JPS61283118A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS61283118A
JPS61283118A JP12433085A JP12433085A JPS61283118A JP S61283118 A JPS61283118 A JP S61283118A JP 12433085 A JP12433085 A JP 12433085A JP 12433085 A JP12433085 A JP 12433085A JP S61283118 A JPS61283118 A JP S61283118A
Authority
JP
Japan
Prior art keywords
substrate
compound semiconductor
film
compound
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12433085A
Other languages
Japanese (ja)
Inventor
Shinichi Ofuji
大藤 晋一
Hitoshi Nagano
永野 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12433085A priority Critical patent/JPS61283118A/en
Publication of JPS61283118A publication Critical patent/JPS61283118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To suppress the variation in the threshold voltage of MESFET by coating the surface of a compound semiconductor substrate with a film which partly contains the component element of the compound semiconductor of the substrate in the composition before heat treating at high temperature, thereby reducing an internal stress which affects the substrate by the heat treating step. CONSTITUTION:An operating layer 3 is formed in a hole of a silicon nitride film 2 on the surface of a semi-insulating GaAs substrate 1. A heat resistant gate electrode 4 is formed at the center of the operating layer by the combination of an RF sputtering method and a reactive ion etching method. Then, with the electrode 4 and the film 2 as masks ions are implanted in dosage. Then, GaAs is, for example, deposited on the substrate as a position source in AsH3 gas atmosphere by an electron beam depositing method to accumulate a Ga-As compound film 5 which contains the component element of the substrate 1 in approx. 0.3mum of thickness. Then, a heat treatment is executed in a lamp heat treating furnace to form a source region 6 and a drain region 7. Further, a plasma etching is performed in gas such as CCl4 to remove the film 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、化合物半導体装置の製造方法、特にイオン注
入法を用いてソース、ドレイン領域を形成する工程を含
む電界効果トランジスタの製造方法に関するものである
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a compound semiconductor device, and particularly to a method for manufacturing a field effect transistor including a step of forming source and drain regions using an ion implantation method. It is.

(発明の概要) 本発明は、化合物半導体装置の製造において、化合物半
導体基板にイオン注入する工程と、その後該注入イオン
の活性化のための高温熱処理工程とを含む化合物半導体
装置の製造方法において、該高温熱処理工程の前に該化
合物半導体基板表面金、少なくとも基板たる化合物半導
体の構成元素をその組成の一部に含む喚で被覆する工程
を含−むことによって、熱処理工程による半導体基板に
及はす内部応力を著しく低減し、MPSFETのしきい
値電圧の変動を抑えることにある。
(Summary of the Invention) The present invention provides a method for manufacturing a compound semiconductor device that includes a step of implanting ions into a compound semiconductor substrate, and a subsequent high-temperature heat treatment step for activating the implanted ions. By including a step of coating the surface of the compound semiconductor substrate with gold, which includes at least a part of the constituent elements of the compound semiconductor serving as the substrate, before the high temperature heat treatment step, the heat treatment step does not affect the semiconductor substrate. The purpose of this invention is to significantly reduce internal stress and suppress fluctuations in the threshold voltage of the MPSFET.

(従来技術及び発明が解決しようとする問題点)化合物
半導体は、従来のシリコン(Si)に比べて移動度が高
く、牛lIA縁性基板が得られるなどの特徴を有するた
め、Siにまさる高速、高周波動作素子の開発が進めら
れている。特にガリウムヒ素(GaAs ) f用いた
ショットキ障壁型電界効果トランジスタ(MESFET
)は、高集積化をねらって微細化の研究が活発に進めら
れている。
(Prior Art and Problems to be Solved by the Invention) Compound semiconductors have higher mobility than conventional silicon (Si), and have characteristics such as the ability to obtain a substrate with a high speed , development of high-frequency operating elements is progressing. In particular, Schottky barrier field effect transistors (MESFETs) using gallium arsenide (GaAs)
), research on miniaturization is actively progressing with the aim of achieving higher integration.

従来技術による化合物半導体素子の製造方法の一例とし
て、以下にGaAs MESFETを取り上げて説明す
る。ゲート長が1μm以下の微細なMESFETe製作
するためには、ンース・ドレイン領域上イオン注入と注
入イオンの活性化のための高温熱処理で形成する技術に
、今や必須の技術となっている。GaAaでは、この高
温熱処理に約800℃の温度が要求されるが、この高温
下でGaAs表面からGaに比べて揮発性の強いAsが
著しく放出されることは周知の事実である。
As an example of a conventional method for manufacturing a compound semiconductor device, a GaAs MESFET will be described below. In order to fabricate a fine MESFET with a gate length of 1 μm or less, a technology that involves ion implantation onto the drain region and high-temperature heat treatment to activate the implanted ions is now essential. For GaAa, this high-temperature heat treatment requires a temperature of about 800° C., and it is a well-known fact that at this high temperature, As, which is more volatile than Ga, is significantly released from the GaAs surface.

