JPS63181422A - Formation of titanium nitride film - Google Patents

Formation of titanium nitride film

Info

Publication number
JPS63181422A
JPS63181422A JP1453787A JP1453787A JPS63181422A JP S63181422 A JPS63181422 A JP S63181422A JP 1453787 A JP1453787 A JP 1453787A JP 1453787 A JP1453787 A JP 1453787A JP S63181422 A JPS63181422 A JP S63181422A
Authority
JP
Japan
Prior art keywords
film
titanium
ions
tin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1453787A
Other languages
Japanese (ja)
Inventor
Masabumi Kubota
正文 久保田
Hiroshi Imai
宏 今井
Yoji Masuda
洋司 益田
Noboru Nomura
登 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1453787A priority Critical patent/JPS63181422A/en
Publication of JPS63181422A publication Critical patent/JPS63181422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable a highly reliable barrier layer to be formed even in a fine contact hole at a relatively low temperature, by previously depositing a film of titanium or a titanium compound and then implanting nitrogen ions or ions of a compound containing nitrogen into said film. CONSTITUTION:Nitrogen ions or ions containing nitrogen atoms are implanted into a titanium film or a film containing titanium so as to form a titanium nitride film. In order to convert a part of the titanium silicide (TisiX) 9 on the bottom of a contact hole into TiN, for example, nitrogen ions are implanted into the substrate and the substrated is subjected to rapid thermal annealing at 700 deg.C for several minutes within the atmosphere of Ar. At the same time therewith, resistance of a TiN film 12A is reduced. After that, an aluminium interconnection 13 is formed thereon to complete an MOS transistor having a silicidified junction. In this manner, it is possible to prevent defective deposition of the TiN film in the contact hole or defective formation of fine interconnection which would be caused by a conventional method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路製造プロセス等で用いられる窒
化チタン膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming a titanium nitride film used in a semiconductor integrated circuit manufacturing process.

従来の技術 窒化チタン(TiN)や硅化チタン(TiSiり等のチ
タンを含む薄膜は高密度集積回路の低抵抗ゲート材料、
配線材料等への応用が期待され、研究が進められている
。とりわけTiN はAIl等の金属に対して良好な拡
散バリア、エレクトロマイグレーション阻止材料となり
、TiSi工は極めてシート抵抗が低く、拡散層のシー
ト抵抗の低減、配線金属と拡散層間のコンタクト抵抗低
減に役立つものと期待されている。
Conventional technology Thin films containing titanium, such as titanium nitride (TiN) and titanium silicide (TiSi), are used as low-resistance gate materials for high-density integrated circuits.
It is expected to be applied to wiring materials, etc., and research is progressing. In particular, TiN is a good diffusion barrier and electromigration prevention material for metals such as Al, and TiSi has an extremely low sheet resistance, which is useful for reducing the sheet resistance of the diffusion layer and the contact resistance between the wiring metal and the diffusion layer. It is expected that

