来の技術】従来、負極活物質として亜鉛を用いるア
ルカリ電池においては、亜鉛の腐食による水素ガスの発
生を抑制するために、亜鉛粒子の表面を水銀でアマルガ
ム化することが行われていた。そして、その水銀量は、
亜鉛に対する腐食抑制効果を重視して、多い場合、アマ
ルガム化率(汞化率)で10重量%近くにまで達してい
た(たとえば、「新しい電池」、東京電機大学出版局発
行、昭和53年、第42頁)。
2. Description of the Related Art Conventionally, in alkaline batteries using zinc as a negative electrode active material, the surfaces of zinc particles have been amalgamated with mercury in order to suppress generation of hydrogen gas due to corrosion of zinc. And the amount of mercury is
Emphasizing the effect of inhibiting corrosion on zinc, in many cases, the amalgamation rate (blinding rate) reached nearly 10% by weight (for example, "new battery", published by Tokyo Denki University Press, 1978, Page 42).

【0003】しかしながら、最近は水銀による環境汚染
が問題になり、アマルガム化率を減少させることが要求
されている。
However, recently, environmental pollution due to mercury has become a problem, and it is required to reduce the amalgamation rate.

【0004】そのため、水銀に代えて、インジウム、
鉛、ガリウム、アルミニウム、ビスマスなどを亜鉛に添
加して、亜鉛と合金化することによって亜鉛の腐食を抑
制することが検討され、現在では、アマルガム化率を
0.10〜0.15重量%程度にまで低減できるように
なってきた。
Therefore, instead of mercury, indium,
The addition of lead, gallium, aluminum, bismuth, etc. to zinc and alloying with zinc have been studied to suppress the corrosion of zinc. Currently, the amalgamation rate is about 0.10 to 0.15% by weight. It has become possible to reduce to

【0005】[0005]

【発明が解決しようとする課題】しかしながら、今後、
無水銀化していくためには、これまで提案されてきた添
加金属だけでは充分といえず、また、従来から腐食抑制
剤として提案されているラクトニトリルやカルバゾール
などの有機系インヒビターも、充分な効果を持つものが
なく、無水銀化のための有効な手段となっていないのが
現状である。
[Problems to be Solved by the Invention] However, in the future,
In order to eliminate mercury, the additive metals that have been proposed so far cannot be said to be sufficient, and organic inhibitors such as lactonitrile and carbazole that have been conventionally proposed as corrosion inhibitors have sufficient effects. It is the current situation that there is no such thing, and it is not an effective means for producing anhydrous silver.

【0006】したがって、本発明は、負極活物質として
亜鉛を用いるアルカリ電池を無水銀化していくにあたっ
て生じる問題点を解決し、環境汚染を引き起こすことな
く、亜鉛の腐食を抑制して、亜鉛からの水素ガスの発生
を抑制することを目的とする。
Therefore, the present invention solves the problems that occur in the process of making an alkaline battery using zinc as a negative electrode active material into anhydrous silver, and suppresses the corrosion of zinc without causing environmental pollution, thereby preventing the corrosion of zinc. The purpose is to suppress the generation of hydrogen gas.

【0007】[0007]

【課題を解決するための手段】本発明は、亜鉛の腐食抑
制剤として、下記の一般式(I)
The present invention provides the following general formula (I) as a corrosion inhibitor for zinc.

【0008】[0008]

【化2】 [Chemical 2]

【0009】(式中、Mは水素またはアルカリ金属であ
り、nは2〜18である)で示されるフッ素系化合物を
用いることによって、上記目的を達成したものである。
The above object is achieved by using a fluorine-based compound represented by the formula (wherein M is hydrogen or an alkali metal and n is 2 to 18).

