JPS62206886A - Manufacture of compound-semiconductor field-effect transistor - Google Patents

Manufacture of compound-semiconductor field-effect transistor

Info

Publication number
JPS62206886A
JPS62206886A JP4865686A JP4865686A JPS62206886A JP S62206886 A JPS62206886 A JP S62206886A JP 4865686 A JP4865686 A JP 4865686A JP 4865686 A JP4865686 A JP 4865686A JP S62206886 A JPS62206886 A JP S62206886A
Authority
JP
Japan
Prior art keywords
heat treatment
substrate
film
temperature
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4865686A
Other languages
Japanese (ja)
Inventor
Masami Nagaoka
正見 長岡
Yoshiaki Kitaura
北浦 義昭
Kazuya Nishibori
一弥 西堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4865686A priority Critical patent/JPS62206886A/en
Publication of JPS62206886A publication Critical patent/JPS62206886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain an excellent Schottky junction easily while improving uniformity and reproducibility by dividing a heat treatment process into at least two steps on manufacture and making the temperature of heat treatment for a gate electrode material lower than a temperature for forming source and drain regions. CONSTITUTION:PSG films 16 are shaped on both surfaces of a substrate 11 through a CVD method or the like, and a crystallized WN film 13b is formed through first heat treatment at a comparatively low temperature. The WN film is crystallized at the low temperature, and hardly diffuses mutually and reacts on the interface with the substrate 11, and the impurity distribution of an N-type active layer 12 hardly alters, also. Si ions are implanted to the whole surface of the substrate 11, PSG films 17 are shaped on both surfaces of the substrate 11, and source and drain regions 14, 15 are formed through second heat treatment at a comparatively high temperature. Since the WN film is thermally treated, crystallized and brought into a stable state previously at the low temperature at that time, it hardly diffuses mutually and reacts between the WN film and the substrate 11 through heat treatment at the high temperature.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は化合物半導体電界効果トランジスタの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a compound semiconductor field effect transistor.

(従来の技術) GaAS等の化合物半導体を基板として用いた化合物半
導体電界効果トランジスタは、基板上に直接金属等を形
成し、ショットキ接合を構成したもの即ちショットキバ
リアゲート型電界効果トランジスタ(以下)IEsFE
Tと略す)が一般的に利用されている。そのHESFE
Tは、ソース電極・ゲート電極間に存在するソース直列
抵抗(R8)が、その特性を決定する大きな要因となっ
ている。即ち、FETの真性相互コンダクタンス(gI
Tlo)及び実際の相互コンダクタンス(Qm>とR8
との間には にJm−Qmo/ (1+Ra gmo>となる関係が
あり、Rsが小さいほどgmが大きくなる。したがって
FETの高性能化にはRsの低減が重要である。
(Prior Art) A compound semiconductor field effect transistor using a compound semiconductor such as GaAS as a substrate is a Schottky barrier gate field effect transistor (hereinafter referred to as IEsFE), which is a Schottky barrier gate field effect transistor (hereinafter referred to as IEsFE), in which a metal etc. is directly formed on the substrate to form a Schottky junction.
(abbreviated as T) is commonly used. That HESFE
The source series resistance (R8) existing between the source electrode and the gate electrode is a major factor in determining the characteristics of T. That is, the intrinsic transconductance (gI
Tlo) and the actual transconductance (Qm> and R8
There is a relationship between Jm-Qmo/(1+Ra gmo>, and the smaller Rs is, the larger gm is. Therefore, reducing Rs is important for improving the performance of FETs.

このような点から従来、ゲート電極に対し自己整合的に
ソース・ドレイン領域を形成する方法が多用化されてい
る。その−例と第4図(2)〜(C)に参照して説明す
る。まず、半絶縁性GaAS基板(41)に3i+イオ
ン等をイオン注入し、熱処理してn型の活性層(42)
を形成する。その後活性層(42)上に耐熱金属である
タングステン(W>導電膜又はその化合物である窒化タ
ングステン(WN>導1[(43)をスパッタリング蒸
着法等で第4図(2)の如く形成する。次に導電膜(4
3)を第4図υの如くパターンニングしてゲート電極(
43a)とする。
From this point of view, conventionally, a method of forming source/drain regions in a self-aligned manner with respect to the gate electrode has been widely used. This will be explained with reference to examples thereof and FIGS. 4(2) to 4(C). First, 3i+ ions etc. are implanted into a semi-insulating GaAS substrate (41), and heat treated to form an n-type active layer (42).
form. Thereafter, a heat-resistant metal such as tungsten (W>conductive film or a compound thereof, tungsten nitride (WN>conductive 1 [(43)) is formed on the active layer (42) by sputtering vapor deposition or the like as shown in FIG. 4(2). Next, a conductive film (4
3) is patterned as shown in Fig. 4 υ to form the gate electrode (
43a).