TiNとTiSi  の2層構造を用いた従来のシリサ
イド化接合MO5)ランジスタの形成方法について第4
図a−eを用いて説明する。まず、周知のMO3型集積
回路プロセスによゆ第4図aに示すMO3構造をシリコ
ン基板1上に形成する。リンドープしたポリシリコンゲ
ート2はCVD酸化膜3をマスクとして形成され、その
側壁はスペーサ酸化膜4で覆われている。5はゲート酸
化膜、6はソース及びドレイン領域、7は素子間分離の
だめの酸化膜領域である。次にTi をスパッタ法また
は電子ビーム蒸着法により堆積し、数100人のTi薄
膜8を形成し、Ar等の不活性ガス中にて1oOo℃前
後で熱処理し、シリコン表面の出ているソース・ドレイ
ン拡散領域6でTi とシリコンとを反応させ、シリサ
イド領域9を形成する(第4図b)。次にこの基板をT
i のエツチング液(例えばNH4OH+2H2o2+
H20)中で処理すると未反応のTiはすべてエツチン
グされ、シリサイド化された領域にのみチタンシリサイ
ドTiSi、C9が残りシリサイド化接合6Aができる
。スペーサ酸化膜4はポリシリコンゲート2とTi薄膜
8の反応を防止するために設けられている(第4図C)
。次にCVD法によりリンガラスとノンドープのガラス
の2層からなるCVD酸化膜1oを堆積し、周知のフォ
トリソグラフィ技術、ドライエッチ技術によりシリサイ
ド化接合9上にコンタクトホール11を形成する(第4
図d)。続いてTiN膜1膜上22膜13をスパッタに
より蒸着しフォトリングラフィ技術、ドライエツチング
技術により配線領域のみにこれら2層の膜を残す(第4
図e)。通常、シリサイド化接合を形成する場合のソー
スOドレイン領域6は0.1〜0.2μmと浅いため、
TiN膜1膜上2くことができない。
Part 4 on the method of forming a conventional silicided junction MO5) transistor using a two-layer structure of TiN and TiSi.
This will be explained using Figures a to e. First, an MO3 structure shown in FIG. 4a is formed on a silicon substrate 1 according to a well-known MO3 type integrated circuit process. A phosphorous-doped polysilicon gate 2 is formed using a CVD oxide film 3 as a mask, and its sidewalls are covered with a spacer oxide film 4. 5 is a gate oxide film, 6 is a source and drain region, and 7 is an oxide film region for isolation between elements. Next, Ti is deposited by sputtering or electron beam evaporation to form several hundred Ti thin films 8, and heat treated at around 100°C in an inert gas such as Ar to form the source with the exposed silicon surface. Ti and silicon are reacted in the drain diffusion region 6 to form a silicide region 9 (FIG. 4b). Next, connect this board to T
i etching solution (e.g. NH4OH+2H2o2+
When treated in H20), all unreacted Ti is etched away, and titanium silicide TiSi and C9 remain only in the silicided region, forming a silicided junction 6A. Spacer oxide film 4 is provided to prevent reaction between polysilicon gate 2 and Ti thin film 8 (FIG. 4C).
. Next, a CVD oxide film 1o consisting of two layers of phosphorous glass and non-doped glass is deposited by the CVD method, and a contact hole 11 is formed on the silicided junction 9 by well-known photolithography and dry etching techniques (the fourth
Figure d). Next, 22 films 13 are deposited on the TiN film 1 by sputtering, and these two films are left only in the wiring area using photolithography and dry etching techniques (the fourth
Figure e). Normally, the source/drain region 6 when forming a silicided junction is as shallow as 0.1 to 0.2 μm;
The TiN film cannot be coated on top of the TiN film.

A2とTiSix は35C)C程度以上で簡単に反応
してしまうため、400℃を超える八2 シンタ一時に
A2が接合を越えてシリコン基板1中に拡散し、いわゆ
るA2スパイクを生じて大きな接合リークを生じるから
である。
Since A2 and TiSix easily react at temperatures above about 35C), when the temperature exceeds 400C, A2 diffuses across the junction and into the silicon substrate 1, causing a so-called A2 spike and causing a large junction leak. This is because it causes

発明が解決しようとする問題点 こうして形成されたTiN12をバリア層とする構造は
AIlスパイクを生じない安定なコンタクトとなるが、
他方製造プロセス上では次の様な問題があることが明ら
かとなってきた。
Problems to be Solved by the Invention Although the structure formed in this way using TiN12 as a barrier layer becomes a stable contact that does not cause AIl spikes,
On the other hand, it has become clear that there are the following problems in the manufacturing process.

■ TiN膜には適切な反応性ドライエツチングのでき
るガスが現在のところ逐ぐ、フォトレジストや他の材料
との選択比の小さいいわゆるスパッタ性の強いエツチン
グを行なわざるを得ない。このため、エツチング中にパ
ターンシフトを生じ、また残渣のために配線間の短絡を
生じたり、長時間イオンでたたかれるためにデバイス中
に損傷を残したりすることがある。このため微細なパタ
ーンの形成が難しい。
(2) At present, there is no gas available for suitable reactive dry etching for the TiN film, so etching with strong sputtering properties, which has a low selectivity with respect to photoresist and other materials, must be performed. This can cause pattern shifts during etching, short circuits between interconnects due to the residue, and damage left in the device due to being bombarded with ions for a long period of time. This makes it difficult to form fine patterns.

■ スパッタ法でTiN12を形成する場合、コンタク
トホール11が微細かつ垂直になるとその底面にTLN
が付着しにくく々す、バリア層としての信頼性に欠ける
■ When forming TiN12 by sputtering, if the contact hole 11 is fine and vertical, TLN is formed on the bottom surface.
is difficult to adhere to, and lacks reliability as a barrier layer.