これはGaA sに限らず、蒸気圧の異なる化合物半導
体の活性化用高温熱処理時に生ずる共通な問題である。
This is a common problem that occurs not only in GaAs but also in high-temperature heat treatment for activation of compound semiconductors having different vapor pressures.

これを避けるために例えば、GaAs表面を化学的気相
成艮法で形成した5iOz膜まtはS i3N、膜で被
覆した後に該高温熱処理を行なう方法(以下、キャップ
法と呼ぶ〕あるいは、該高温熱処理をアルシン(AsH
2)を含む雰囲気中か、または他のQaAs基板と重ね
合わせた状態で行ない、Asの放出を抑制する方法(以
下、キャップレス法と呼ぶ)が用いられてきた。しかし
、キャンプ法では、5iftやSt、N4模の形成時に
生ずる内部応力、高温熱処理時の間膜の体積変化で生ず
る内部応力、およびSiO2やSi、、N。
To avoid this, for example, a 5iOz film or a 5iOz film formed by chemical vapor deposition on the GaAs surface may be coated with a Si3N film and then subjected to high-temperature heat treatment (hereinafter referred to as the capping method); High temperature heat treatment is applied to arsine (AsH).
A method (hereinafter referred to as a capless method) has been used in which the release of As is suppressed by performing the process in an atmosphere containing 2) or in a state in which it is stacked with another QaAs substrate. However, in the camp method, internal stress occurs during the formation of 5ift, St, and N4, internal stress occurs due to volume change of the interlayer during high-temperature heat treatment, and SiO2, Si, and N.

膜とGaAsとの熱膨張率の差に起因した内部応力など
が発生し、FETのしきい値電圧を変動させることが知
られている。ビー、エム、アスペック(P、 M、 A
SBECK )らは、Si3N、膜に生ずる内部応力に
よシビエゾ効果が生ずることを報告しているC P、 
M、 ASBECK、 C−P 、 LEE、 AND
M−C,F、 CHANG+ IEEE Trans、
 FJlectron Devices*vo1. E
D−31,No、 10.1377 (1984J )
o  一方、キャップレス法においては毒性の高いアル
シンガスを用いること、及び他のGaAs基板との界面
でのAs圧の精確な制御が困難なことなどが生産性向上
の障害となっている。
It is known that internal stress occurs due to the difference in coefficient of thermal expansion between the film and GaAs, and this causes fluctuations in the threshold voltage of the FET. B, M, Aspek (P, M, A
SBECK et al. have reported that the Siviezo effect occurs due to the internal stress generated in the Si3N film.
M, ASBECK, C-P, LEE, AND
MC,F, CHANG+ IEEE Trans,
FJelectron Devices*vol1. E
D-31, No. 10.1377 (1984J)
o On the other hand, in the capless method, the use of highly toxic arsine gas and the difficulty in accurately controlling the As pressure at the interface with other GaAs substrates are obstacles to improving productivity.

(問題点を解決するための手段) 本発明は、上記従来の欠点を解決した新しい高温熱処理
用被覆方法を含む化合物半導体装置の製造方法を提供す
ることを目的とする。
(Means for Solving the Problems) An object of the present invention is to provide a method for manufacturing a compound semiconductor device including a new coating method for high-temperature heat treatment that solves the above-mentioned conventional drawbacks.

上記目的を達成するために、本発明では、高温熱処理時
に化合物半導体表面を被覆する膜として、該化合物半導
体の構成元素を少なくともその組成の一部に含む材料を
用いることを主要な特徴とする。
In order to achieve the above object, the main feature of the present invention is to use a material containing at least a part of the composition of the constituent elements of the compound semiconductor as a film that covers the surface of the compound semiconductor during high-temperature heat treatment.

従来技術のキャップ法では、Si系デバイスの保護膜、
絶縁膜として広く用いられているSing。
In the conventional capping method, a protective film for Si-based devices,
Sing is widely used as an insulating film.

Si、N、または、これらの混合物が用いられてお夕、
基板の化合物半導体とは別材料であった。
When Si, N, or a mixture thereof is used,
The material was different from the compound semiconductor of the substrate.