しかる後、ゲート電極(43a)をマスクとしてSiイ
オン等をイオン注入し、800℃位の温度で熱処理して
注入イオンを活性化し、第4図(C)の如くソース領域
(44)及びドレイン領域(45)を形成する。
Thereafter, Si ions or the like are implanted using the gate electrode (43a) as a mask, and the implanted ions are activated by heat treatment at a temperature of about 800° C. to form the source region (44) and drain region as shown in FIG. 4(C). (45) is formed.

この時のゲート電極は結晶化されているものと想定して
、図において(431))としている。最優にソース及
びドレイン領域(44)(45)に夫々電極を形成(図
示せず)する。
It is assumed that the gate electrode at this time is crystallized, and is indicated by (431)) in the figure. Electrodes (not shown) are preferably formed in the source and drain regions (44) and (45), respectively.

このようにしてHESFETが得られる訳であるが、ゲ
ート電極材料として用いられる耐熱性金属からなる導電
膜(43)は、スパッタ等で形成すると多くはアモルフ
ァス状態であり、良好なショットキ接合が得られない。
A HESFET is obtained in this way, but the conductive film (43) made of a heat-resistant metal used as a gate electrode material is often in an amorphous state when formed by sputtering, etc., and a good Schottky junction cannot be obtained. do not have.

そこで上述した従来例では、イオン注入後の熱処理で注
入イオンの活性化以外に、ゲート電極材料の結晶化も図
り、ショットキ接合を良好にするものと考えていた。し
かしながら注入イオンの活性化する為の熱処理温度は8
00℃前後と比較的高い温度でおる為、不安定なアモル
ファス状態と化合物半導体(GaAS)基板との間に相
互拡散・反応が生じ、ショットキ接合の劣化、接合界面
の移動を誘起し、結果として形成したHESFETの均
一性、再現性を悪化させるという問題があった。
Therefore, in the conventional example described above, it was thought that heat treatment after ion implantation not only activates the implanted ions but also crystallizes the gate electrode material and improves the Schottky junction. However, the heat treatment temperature for activating the implanted ions is 8
Because the temperature is relatively high at around 00°C, mutual diffusion and reactions occur between the unstable amorphous state and the compound semiconductor (GaAS) substrate, causing deterioration of the Schottky junction and movement of the bonding interface, resulting in There was a problem in that the uniformity and reproducibility of the formed HESFET deteriorated.

(発明が解決しようとする問題点) 以上説明したように上述した従来のHESFETの製造
方法では、良好なショットキ接合が得にくく、ひいては
均一性、再現性の乏しいものとなっていた。
(Problems to be Solved by the Invention) As explained above, in the conventional HESFET manufacturing method described above, it is difficult to obtain a good Schottky junction, and as a result, uniformity and reproducibility are poor.

この発明は上記点に鑑み、良好なショットキ接合が得や
すく、均一性、再現性に優れた化合物半導体電界効果ト
ランジスタの製造方法を提供するものである。
In view of the above-mentioned points, the present invention provides a method for manufacturing a compound semiconductor field effect transistor, which makes it easy to obtain a good Schottky junction and has excellent uniformity and reproducibility.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この発明は化合物半導体電界効果トランジスタを製造す
る際、熱処理工程を少なくとも2段階に分け、ゲート電
極材料(導電膜)の熱処理の温度をソース及びドレイン
領域形成の為の温度より低くしたことを特徴とする。
(Means for Solving the Problems) When manufacturing a compound semiconductor field effect transistor, the present invention divides the heat treatment process into at least two stages, and changes the temperature of the heat treatment of the gate electrode material (conductive film) to that of the source and drain region formation. The feature is that the temperature is lower than that of