■ TiN膜はスパッタ法以外にもTiを含む膜を熱窒
化することにより形成できるが、そのためには1000
℃以上の熱処理が必要でその間不納物プロファイルの変
化等の望ましくない現象を生じる。
■ A TiN film can be formed by thermal nitriding of a film containing Ti in addition to the sputtering method;
℃ or higher heat treatment is required, during which undesirable phenomena such as changes in the profile of undeliverables occur.

本発明はこの様な従来のバリア層形成方法の問題点に鑑
みてなされたもので、微細なコンタクトホールにも信頼
性の良いバリア層を比較的低温下で形成する方法を提供
しようとするものである。
The present invention was made in view of the problems of the conventional barrier layer forming method, and aims to provide a method for forming a highly reliable barrier layer even in minute contact holes at a relatively low temperature. It is.

また本発明の他の目的は、T i N/l’1.の2層
構造を用いてへ2配線のエレクトロマイグレーション現
象発生を抑制する際に、T i N/111.配線の微
細パターン形成を容易にしようとするものである。
Another object of the present invention is to reduce T i N/l'1. When suppressing the electromigration phenomenon of the H2 wiring using the two-layer structure of T i N/111. The purpose is to facilitate the formation of fine wiring patterns.

A4配線のエレクトロマイグレーション発生を抑制する
ために、へ2配線上にTiN  膜を形成することが効
果的であるが、他方微細配線には余り適用されていなか
った。なぜならば先にも触れた様にTiN はドライエ
ツチングが難しくエツチング中にパターンシフトを生じ
、微細パターン形成が困難であったからである。
In order to suppress the electromigration of A4 wiring, it is effective to form a TiN film on the A4 wiring, but this has not been applied to fine wiring. This is because, as mentioned above, dry etching of TiN is difficult and pattern shift occurs during etching, making it difficult to form fine patterns.

本発明はこの様なエレクトロマイグレーション抑制のた
めのTiN/Aff  2層構造を微細配線に適用可能
にする方法を提供しようとするものである。
The present invention aims to provide a method that makes the TiN/Aff two-layer structure for suppressing electromigration applicable to fine wiring.

問題点を解決するだめの手段 上記の様な問題点を解決するために本発明は、TiN膜
を形成する工程にイオン打込み法を適用する。すなわち
あらかじめチタン膜またはチタン化合物膜を堆積してお
き、これに窒素イオンまたは窒素を含む化合物イオンを
イオン打込みすることにより、TiN膜を形成しようと
するものである。
Means for Solving the Problems In order to solve the above problems, the present invention applies an ion implantation method to the process of forming a TiN film. That is, a TiN film is formed by depositing a titanium film or a titanium compound film in advance and implanting nitrogen ions or nitrogen-containing compound ions into the film.

作  用 TiN膜が必要とされる殆んどの場合はせいぜい110
0nから200nm程度迄の極く薄いTiN 膜で充分
である。このためチタン膜またはチタン化合物膜に数K
eV から数10KeVの加速エネルギーで窒素または
窒素化合物をイオン打込みする事によりこの程度の厚み
のTiN  膜を形成できる。この際、イオン打込みは
通常の半導体装置の製造工程で使用される様な質量分析
を必ずしも必要としない。イオンの純度に対する要求が
TiN 膜を必要としている工程ではかなしゆるやかだ
からである。
In most cases where a working TiN film is required, it is no more than 110
An extremely thin TiN film with a thickness of about 0 nm to about 200 nm is sufficient. For this reason, the titanium film or titanium compound film has several K
A TiN film of this thickness can be formed by ion-implanting nitrogen or a nitrogen compound at an acceleration energy of eV to several tens of KeV. At this time, ion implantation does not necessarily require mass spectrometry as used in normal semiconductor device manufacturing processes. This is because the requirements for ion purity are very lenient in processes that require TiN films.