しかし、本発明によれば、例えばGaAs基板上にGa
Asを薄膜源としてGaとA8の化合物全形成するため
、被覆用の膜が基板と同一元素から構成されている点が
従来と異なる。
However, according to the present invention, Ga
Since the entire compound of Ga and A8 is formed using As as the thin film source, the coating film is different from the conventional method in that it is composed of the same element as the substrate.

(実施例) 第1図は本発明の詳細な説明するための素子断面図であ
る。実施例としては、高融点金属材料をゲート電極に用
いたセルフ・アラインゲートをのGaAsMESFET
 f取り上げ、/  X’ドレイン領域の形成工程につ
いて概略を述べる。
(Example) FIG. 1 is a sectional view of an element for explaining the present invention in detail. As an example, a GaAs MESFET with a self-aligned gate using a high melting point metal material for the gate electrode is shown.
An outline of the formation process of the f/X' drain region will be given below.

まず半絶縁性GaAs基板1の表面のシリコン窒化膜2
の開口部に動作層3を形成する(8図)。
First, a silicon nitride film 2 on the surface of a semi-insulating GaAs substrate 1
The active layer 3 is formed in the opening (Fig. 8).

その後動作層中央部にW、Si、に用い厚さ0.2μm
の耐熱性ゲート電極4eRFスパツタリング法左反応性
イオンエツチング法の組み合わせによシ形成する(b図
)0次に、この耐熱性ゲート電極4とシリコン窒化膜2
をマスクにして Stイオ7 ’fr 1501ceV
の加速エネルギーで5 Xl0I3crn−”のドーズ
量にイオン注入する(0図)0次に、この注入したSi
イオンを800℃に加熱して活性化するが、この場合、
従来の工程ではSin、またはSらN4膜を用いて基板
表面を被覆するキャツプ法を用いていた。不発ψノでは
、この時の被覆材料が従来と異なる。すなわち、この実
施例では、GaAs t−蒸着源として5 x 10−
’ TorrのAs H,ガス雰囲気中で電子ビーム蒸
着法で映厚0.3μmのGa−As化合物膜5(!−基
基板面向上堆積する(d図)。その後、ランプ熱処理炉
内でArガス中。
After that, W and Si were used in the center of the active layer to a thickness of 0.2 μm.
A heat-resistant gate electrode 4e is formed by a combination of RF sputtering method and reactive ion etching method (Figure b).Next, this heat-resistant gate electrode 4 and silicon nitride film 2 are formed.
St Io7 'fr 1501ceV with as a mask
Ions are implanted to a dose of 5Xl0I3crn-'' with an acceleration energy of
The ions are activated by heating them to 800°C, but in this case,
In the conventional process, a cap method was used in which the surface of the substrate was coated with a Sin or S or N4 film. In case of misfire ψ, the coating material used at this time is different from the conventional one. That is, in this example, 5 x 10-
' A Ga-As compound film 5 (!-) with a reflective thickness of 0.3 μm is deposited on the surface of the substrate by electron beam evaporation in an As H, gas atmosphere of Torr (Fig. d). After that, Ar gas is deposited in a lamp heat treatment furnace. During.

800℃、1分間の熱処理を加えてソース領域6及びド
レイン領域7全形成し、さらにCCt4ガス中でプラズ
マエツチングを行ない、Ga−As化合物膜5を除去す
る(e図)。以後、従来技術と同様に、電極、保護膜等
を形成し−CGaAg MESF E Tが出来上る。
A heat treatment is applied at 800 DEG C. for 1 minute to completely form the source region 6 and drain region 7, and further plasma etching is performed in CCt4 gas to remove the Ga--As compound film 5 (see figure e). Thereafter, electrodes, protective films, etc. are formed in the same manner as in the prior art, and the -CGaAg MESFET is completed.

ここではGa−As化合物膜5は電子ビーム蒸着法で形
成したが、 GaAs eターゲットとしたRFスパッ
タリング法金用いることも可能である。
Although the Ga--As compound film 5 is formed by electron beam evaporation here, it is also possible to use RF sputtering using a GaAs e target.

また% GaとAs f含むガス源を用いて化学的気相
成長法で形成することも可能である。また、Ga−As
化合物膜は、これらの形成法でlti Ga過多の組成
を示すが、これは以下に述べるGa−As化合物膜の効
果を失なわせるものではない。
It is also possible to form it by chemical vapor deposition using a gas source containing % Ga and Asf. Also, Ga-As
Although the compound film exhibits a composition containing too much lti Ga using these formation methods, this does not impair the effects of the Ga-As compound film described below.