【0010】上記一般式(I)で示されるフッ素系化合
物を用いることによって、亜鉛の腐食を抑制し、亜鉛か
らの水素ガスの発生を抑制できる理由は、現在のところ
必ずしも明確ではないが、次のように考えられる。
The reason why the corrosion of zinc and the generation of hydrogen gas from zinc can be suppressed by using the fluorine compound represented by the above general formula (I) is not always clear at present. Can be thought of as.

【0011】まず、亜鉛の腐食反応は、下記の式に示す
ように進行する。
First, the corrosion reaction of zinc proceeds as shown in the following equation.

【0012】 〔アノード〕 Zn+4OH- → Zn(OH)4 2- +2e 〔カソード〕 2H2 O+2e → 2OH- +H2 [Anode] Zn + 4OH → Zn (OH) 4 2− + 2e [Cathode] 2H 2 O + 2e → 2OH + H 2

【0013】一般式(I)で示されるフッ素系化合物
は、その極性基(S含有基)が亜鉛に吸着し、かつ撥水
性のあるCn 2n-1O−C6 6 (ベンゼン核をC6
6 で示す)の部分が亜鉛と電解液との親和性を阻害して
両者の接触面積を小さくさせるので、上記の腐食反応が
抑制され、亜鉛からの水素ガスの発生が抑制されるよう
になるものと考えられる。
The fluorine-based compound represented by the general formula (I) has a water-repellent C n F 2n-1 O-C 6 H 6 (benzene nucleus) in which its polar group (S-containing group) is adsorbed on zinc. To C 6 H
( Shown in 6 ) inhibits the affinity between zinc and the electrolyte and reduces the contact area between them, so the above corrosion reaction is suppressed and the generation of hydrogen gas from zinc is suppressed. It is considered to be a thing.

【0014】また、一般式(I)で示されるフッ素系化
合物は、その鎖状構造部分がパーフルオロ系であるた
め、従来の有機インヒビターよりアルカリ電解液中にお
いて安定であり、その腐食抑制効果の持続性が優れてい
る。
Further, the fluorine-containing compound represented by the general formula (I) is more stable in the alkaline electrolyte than the conventional organic inhibitor since its chain structure part is a perfluoro-type, and has a corrosion inhibiting effect. Excellent sustainability.

【0015】本発明において、腐食抑制剤として用いる
フッ素系化合物を示す一般式(I)において、Mで示さ
れるアルカリ金属としては、リチウム、ナトリウム、カ
リウムなどがあげられる。これらのアルカリ金属はイオ
ン化しやすく、Mがアルカリ金属である場合、一般式
(I)で示されるフッ素系化合物の電解液への溶解性は
Mが水素の場合より優れている。
In the present invention, the alkali metal represented by M in the general formula (I) showing a fluorine compound used as a corrosion inhibitor includes lithium, sodium, potassium and the like. These alkali metals are easily ionized, and when M is an alkali metal, the solubility of the fluorine-based compound represented by the general formula (I) in the electrolytic solution is better than when M is hydrogen.

【0016】一般式(I)において、nを2〜18とし
たのは、nが2より小さくても、また、nが18より大
きくても、亜鉛の腐食を抑制する効果が充分でないから
である。そして、この一般式(I)中のnとしては、特
に6〜14が好ましい。
In the general formula (I), n is set to 2 to 18 because the effect of suppressing zinc corrosion is not sufficient even if n is smaller than 2 or larger than 18. is there. And as n in this general formula (I), 6-14 are especially preferable.

【0017】上記一般式(I)で示されるフッ素系化合
物の使用方法としては、上記一般式(I)で示されるフ
ッ素系化合物を電解液に添加する方法、上記一般式
(I)で示されるフッ素系化合物を溶解または分散させ
た液で亜鉛を前処理する方法、上記一般式(I)で示さ
れるフッ素系化合物をセパレータに吸着させる方法など
が採用できる。
The fluorine-based compound represented by the general formula (I) can be used by adding the fluorine-based compound represented by the general formula (I) to the electrolytic solution, or by the general formula (I). A method of pretreating zinc with a solution in which a fluorine-based compound is dissolved or dispersed, a method of adsorbing the fluorine-based compound represented by the general formula (I) onto a separator, and the like can be adopted.