あらかじめチタン膜あるいはチタン化合物膜を、必要と
する微細パターンに加工しておき、次に窒素原子まだは
窒素化合物を基板全体にイオン打込みすることにより上
層がTiN  層となった微細なパターンを得ることが
できる。あるいはチタン膜あるいはチタン化合物上のT
iN  膜を形成したい部分のみを開口し、他の領域を
イオン打込み阻止材料でマスクしてイオン打込みするこ
とにより部分的にTiN膜を形成しようとするのが本発
明の方法である。
A titanium film or a titanium compound film is processed in advance into the required fine pattern, and then nitrogen atoms or nitrogen compounds are ion-implanted into the entire substrate to obtain a fine pattern with the upper layer being a TiN layer. Can be done. Or T on titanium film or titanium compound
The method of the present invention attempts to partially form a TiN film by opening only the portion where the iN film is desired to be formed and implanting ions while masking the other regions with an ion implantation blocking material.

実施例 本発明について実施例を用いて詳細に説明する。Example The present invention will be explained in detail using examples.

第1図aから第1図すは本発明をシリサイド化接合MO
8集積回路に適用した例である。シリサイド化接合形成
を経てコンタクトホール11形成までの工程(第1図a
−c)までは従来例と同様である。コンタクトホールの
底部のチタンシリサイドTiSi工9は0.1〜0.2
μと薄い。この一部をTiN 化するために、第1図d
に示す様に窒素イオ7(N”)を1〜40 KeV 、
5X1016/cM −5X1017/iの範囲でイオ
ン打込みした。ドーズ量はチタンの原子密度とほぼ同等
になる様に選んだ。イオン打込みはビーム電流を犬とす
るため、質量分析は行なわれなかった。この場合、イオ
ンソースでは窒素ガスを用いているため、イオン流には
窒素イオンのみならず、窒素分子も含まれる。
Figure 1a to Figure 1 show the present invention in a silicided junction MO.
This is an example applied to 8 integrated circuits. The process from forming a silicided junction to forming a contact hole 11 (Fig. 1a)
-c) is the same as the conventional example. The titanium silicide TiSi coating 9 at the bottom of the contact hole is 0.1 to 0.2
μ and thin. In order to convert this part into TiN,
As shown in the figure, nitrogen ion 7 (N”) is heated at 1 to 40 KeV,
Ion implantation was performed in the range of 5X1016/cM - 5X1017/i. The dose was selected to be approximately equal to the atomic density of titanium. Mass spectrometry was not performed because the ion implantation uses a constant beam current. In this case, since the ion source uses nitrogen gas, the ion flow includes not only nitrogen ions but also nitrogen molecules.

イオン打込み後、Ar中にて700℃数分間のラピッド
サーマルアニールを行ない、イオン打込みによるシリサ
イド化接合中の損傷を回復し、同時にTiN膜12Aの
低抵抗化を図った。
After the ion implantation, rapid thermal annealing was performed in Ar at 700° C. for several minutes to recover damage in the silicided junction caused by the ion implantation, and at the same time to lower the resistance of the TiN film 12A.

この後、第1図eに示す様にAn配線13を形成し、シ
リサイド化接合を有するMOSトランジスタができあが
る。この様にイオン打込み法によりTiNバリアメタル
を形成することにより、従来プロセスで生じたようなコ
ンタクトホールでのTiN膜の堆積不良や微細配線形成
の際の不良は生シナイ。TiN 膜12Aはコンタクト
ホール11の開口部にのみ自己整合で形成されるため、
歩留りが良い。
Thereafter, an An wiring 13 is formed as shown in FIG. 1e, and a MOS transistor having a silicided junction is completed. By forming the TiN barrier metal using the ion implantation method in this way, defects in TiN film deposition in contact holes and defects in fine wiring formation that occur in conventional processes can be avoided. Since the TiN film 12A is formed in a self-aligned manner only at the opening of the contact hole 11,
Good yield.

本実施例ではチタンシリサイド領域9を形成して後にイ
オン打込みを行なったが、順を逆にすることもできる。
In this embodiment, titanium silicide region 9 is formed and then ion implantation is performed, but the order can also be reversed.

すなわち第1図aの工程の後第2図に示す様に、Ti薄
膜8を全面ば蒸着し、TiNを形成したい部分のみを開
口するマスクでフォトレジスト14のパターン出しを行
なう。このフォトレジストをマスクとして窒素イオン打
込みを行ない、所望の領域にのみTiN12Bを形成す
ることができる。この場合にはTi薄膜8Aの厚みを決
める際、TiN12Bに変質する分を考慮し少し厚くし
て、後工程のシリサイド接合形成にそなえる必要がある
。以下の工程は従来例と同様に取扱うことができる。
That is, after the step shown in FIG. 1A, as shown in FIG. 2, a Ti thin film 8 is deposited over the entire surface, and the photoresist 14 is patterned using a mask that opens only the portion where TiN is to be formed. Nitrogen ions are implanted using this photoresist as a mask, and TiN 12B can be formed only in desired regions. In this case, when determining the thickness of the Ti thin film 8A, it is necessary to make it a little thicker in consideration of the change in quality to TiN 12B in order to prepare for the formation of a silicide bond in the later step. The following steps can be handled in the same manner as in the conventional example.