基板表面を被覆するために堆積したGa、A5化合物膜
5は1従来のSin、またはSt、N、膜を用い次キャ
ップ法の場合と同様に、800℃での活性化熱処理時の
ソース・ドレイン領域となるGaAs基板1の表面を保
護し、特にMの熱処理雰囲気中への放出を防ぎ、 Ga
As基板表面の化学製論的組成を維持する効果を有する
。これは、GaAs基板表面とGa−As化合物膜との
界面でのAs濃度の勾配が小さく保たれるために、 A
sの界面での移動が抑制されることによる。従来技術に
よるSiQ。
The Ga, A5 compound film 5 deposited to cover the substrate surface is used as a source/drain layer during activation heat treatment at 800°C, as in the case of the conventional capping method using a conventional Sin, St, or N film. It protects the surface of the GaAs substrate 1, which serves as a region, and prevents the release of M into the heat treatment atmosphere in particular.
This has the effect of maintaining the chemical composition of the As substrate surface. This is because the As concentration gradient at the interface between the GaAs substrate surface and the Ga-As compound film is kept small.
This is because the movement of s at the interface is suppressed. SiQ according to conventional technology.

またはS ia N4 ’If!X ’ft:用いた場
合との違いは、基板GaAa表面に対して、これらの従
来の膜が内部応力を及ぼしていたのに対して、本発明に
よるGa−As化合物膜が内部応力全作用させないこと
にある。本Ga−As化合物膜は、言うまでもなく基板
GaAsと熱膨張率がほぼ一致する。従って、前述のよ
うな内部応力に起因したMESFETのしきい値電圧の
変動は生じない〇 また、電子ビーム蒸着法やスパッタリング法で堆積しf
CGa−As化合物膜は多結晶構造を示すため、プラズ
マエツチングによジ単結晶でなる基板GaAsに対して
容易に選択的に除去できる。
Or S ia N4 'If! The difference from the case where X'ft: is used is that these conventional films exert internal stress on the GaAa substrate surface, whereas the Ga-As compound film of the present invention does not exert any internal stress on the surface of the GaAa substrate. There is a particular thing. Needless to say, the present Ga-As compound film has a coefficient of thermal expansion almost equal to that of the GaAs substrate. Therefore, fluctuations in the threshold voltage of the MESFET due to internal stress as described above do not occur.
Since the CGa--As compound film has a polycrystalline structure, it can be easily and selectively removed from the di-single-crystal GaAs substrate by plasma etching.

(発明の効果) 以上説明したように、高温活性化のための熱処理用のキ
ャップ膜としてGa−As化合物膜を用いることによp
 QaAs基板に及ぼす内部応力を著しく低減でき、M
ESFETのしきい値電圧の変動を抑える利点がある。
(Effects of the Invention) As explained above, by using a Ga-As compound film as a cap film for heat treatment for high-temperature activation,
The internal stress exerted on the QaAs substrate can be significantly reduced, and M
This has the advantage of suppressing fluctuations in the threshold voltage of the ESFET.

ここではGaAa基板に対してGa−As化合物膜を用
いたが、組成としてはGaとAs ’x十分な濃度に含
めば良く、この膜に他の元素が加わることを妨げるもの
ではない。
Here, a Ga--As compound film is used for the GaAa substrate, but the composition only needs to include Ga and As'x at a sufficient concentration, and this does not prevent other elements from being added to this film.

また% GaABを例として取ジ上げたが、他のイオン
結晶性を示し、かつ、構成元素間の蒸気圧差の大きい化
合物半導体の高温熱処理に対しても本発明は効果を示す
ことは明らかである。
Furthermore, although GaAB was taken as an example, it is clear that the present invention is also effective in high-temperature heat treatment of other compound semiconductors that exhibit ionic crystallinity and have a large vapor pressure difference between constituent elements. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するためのセルフφアライ
ンゲート型GaAs MESFET fR造工程を示す
。 1・・・・・・半絶縁性GaAa基板 2・・・・・・シリコン窒化膜 3・・・、・・・動作層 4・・・・・・耐熱性ゲート電極 5・・・・・・Ga−As化合物膜 6・・・・・・ソース領域 7・・・・・・ドレイン領域
FIG. 1 shows a self-φ aligned gate type GaAs MESFET fR fabrication process for explaining the present invention in detail. 1...Semi-insulating GaAa substrate 2...Silicon nitride film 3...Active layer 4...Heat-resistant gate electrode 5... Ga-As compound film 6...Source region 7...Drain region