(作 用) このように熱処理を、ゲート電極材料(導電膜)の熱処
理工程と、ソース及びドレイン領域形成の為の熱処理工
程とに分け、その熱処理温度を前者の方を低い例えば4
50℃前後にすることにより、ゲート電極材料がアモル
ファス状態から安定な結晶化状態になり、その時にゲー
ト電極材料と化合物半導体との間の相互拡散や反応がほ
とんど生じない。又、安定な結晶化状態になった後に、
ソース及びドレイン領域形成の為の800℃前後の温度
で熱処理しても、ゲート電極材料と化合物半導体との間
に相互拡散や反応が生じなく、良好なショットキ接合を
得ることができる。
(Function) In this way, the heat treatment is divided into the heat treatment process for the gate electrode material (conductive film) and the heat treatment process for forming the source and drain regions, and the heat treatment temperature for the former is lower, for example, 4.
By heating the temperature to around 50° C., the gate electrode material changes from an amorphous state to a stable crystallized state, and at this time, almost no interdiffusion or reaction occurs between the gate electrode material and the compound semiconductor. In addition, after reaching a stable crystallization state,
Even during heat treatment at a temperature of around 800° C. for forming the source and drain regions, no interdiffusion or reaction occurs between the gate electrode material and the compound semiconductor, and a good Schottky junction can be obtained.

(実施例) 本発明の一実施例として、ゲート電極材料(導電膜)を
パターンニングした後に、そのゲート電極材料の熱処理
を行い、その後イオン注入して熱処理を行う場合を、第
1図(Q〜(e)を用いて説明する。
(Example) As an example of the present invention, FIG. 1 (Q This will be explained using (e).

まず、半絶縁性GaAS基板■にSiイオンを加速電圧
50 KeV、ドーズ量2X1012/cdにてイオン
注入し、850℃の温度で15分間熱処理を行い、n型
活性層0のを形成する。次にスパッタリング蒸着法によ
り第1図(2)の如<WNNO3を4000人程度形成
する。この時点ではWNlliOΦはアモルファス状態
である。この後、CF4をエツチングガスとして用いた
反応性イオンエツチング(RIE>によりWNIIIO
のをパターンニングして第1図(ハ)の如くゲート電極
(13a)とする。次に基板■の両面にCVD法等テP
 S G 膜Qee 5000A 程[形成t、、、4
50℃で30分間熱処理(第1の熱処理工程)して、第
1図(C)の如く結晶化したWN膜(13b)とする。
First, Si ions are implanted into a semi-insulating GaAS substrate 1 at an acceleration voltage of 50 KeV and a dose of 2×10 12 /cd, and heat treatment is performed at a temperature of 850° C. for 15 minutes to form an n-type active layer 0 . Next, about 4000 layers of WNNO3 are formed as shown in FIG. 1(2) by sputtering vapor deposition. At this point, WNlliOΦ is in an amorphous state. After this, WNIIIO was etched by reactive ion etching (RIE) using CF4 as an etching gas.
This is patterned to form a gate electrode (13a) as shown in FIG. 1(C). Next, apply CVD method etc. to both sides of the board.
S G film Qee 5000A [formation t,,,4
A heat treatment is performed at 50° C. for 30 minutes (first heat treatment step) to form a crystallized WN film (13b) as shown in FIG. 1(C).