【0018】上記一般式(I)で示されるフッ素系化合
物の使用量としては、亜鉛に対して50〜5000pp
m、特に100〜1000ppmの範囲が好ましい。
The amount of the fluorine-based compound represented by the general formula (I) used is 50 to 5000 pp relative to zinc.
m, particularly preferably in the range of 100 to 1000 ppm.

【0019】一般式(I)で示されるフッ素系化合物の
使用量が亜鉛に対して50ppmより少ない場合は、亜
鉛の腐食を抑制する効果が充分に発揮されず、また、5
000ppmより多くなると、亜鉛への吸着量が多くな
りすぎて放電異常が発生するおそれがある。
When the amount of the fluorine-based compound represented by the general formula (I) used is less than 50 ppm with respect to zinc, the effect of suppressing the corrosion of zinc is not sufficiently exerted, and 5
If it is more than 000 ppm, the amount of adsorption on zinc becomes too large, which may cause abnormal discharge.

【0020】本発明においては、上記のように一般式
(I)で示されるフッ素系化合物を腐食抑制剤として用
いることに特徴があるが、それ以外は通常の構成を採用
することができる。
The present invention is characterized in that the fluorine-based compound represented by the general formula (I) is used as a corrosion inhibitor as described above, but other than that, a usual constitution can be adopted.

【0021】たとえば、負極活物質としての亜鉛には、
亜鉛にインジウム、鉛、ガリウム、アルミニウム、ビス
マスなどを添加したものを用いることができるし、正極
活物質としては、たとえば二酸化マンガンなどを用いる
ことができる。また、電解液としては、水酸化カリウム
水溶液、水酸化ナトリウム水溶液などのアルカリ水溶液
を用いることができるし、また電解液中に酸化亜鉛を添
加しておくこともできる。
For example, zinc as a negative electrode active material includes
Zinc to which indium, lead, gallium, aluminum, bismuth, or the like is added can be used, and as the positive electrode active material, for example, manganese dioxide or the like can be used. As the electrolytic solution, an alkaline aqueous solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution can be used, or zinc oxide can be added to the electrolytic solution.

【0022】[0022]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。なお、実施例に先立ち、実用電池にするこ
となく、各種腐食抑制剤を添加した電解液中に亜鉛を浸
漬して、腐食抑制剤による亜鉛の腐食抑制効果を調べた
結果を実験例1として示す。このような実験例1は、実
用電池にした場合の他の構成材料による影響を避け、一
般式(I)で示されるフッ素系化合物の亜鉛に対する腐
食抑制効果を正確に把握するためのものである。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. In addition, prior to the Examples, the experimental results are shown as Experimental Example 1 in which zinc was immersed in an electrolytic solution to which various corrosion inhibitors were added, and the corrosion inhibitory effect of zinc by the corrosion inhibitors was examined without using a practical battery. . Such Experimental Example 1 is for avoiding the influence of other constituent materials in the case of being used as a practical battery and accurately grasping the corrosion inhibiting effect of the fluorine-based compound represented by the general formula (I) on zinc. .

【0023】実験例1電解液として使用する酸化亜鉛を
飽和させた35重量%水酸化カリウム水溶液に各種腐食
抑制剤を添加し、その中に亜鉛粉末(鉛500ppm含
有)を45℃で30日間浸漬し、その間に発生した水素
ガス量を測定した。その結果を表1に示す。
Experimental Example 1 Various corrosion inhibitors were added to a 35 wt% potassium hydroxide aqueous solution saturated with zinc oxide used as an electrolytic solution, and zinc powder (containing 500 ppm of lead) was immersed therein at 45 ° C. for 30 days. Then, the amount of hydrogen gas generated during that time was measured. The results are shown in Table 1.