第3図a、bは本発明を配線のエレクトロマイグレーシ
ョン抑制に適用した第2の実施例を示している。まず、
第3図aに示す様にシリコン基板1上に形成されたフィ
ールド酸化膜16上にAQ膜、チタン膜をスパッタ法に
よりそれぞれ〜600nm、〜50nm形成し、公知の
フォトリソグラフィー技術によりフォトレジスト(図示
せず)でパターン出しする。このフォトレジストをマス
クとして塩素及び四塩化硅素を主体とするガス系でプラ
ズマエツチングを行なう。酸素プラズマ等を用いてフォ
トレジストを除去し、微細パターンのA2配線16、チ
タン膜17が得られる。次に加速エネルギー数KeVか
ら数10KeVで窒素イオン流をシリコン基板全面に照
射する。ドーズ量はチタンの原子密度とほぼ同等になる
様6×1o 〜5x1o  /cni とした(第3図
b)。これによりチタン膜17は窒化し、TiN膜1日
となる。この方法によれば、あらかじめパターンはチタ
ン膜17、An配線16形成時点で確定しているため、
従来法で問題となったTiN  エツチング時のパター
ンシフト等の問題は生じない。TiN膜/Af!、膜の
2層構造とすることで、All膜層層際に比べるとヒル
ロックの発生が極めて少なくなり、エレクトロマイグレ
ーションも発生しにくくなることは言うまでもない。こ
の実施例ではA2膜16上にチタン膜17を形成すると
したが、チタン膜17の代りにチタンシリサイド膜を用
いても何らさしつかえない。
FIGS. 3a and 3b show a second embodiment in which the present invention is applied to suppress electromigration of wiring. first,
As shown in FIG. 3a, an AQ film and a titanium film of ~600 nm and ~50 nm, respectively, are formed on the field oxide film 16 formed on the silicon substrate 1 by sputtering, and a photoresist (Fig. (not shown) to generate a pattern. Using this photoresist as a mask, plasma etching is performed using a gas system mainly containing chlorine and silicon tetrachloride. The photoresist is removed using oxygen plasma or the like to obtain fine patterns of A2 wiring 16 and titanium film 17. Next, the entire surface of the silicon substrate is irradiated with a flow of nitrogen ions at an acceleration energy of several KeV to several tens of KeV. The dose was set to 6×1o to 5×1o/cni so as to be approximately equal to the atomic density of titanium (FIG. 3b). As a result, the titanium film 17 is nitrided and becomes a TiN film for one day. According to this method, since the pattern is determined in advance at the time of forming the titanium film 17 and the An wiring 16,
Problems such as pattern shift during TiN etching, which were problems in the conventional method, do not occur. TiN film/Af! It goes without saying that by having a two-layer structure of the film, hillocks are extremely less likely to occur and electromigration is also less likely to occur compared to when the Al film is layered. In this embodiment, the titanium film 17 is formed on the A2 film 16, but a titanium silicide film may be used instead of the titanium film 17.