この450℃程度(400℃〜500℃)の低い温度で
は、WN膜が結晶化するものの、基板■との界面で相互
拡散したり、反応したりすることがほとんど生じなく、
又、n型活性層0のの不純物分布もほとんど変化しない
。しかる後、基板■仝面にSiイオンを加速電圧100
 KeV 、ドーズ13X1013/〜にてイオン注入
を行い、その後PSG膜(ロ)を基板■の両面にCVD
法等で5ooo人程度形成して2.800℃(750℃
〜850’C)で20分間熱処理(第2の熱処理工程)
を行い、ソース及びドレイン領域QtJ Q’jを第1
図1の如く形成する。この時点では既にWN膜を450
℃程度の温度で熱処理して結晶化させて安定な状態にし
ている為、800℃程度の熱処理で基板■との間で相互
拡散したり、又反応したりすることがほとんど生じない
。この俊、ソース及びドレイン領域aoae上にAuG
e膜をスパッタリング蒸着等で形成し、第1図(e)の
如くソース及びトレイン電極(14a) (15a)を
形成する。
At this low temperature of about 450°C (400°C to 500°C), although the WN film crystallizes, there is almost no interdiffusion or reaction at the interface with the substrate (2).
Further, the impurity distribution in the n-type active layer 0 also hardly changes. After that, Si ions were accelerated at a voltage of 100 on the other side of the substrate.
Ion implantation was performed at KeV and a dose of 13x1013/~, and then a PSG film (b) was deposited on both sides of the substrate (2) by CVD.
Approximately 500 people were formed by
~850'C) for 20 minutes (second heat treatment step)
The source and drain regions QtJ Q'j are
Form as shown in FIG. At this point, the WN film was already 450 mm thick.
Since it is heat-treated at a temperature of about 800°C to crystallize and become stable, interdiffusion or reaction with the substrate (1) hardly occurs during heat treatment at about 800°C. In this case, AuG is placed on the source and drain regions aoae.
An e film is formed by sputtering vapor deposition, etc., and source and train electrodes (14a) (15a) are formed as shown in FIG. 1(e).

上述した方法で得られたHESFETは、2インチウェ
ハ面内、での閾値電圧Vthの分散σが307rLV程
度と小さく、均一なFET特性を示していた。又、ウェ
ハ間でのバラツキも小さく、閾値電圧の2インチウェハ
面内での平均値7;は、n型活性層の形成時のイオン注
入ドーズ量から経験的に求められる閾値電圧Vth”に
対して±70TrLvの範囲内にあった。ざらにFET
の性能を示す相互コンダクタンスgmも2001nS 
/msと良好であった。
The HESFET obtained by the above method had a small dispersion σ of the threshold voltage Vth within the 2-inch wafer surface of about 307 rLV, and exhibited uniform FET characteristics. In addition, the variation between wafers is small, and the average value of the threshold voltage within a 2-inch wafer surface is 7; It was within the range of ±70TrLv.
The transconductance gm indicating the performance is also 2001nS.
/ms, which was good.

尚比較の為に従来例で示した方法即ちWN膜の熱処理工
程(第1の熱処理工程)を行わなく、他の工程を同様に
してHESFETを得た場合、Vthの分散σが40〜
70Trt■であり、又7iがVth”に対して100
〜200mVプラス側にシフトしているウェハが散見さ
れた。これはソース及びドレイン領域の活性化の為に行
う800℃程度の熱処理工程において基板とアモルファ
ス状態がWNliとの間に相互拡散及び反応が生じ、シ
ョットキ接合界面が移動し、活性層の実質的な厚さが薄
くなった為と考えられる。
For comparison, when a HESFET is obtained by the method shown in the conventional example, that is, by performing the other steps in the same manner without performing the WN film heat treatment step (first heat treatment step), the dispersion σ of Vth is 40~40.
70Trt■, and 7i is 100 for Vth"
Some wafers were seen that had shifted to the positive side by ~200 mV. This is because mutual diffusion and reaction occur between the substrate and the amorphous WNli during the heat treatment process at approximately 800°C to activate the source and drain regions, and the Schottky junction interface moves, causing the active layer to become substantially This is thought to be due to the thinner thickness.

次に他の実施例としてゲート電極材料(導電膜)を形成
した直後に熱処理(第1の熱処理工程)を行い、その侵
に電極材料のパターンニング、イオン注入を行い、その
俊イオンの活性化の為の熱処理(第2の熱処理工程)を
行った例につき、第2図(0〜(e)を用いて説明する
Next, as another example, immediately after forming the gate electrode material (conductive film), heat treatment (first heat treatment step) is performed, and during the heat treatment, patterning of the electrode material and ion implantation are performed, and the ions are activated. An example in which heat treatment (second heat treatment step) was performed will be described using FIG. 2 (0 to (e)).