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体基板にイオン注入する工程と、その
後該注入イオンの活性化のための高温熱処理工程とを含
む化合物半導体装置の製造方法において、該高温熱処理
工程の前に該化合物半導体基板表面を、少なくとも基板
たる化合物半導体の構成元素をその組成の一部に含む膜
で被覆する工程を含むことを特徴とする化合物半導体装
置の製造方法。
(1) In a method for manufacturing a compound semiconductor device, which includes a step of implanting ions into a compound semiconductor substrate, and a subsequent high-temperature heat treatment step for activating the implanted ions, the surface of the compound semiconductor substrate is 1. A method for manufacturing a compound semiconductor device, comprising the step of coating the substrate with a film containing at least a part of the constituent elements of the compound semiconductor as a substrate.
(2)化合物半導体の構成元素を少なくともその組成の
一部に含む膜で被覆する工程を、該化合物半導体と同一
組成を有する固体薄膜源を用いて蒸着法またはスパッタ
リング法で行なうことを特徴とする特許請求の範囲第1
項記載の化合物半導体装置の製造方法。
(2) The step of coating with a film containing at least a part of the composition of the constituent elements of the compound semiconductor is performed by a vapor deposition method or a sputtering method using a solid thin film source having the same composition as the compound semiconductor. Claim 1
A method for manufacturing a compound semiconductor device as described in 1.
(3)化合物半導体の構成元素を少なくともその組成の
一部に含む膜で被覆する工程を、該化合物半導体と同一
元素を含むガスを用いて化学的気相成長法で行なうこと
を特徴とする特許請求の範囲第1項記載の化合物半導体
装置の製造方法。
(3) A patent characterized in that the process of coating a compound semiconductor with a film containing at least part of its composition the constituent elements of the compound semiconductor is carried out by chemical vapor deposition using a gas containing the same element as the compound semiconductor. A method for manufacturing a compound semiconductor device according to claim 1.
JP12433085A 1985-06-10 1985-06-10 Manufacture of compound semiconductor device Pending JPS61283118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12433085A JPS61283118A (en) 1985-06-10 1985-06-10 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12433085A JPS61283118A (en) 1985-06-10 1985-06-10 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61283118A true JPS61283118A (en) 1986-12-13

Family

ID=14882664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12433085A Pending JPS61283118A (en) 1985-06-10 1985-06-10 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61283118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255915A (en) * 1987-04-14 1988-10-24 Sanyo Electric Co Ltd Heat treatment
US6015591A (en) * 1995-12-13 2000-01-18 Applied Materials, Inc. Deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255915A (en) * 1987-04-14 1988-10-24 Sanyo Electric Co Ltd Heat treatment
US6015591A (en) * 1995-12-13 2000-01-18 Applied Materials, Inc. Deposition method

Similar Documents

Publication Publication Date Title
US4745082A (en) Method of making a self-aligned MESFET using a substitutional gate with side walls
JPH0258332A (en) Method of passivating surface of compound semiconductor
JPH02192127A (en) Manufacture of self-alignment mesfet having t type gate shape
JPS61283118A (en) Manufacture of compound semiconductor device
JPS63181422A (en) Formation of titanium nitride film
KR940006710B1 (en) Manufacturing method of mes fet
JPS60165764A (en) Manufacture of compound semiconductor device
JPS6292327A (en) Semiconductor device and manufacture thereof
JPH0235463B2 (en)
JPS6354774A (en) Manufacture of compound semiconductor device
JPH0352238A (en) Manufacture of compound semiconductor device
JP2667840B2 (en) Method for manufacturing compound semiconductor device
JP2638285B2 (en) Method for manufacturing semiconductor device
JPH0213929B2 (en)
JPH0963955A (en) Film-forming device, film formation and manufacture of single crystal film
JPS6028229A (en) Manufacture of semiconductor device
JPH06232071A (en) Manufacture of semiconductor device
JPS62206886A (en) Manufacture of compound-semiconductor field-effect transistor
JPH04372123A (en) Manufacture of semiconductor device
JPS61292964A (en) Manufacture of semiconductor device
JPS607125A (en) Manufacture of semiconductor device
JPH04107918A (en) Manufacture of semiconductor device
JPS61194780A (en) Manufacture of semiconductor device
JPS63179579A (en) Manufacture of compound semiconductor device
JPH03237730A (en) Manufacture of field-effect transistor