【0024】上記における亜鉛量は3.5gで、上記水
酸化カリウム水溶液量は2mlであり、これらは単3形
電池に充填する亜鉛量および注入する電解液量と同量で
ある。そして、腐食抑制剤の量は亜鉛に対して500p
pmである。
The amount of zinc in the above is 3.5 g, and the amount of the above potassium hydroxide aqueous solution is 2 ml, which are the same as the amount of zinc to be filled in the AA battery and the amount of electrolyte to be injected. And, the amount of corrosion inhibitor is 500 p for zinc.
pm.

【0025】また、表1には、水銀を含まない亜鉛(た
だし、鉛500ppm含有)を用い、腐食抑制剤をまっ
たく添加していない場合(無添加)および亜鉛としてア
マルガム化率0.15重量%のアマルガム化亜鉛を用
い、腐食抑制剤を添加しなかった場合(従来亜鉛)につ
いて、同様に水素ガスの発生量を調べた結果を併せて示
す。
Further, in Table 1, zinc containing no mercury (containing 500 ppm of lead) was used, and no corrosion inhibitor was added (no addition), and the amalgamation rate as zinc was 0.15% by weight. The results obtained by similarly examining the amount of hydrogen gas generated in the case of using zinc amalgamated with No. 1 and no corrosion inhibitor (conventional zinc) are also shown.

【0026】[0026]

【表1】 [Table 1]

【0027】表1において、試料No.1〜No.4の
腐食抑制剤は一般式(I)で示されるフッ素系化合物に
属するものであるが、この試料No.1〜No.4の腐
食抑制剤による場合は、水素ガスの発生量が少なく、従
来亜鉛(つまり、従来のアマルガム化率0.15重量%
の亜鉛)を用いた場合に近い水素ガス発生量であって、
腐食抑制効果が優れていた。
In Table 1, the sample No. 1-No. The corrosion inhibitor of No. 4 belongs to the fluorine compound represented by the general formula (I). 1-No. When the corrosion inhibitor of No. 4 is used, the amount of hydrogen gas generated is small and the conventional zinc (that is, the conventional amalgamation rate of 0.15% by weight).
The amount of hydrogen gas generated is similar to that of
The corrosion inhibition effect was excellent.

【0028】実施例1 腐食抑制剤としてC6 11O−C6 6 −SO3 Hを電
解液に添加し、図1に示す構造の単3形アルカリ電池を
作製して、その10Ω放電(終止電圧0.9V)での放
電持続時間を調べた。その結果を表2に示す。
Example 1 As a corrosion inhibitor, C 6 F 11 O-C 6 H 6 -SO 3 H was added to an electrolytic solution to prepare an AA alkaline battery having the structure shown in FIG. The discharge duration at (final voltage 0.9 V) was examined. The results are shown in Table 2.

【0029】図1に示す電池について説明すると、図
中、1は正極合剤であり、この正極合剤1は二酸化マン
ガンを正極活物質とし、これに導電助剤としてのりん状
黒鉛とバインダーとしてのポリアクリル酸ソーダを加え
て混合した合剤をリング状に成形して、端子付きの正極
缶2内に挿入したものである。
The battery shown in FIG. 1 will be described. In the figure, 1 is a positive electrode mixture, and this positive electrode mixture 1 contains manganese dioxide as a positive electrode active material, and phosphorous graphite as a conduction aid and a binder. The mixed material obtained by adding and mixing the above sodium polyacrylate is molded into a ring shape and inserted into the positive electrode can 2 with a terminal.