まず、第1図と同様に半絶縁性GaAS基板(2)に8
1+を加速電圧50 KeV1ドーズ12X1012/
dにてイオン注入し、850℃で15分間の熱処理を行
ってn型活性I!!@を形成する。次に、スパッタリン
グ蒸着法により窒化タングステン(WN >膜(23)
を〜4000人堆積する(第2図(2))。この時点で
のWN膜(23)はアモルファス状である。この後、C
VD法によすP S G It!((26)ヲ〜500
0人基板(20)両面に堆積した後、450℃にて30
分の熱処理を行う(第2図0)。これによりWN膜(2
3)は基板@との界面付近から結晶化し、W2N等を形
成して安定化する。一方、この温度ではGaAS基板@
基板上ルファス状のWN膜(23)との相互拡散・反応
は、はとんど生じない。又、n型活性層2についても、
キャリアの分布に変化を生じない。
First, as in Fig. 1, a semi-insulating GaAS substrate (2) is
1+ acceleration voltage 50 KeV1 dose 12X1012/
Ion implantation was performed at d, and heat treatment was performed at 850°C for 15 minutes to form n-type active I! ! Form @. Next, tungsten nitride (WN > film (23)
~4000 people are deposited (Figure 2 (2)). At this point, the WN film (23) is amorphous. After this, C
P S G It! ((26) wo~500
After depositing on both sides of the substrate (20), it was heated at 450℃ for 30 minutes.
Heat treatment is performed for 30 minutes (Fig. 2 0). This results in a WN film (2
3) crystallizes from near the interface with the substrate@, forms W2N, etc., and is stabilized. On the other hand, at this temperature, GaAS substrate @
Mutual diffusion and reaction with the rufous WN film (23) on the substrate rarely occurs. Also, regarding the n-type active layer 2,
No change in carrier distribution.

次に、CF4をエツチングガスとして用いた反応性イオ
ンエツチングにより結晶化されたWNII!I(23a
)をパターンニングして、ゲート電極(23b)を形成
した後(第2図(C))、基板(21)全面に3 i 
+を加速電圧100 KeV 、ドーズfi3X101
3/cmにてイオン注入する。この後、PSG膜(27
)を基板(20の両面に〜5000人堆積した後、80
0℃20分の熱処理を行い、ソース及びドレイン領域(
24) (25)を形成する(第2図1)。この時点で
は、既にゲート電極(23b)が基板@との界面付近か
ら結晶化されて安定な状態を呈しているため、800℃
の熱処理で、GaAS基板@基板−ト電極(23b)と
の間の相互拡散・反応は生じない。
Next, WNII! was crystallized by reactive ion etching using CF4 as an etching gas. I (23a
) to form a gate electrode (23b) (FIG. 2(C)), 3 i
+ accelerating voltage 100 KeV, dose fi3X101
Ion implantation is performed at 3/cm. After this, the PSG film (27
) on both sides of the substrate (20 ~ 5000, then 80
Heat treatment was performed at 0°C for 20 minutes, and the source and drain regions (
24) Form (25) (Fig. 2 1). At this point, the gate electrode (23b) has already been crystallized from near the interface with the substrate and is in a stable state.
During the heat treatment, no mutual diffusion or reaction occurs between the GaAS substrate@substrate and the electrode (23b).

この後、ソース及びドレイン領域(24H25)上にA
uGe膜によるソース・ドレイン電極(24a)(25
a)L、て第2図(e)のようなFETが得られる。
After this, A
Source/drain electrodes (24a) (25) made of uGe film
a) L, an FET as shown in FIG. 2(e) is obtained.

このようにして得られたtiEsFETの特性は第1図
と同様のものであった。
The characteristics of the tiEsFET thus obtained were similar to those shown in FIG.

次に本発明の他の実施例としてゲート電極材料(導電膜
)をパターンニングし、ざらにこのパターンニングした
電極材料をマスクとしイオン注入し、その後2回の熱処
理を行う例につき第3図(2)〜0を用いて説明する。
Next, as another embodiment of the present invention, a gate electrode material (conductive film) is patterned, ions are implanted using the patterned electrode material as a mask, and then heat treatment is performed twice. 2) to 0 will be used for explanation.