発明の効果 この様に本発明を適用することによりサブミクロンルー
ルでの■ コンタクトバリアメタルの形成、■ 金属配
線のエレクトロマイグレーション抑止膜の形成、を高歩
留りで信頼性よく行うことができる。
Effects of the Invention As described above, by applying the present invention, (1) formation of a contact barrier metal and (2) formation of an electromigration inhibiting film for metal wiring can be performed with high yield and reliability under the submicron rule.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、b、c、d、eは本発明の一実施例を説明す
るだめの工程断面図、第2図は本発明の他の実施例を示
す断面図、第3図a、bは本発明のさらに他の実施例を
説明するための工程断面図、第4図a、b、c、d、e
は従来例を説明するための工程断面図である。 1・・・・・・シリコン基板、8,8A・・・・・・チ
タン薄膜、9・・・・・・シリサイド領域、12A、1
2B・・・・・・TiN。 13.16・・・・・・A2配線、17・・・・・・チ
タン膜、18・・・・・・TiN膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!−
シリコン基板 2−、l?リシリコンゲート 3−CVD酸イと、膜 l −シリコン墓叔 I5−酸化膜 16−   パノ 配 祿 1’l  −+  ダ  ン 膜 1B−TiNM 第3図 1− ンリコン@扱 2− ポリシリコンケート 3−CVD酸イ乙バ寓 4− スペーサ鮫化膜 g−ソリサイト化併合
Figures 1 a, b, c, d, and e are process sectional views for explaining one embodiment of the present invention, Figure 2 is a sectional view showing another embodiment of the present invention, and Figures 3 a, b 4a, b, c, d, e are process sectional views for explaining still other embodiments of the present invention.
1 is a process sectional view for explaining a conventional example. 1...Silicon substrate, 8,8A...Titanium thin film, 9...Silicide region, 12A, 1
2B...TiN. 13.16...A2 wiring, 17...Titanium film, 18...TiN film. Name of agent: Patent attorney Toshio Nakao and 1 other person! −
Silicon substrate 2-, l? Polysilicon gate 3 - CVD acid and film 1 - Silicon layer I5 - Oxide film 16 - Pano layer 1'l - + Dan film 1B - TiNM Figure 3 1 - Silicon layer 2 - Polysilicon gate 3 -CVD acid evaporation 4- Spacer shark membrane g- Soricytization merging

Claims (7)

【特許請求の範囲】[Claims] (1)チタン膜またはチタン化合物を含む膜に窒素イオ
ンまたは窒素原子を含むイオンをイオン打込みしてなる
窒化チタン膜の形成方法。
(1) A method for forming a titanium nitride film by implanting nitrogen ions or ions containing nitrogen atoms into a titanium film or a film containing a titanium compound.
(2)膜中に含まれるチタン原子密度とほぼ同程度にな
る様にドーズ量、加速エネルギーを設定してイオン打込
みする特許請求の範囲第1項に記載の窒化チタン膜の形
成方法。
(2) The method for forming a titanium nitride film according to claim 1, in which ions are implanted by setting the dose and acceleration energy to be approximately the same as the titanium atomic density contained in the film.
(3)膜がチタンシリサイドである特許請求の範囲第1
項に記載の窒化チタン膜の形成方法。
(3) Claim 1 in which the film is titanium silicide
The method for forming a titanium nitride film described in .
(4)膜がチタンシリサイド化接合を構成している特許
請求の範囲第1項に記載の窒化チタン膜の形成方法。
(4) The method for forming a titanium nitride film according to claim 1, wherein the film constitutes a titanium silicided junction.
(5)膜がチタン膜またはチタンシリサイド膜とアルミ
ニウムを主体とする膜とを含む多層構造膜である特許請
求の範囲第1項に記載の窒化チタン膜の形成方法。
(5) The method for forming a titanium nitride film according to claim 1, wherein the film is a multilayer structure film including a titanium film or a titanium silicide film and a film mainly composed of aluminum.
(6)膜をパターンニングした後に窒素イオン打込みす
る特許請求の範囲第1項に記載の窒化チタン膜の形成方
法。
(6) The method for forming a titanium nitride film according to claim 1, wherein nitrogen ions are implanted after patterning the film.
(7)膜上にマスクを形成し、前記マスク開口部を通し
て前記膜にイオン打込みする特許請求の範囲第1項に記
載の窒化チタン膜の形成方法。
(7) The method for forming a titanium nitride film according to claim 1, wherein a mask is formed on the film and ions are implanted into the film through the mask opening.
JP1453787A 1987-01-23 1987-01-23 Formation of titanium nitride film Pending JPS63181422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1453787A JPS63181422A (en) 1987-01-23 1987-01-23 Formation of titanium nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1453787A JPS63181422A (en) 1987-01-23 1987-01-23 Formation of titanium nitride film

Publications (1)

Publication Number Publication Date
JPS63181422A true JPS63181422A (en) 1988-07-26

Family

ID=11863899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1453787A Pending JPS63181422A (en) 1987-01-23 1987-01-23 Formation of titanium nitride film

Country Status (1)