【0030】3はセパレータであり、4はペースト状亜
鉛からなる負極剤である。この負極剤4は、鉛を500
ppm含有した粒度35〜200メッシュの亜鉛粉末6
0重量部とポリアクリル酸ソーダ2重量部を乾式混合し
た後、腐食抑制剤としてC6 11O−C6 6 −SO3
Hを添加した電解液(酸化亜鉛を飽和させた35重量%
水酸化カリウム水溶液)38重量部を加えて攪拌し、ゲ
ル化させてペースト状に調製したものである。
Reference numeral 3 is a separator, and 4 is a negative electrode agent made of paste zinc. This negative electrode agent 4 contains 500 lead.
Zinc powder with a particle size of 35 to 200 mesh containing 6 ppm
After dry-mixing 0 part by weight and 2 parts by weight of sodium polyacrylate, C 6 F 11 O-C 6 H 6 -SO 3 was added as a corrosion inhibitor.
Electrolyte solution containing H (35% by weight saturated with zinc oxide
38 parts by weight of an aqueous solution of potassium hydroxide) was added, and the mixture was stirred and gelled to prepare a paste.

【0031】5は負極集電体、6は封口体、7は金属ワ
ッシャ、8は樹脂ワッシャ、9は絶縁キャップ、10は
負極端子板、11は樹脂外装体である。
Reference numeral 5 is a negative electrode current collector, 6 is a sealing body, 7 is a metal washer, 8 is a resin washer, 9 is an insulating cap, 10 is a negative electrode terminal plate, and 11 is a resin exterior body.

【0032】この電池における亜鉛の充填量は3.5g
で、電解液量は2mlであり、C6 11O−C6 6
SO3 Hの添加量は亜鉛に対して500ppmである。
The zinc filling amount in this battery was 3.5 g.
In, the amount of the electrolytic solution is 2ml, C 6 F 11 O- C 6 H 6 -
The added amount of SO 3 H is 500 ppm with respect to zinc.

【0033】比較例1 C6 11O−C6 6 −SO3Hを添加しなかったほか
は、実施例1と同様にして単3形アルカリ電池を作製し
た。つまり、この比較例1の電池の亜鉛は実施例1の場
合と同様に水銀を含んでいない。
Comparative Example 1 An AA alkaline battery was prepared in the same manner as in Example 1 except that C 6 F 11 O—C 6 H 6 —SO 3 H was not added. That is, the zinc of the battery of Comparative Example 1 does not contain mercury as in the case of Example 1.

【0034】この比較例1の電池について実施例1と同
様に放電持続時間を調べた結果を表2に示す。
Table 2 shows the results of examining the discharge duration of the battery of Comparative Example 1 as in Example 1.

【0035】比較例2 アマルガム化率0.15重量%のアマルガム化亜鉛を用
い、かつC6 11O−C6 6 −SO3 Hを添加しなか
ったほかは、実施例1と同様にして単3形アルカリ電池
を作製した。
Comparative Example 2 Same as Example 1 except that amalgamated zinc having an amalgamation rate of 0.15% by weight was used and C 6 F 11 O—C 6 H 6 —SO 3 H was not added. As a result, an AA alkaline battery was produced.

【0036】この比較例2の電池について実施例1と同
様に放電持続時間を調べた結果を表2に示す。
Table 2 shows the results of examining the discharge duration of the battery of Comparative Example 2 as in Example 1.

【0037】[0037]

【表2】 [Table 2]

【0038】表2に示すように、実施例1の電池は、ア
マルガム化亜鉛を用いた比較例2の電池と同等の放電持
続時間を有しており、腐食抑制剤を用いたことによる放
電特性の低下は認められなかった。
As shown in Table 2, the battery of Example 1 had the same discharge duration as the battery of Comparative Example 2 using zinc amalgamate, and the discharge characteristics due to the use of the corrosion inhibitor. Was not observed.

【0039】[0039]

【発明の効果】以上説明したように、本発明では、亜鉛
の腐食抑制剤として、一般式(I)で示されるフッ素系
化合物を用いることによって、亜鉛の腐食を抑制し、亜
鉛からの水素ガスの発生を抑制することができた。
As described above, in the present invention, by using a fluorine compound represented by the general formula (I) as a corrosion inhibitor for zinc, the corrosion of zinc is suppressed and hydrogen gas from zinc is reduced. Was able to be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルカリ電池の一例を示す部分断
面図である。
FIG. 1 is a partial cross-sectional view showing an example of an alkaline battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極合剤 3 セパレータ 4 負極剤 1 Positive electrode mixture 3 separator 4 Negative agent

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質として亜鉛を用いるアルカリ
電池において、亜鉛の腐食抑制剤として、下記の一般式
(I) 【化1】 (式中、Mは水素またはアルカリ金属であり、nは2〜
18である)で示されるフッ素系化合物を用いたことを
特徴とするアルカリ電池。
1. In an alkaline battery using zinc as a negative electrode active material, as a corrosion inhibitor of zinc, a compound represented by the following general formula (I): (In the formula, M is hydrogen or an alkali metal, and n is 2 to
18) is used, and an alkaline battery is used.
【請求項2】 一般式(I)中のnが6〜14である請
求項1記載のアルカリ電池。
2. The alkaline battery according to claim 1, wherein n in the general formula (I) is 6 to 14.
JP18922991A 1991-07-02 1991-07-02 Alkaline battery Withdrawn JPH0513070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18922991A JPH0513070A (en) 1991-07-02 1991-07-02 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18922991A JPH0513070A (en) 1991-07-02 1991-07-02 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH0513070A true JPH0513070A (en) 1993-01-22

Family

ID=16237754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18922991A Withdrawn JPH0513070A (en) 1991-07-02 1991-07-02 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH0513070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785877A (en) * 1993-09-10 1995-03-31 Toshiba Battery Co Ltd Button type alkaline battery
WO1999005126A1 (en) * 1997-07-25 1999-02-04 Acep Inc. Perfluorovinyl ionic compounds and their use in conductive materials
US6208447B1 (en) 1997-02-25 2001-03-27 Matsushita Electric Industrial Co., Ltd. Optical receiver
WO2008142818A1 (en) * 2007-05-18 2008-11-27 Panasonic Corporation Mercury-free alkaline dry battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785877A (en) * 1993-09-10 1995-03-31 Toshiba Battery Co Ltd Button type alkaline battery
US6208447B1 (en) 1997-02-25 2001-03-27 Matsushita Electric Industrial Co., Ltd. Optical receiver
WO1999005126A1 (en) * 1997-07-25 1999-02-04 Acep Inc. Perfluorovinyl ionic compounds and their use in conductive materials
WO2008142818A1 (en) * 2007-05-18 2008-11-27 Panasonic Corporation Mercury-free alkaline dry battery

Similar Documents

Publication Publication Date Title
JP3317526B2 (en) Alkaline battery
JPH05135776A (en) Cylindrical alkaline battery
JPH0513070A (en) Alkaline battery
JPH0562683A (en) Alkaline battery
JPH0421310B2 (en)
JPH0513072A (en) Alkaline battery
JPH0513071A (en) Alkaline battery
JPH0955207A (en) Zinc-alkali battery
JPH0562682A (en) Alkaline battery
JPH0513073A (en) Alkaline battery
JPH0562684A (en) Alkaline battery
JPH0622122B2 (en) Zinc alkaline battery
JP2004014306A (en) Electrolytic solution for alkaline battery and alkaline battery using this electrolytic solution
JPH0119622B2 (en)
JPH0750612B2 (en) Zinc alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JP2805486B2 (en) Alkaline battery and its negative electrode active material
JPH0513085A (en) Cylindrical alkaline battery
JP2805485B2 (en) Alkaline battery and its negative electrode active material
JP2935855B2 (en) Alkaline battery
JP2805489B2 (en) Alkaline battery and its negative electrode active material
JP2002373651A (en) Alkaline battery
JP3187266B2 (en) Gelled zinc negative electrode for alkaline batteries
JP2805488B2 (en) Alkaline battery and its negative electrode active material
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008