Country Link
JP (1) JPS63181422A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221853A (en) * 1989-01-06 1993-06-22 International Business Machines Corporation MOSFET with a refractory metal film, a silicide film and a nitride film formed on and in contact with a source, drain and gate region
JPH0653168A (en) * 1992-06-05 1994-02-25 Hyundai Electron Ind Co Ltd Manufacture of titanium silicide contact
US5491365A (en) * 1991-07-12 1996-02-13 Hughes Aircraft Company Self-aligned ion implanted transition metal contact diffusion barrier apparatus
US5494860A (en) * 1995-03-14 1996-02-27 International Business Machines Corporation Two step annealing process for decreasing contact resistance
US5508212A (en) * 1995-04-27 1996-04-16 Taiwan Semiconductor Manufacturing Co. Salicide process for a MOS semiconductor device using nitrogen implant of titanium
US5656546A (en) * 1995-08-28 1997-08-12 Taiwan Semiconductor Manufacturing Company Ltd Self-aligned tin formation by N2+ implantation during two-step annealing Ti-salicidation
US5874351A (en) * 1996-06-13 1999-02-23 Micron Tecnology, Inc. Sputtered metal silicide film stress control by grain boundary stuffing
US6027990A (en) * 1996-07-08 2000-02-22 Micron Technology, Inc. Using implants to lower anneal temperatures

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221853A (en) * 1989-01-06 1993-06-22 International Business Machines Corporation MOSFET with a refractory metal film, a silicide film and a nitride film formed on and in contact with a source, drain and gate region
US5491365A (en) * 1991-07-12 1996-02-13 Hughes Aircraft Company Self-aligned ion implanted transition metal contact diffusion barrier apparatus
JPH0653168A (en) * 1992-06-05 1994-02-25 Hyundai Electron Ind Co Ltd Manufacture of titanium silicide contact
US5494860A (en) * 1995-03-14 1996-02-27 International Business Machines Corporation Two step annealing process for decreasing contact resistance
US5508212A (en) * 1995-04-27 1996-04-16 Taiwan Semiconductor Manufacturing Co. Salicide process for a MOS semiconductor device using nitrogen implant of titanium
US5656546A (en) * 1995-08-28 1997-08-12 Taiwan Semiconductor Manufacturing Company Ltd Self-aligned tin formation by N2+ implantation during two-step annealing Ti-salicidation
US5874351A (en) * 1996-06-13 1999-02-23 Micron Tecnology, Inc. Sputtered metal silicide film stress control by grain boundary stuffing
US6054744A (en) * 1996-06-13 2000-04-25 Micron Technology Inc. Metal silicide film stress control by grain boundary stuffing
US6204173B1 (en) 1996-06-13 2001-03-20 Micron Technology, Inc. Multiple implantation and grain growth method
US6027990A (en) * 1996-07-08 2000-02-22 Micron Technology, Inc. Using implants to lower anneal temperatures

Similar Documents

Publication Publication Date Title
US5196360A (en) Methods for inhibiting outgrowth of silicide in self-aligned silicide process
JP3704427B2 (en) Method for forming copper metal wiring of semiconductor device
KR0126906B1 (en) Self-aligned cobalt silicide on mos integrated circuits
JP3168421B2 (en) Method for manufacturing semiconductor device
JPH0736403B2 (en) How to attach refractory metal
JPH07335759A (en) Semiconductor device and its formation
US6879043B2 (en) Electrode structure and method for fabricating the same
JPS63181422A (en) Formation of titanium nitride film
KR100280905B1 (en) Metal Salicide Process Using Ion Metal Plasma Deposition
JPH0774129A (en) Semiconductor device and its manufacture
JPS59200418A (en) Manufacture of semiconductor device
JPS6312132A (en) Manufacture of semiconductor device
JP2647842B2 (en) Method for manufacturing semiconductor device
JP3185235B2 (en) Method for manufacturing semiconductor device
JPH01160009A (en) Manufacture of semiconductor device
JPH04196122A (en) Manufacture of semiconductor device
JP3341329B2 (en) Method for manufacturing semiconductor device
JPH0730108A (en) Mis type semiconductor device and its manufacture
KR100265228B1 (en) Method for fabricating semiconductor device
JPS63116A (en) Manufacture of semiconductor device
JPH05160068A (en) Manufacture of semiconductor device
JPH0159731B2 (en)
JPH0434926A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPS62291146A (en) Manufacture of semiconductor device