まず、第1図と同様半絶縁性GaAS基板(31)に3
i十を加速電圧50 KeV、ドーズ12X1012/
dにてイオン注入し、850℃15分間の熱処理を行っ
てn型活性層(32)を形成する。次に、スパッタリン
グ蒸着法により窒化タングステン(WN >膜(33)
を〜4000人堆積する(第3図に))。この時点での
WN膜(33)はアモルファス状である。この後、CF
4をエツチングガスとして用いた反応性イオンエツヂン
グにより、WN膜(33)をパターンニングしてゲート
電極(33a)を形成する(第3図υ)。
First, as in Fig. 1, a semi-insulating GaAS substrate (31) is
Acceleration voltage 50 KeV, dose 12X1012/
Ion implantation is performed at step d, and heat treatment is performed at 850° C. for 15 minutes to form an n-type active layer (32). Next, tungsten nitride (WN > film (33)
~4000 people (see Figure 3)). At this point, the WN film (33) is amorphous. After this, CF
The WN film (33) is patterned by reactive ion etching using etching gas No. 4 as an etching gas to form a gate electrode (33a) (FIG. 3 υ).

次に、基板(31)全面に3i十を加速電圧100 K
eV、ドーズl13X1013/CIiにてイオン注入
して、イオン注入層(341) (351)を形成する
(第3図(C))。
Next, apply 3i to the entire surface of the substrate (31) at an accelerating voltage of 100 K.
Ion implantation is performed at eV and dose 113X1013/CIi to form ion implantation layers (341) (351) (FIG. 3(C)).

この後、PSGWi(36)を基板(31)の両面に〜
5ooo人ずつ堆積した後、熱処理を行う。この熱処理
工程では、第1の段階として450℃30分の熱処理を
行った後、第2の段階として800℃20分の熱処理を
行う。第1の段階の熱処理により、〜VN膜(33a)
は基板(31)との界面付近から結晶化し、W2N等を
形成して安定化し、ゲート電極(33b)となる(第3
図@)。一方、この温度ではGaAS基板(31)とア
モルファス状のWN膜(33a)との相互拡散・反応は
ほとんど生じない。ざらに、第2の段階の熱処理により
、イオン注入層(341) (351)を活性化して、
ソース・ドレイン領域(34)(35)を形成する(第
3図(e))。この時点では、既に第1の段階の熱処理
によりゲート電極材料が基板(31)との界面付近から
結晶化されて安定な状態を呈しているため、800℃の
熱処理でもGaAS基板とゲート電極材料との間の相互
拡散・反応は生じない。
After this, PSGWi (36) is applied to both sides of the substrate (31) ~
After depositing 500 layers, heat treatment is performed. In this heat treatment step, heat treatment is performed at 450° C. for 30 minutes as a first step, and then heat treatment is performed at 800° C. for 20 minutes as a second step. Through the first stage heat treatment, ~VN film (33a)
crystallizes from near the interface with the substrate (31), forms W2N, etc., stabilizes, and becomes the gate electrode (33b) (third
figure@). On the other hand, at this temperature, almost no mutual diffusion or reaction occurs between the GaAS substrate (31) and the amorphous WN film (33a). Roughly, the ion implantation layers (341) (351) are activated by the second stage heat treatment,
Source/drain regions (34) and (35) are formed (FIG. 3(e)). At this point, the gate electrode material has already been crystallized near the interface with the substrate (31) due to the first stage heat treatment and is in a stable state, so even with the heat treatment at 800°C, the GaAS substrate and the gate electrode material are No mutual diffusion or reaction occurs between the two.

この後、ソース・ドレイン領域(34)(35)上にA
uGe膜によるソース・トレイン電極(34a)(35
a)を形成する(第3図(わ)。以上の方法で得られた
)fEsFETも第1の実施例と同様な効果が得られた
After this, A
Source/train electrodes (34a) (35) made of uGe film
The fEsFET forming a) (FIG. 3 (W), obtained by the above method) also had the same effect as the first example.

以上のように、本実施例の方法によれば、均一性、再現
性に優れ、しかも高性能なHESFETを製造すること
ができる。
As described above, according to the method of this example, a HESFET with excellent uniformity and reproducibility and high performance can be manufactured.

なお、本発明のHESFETの製造方法は、上記実施例
に限られない。例えば、基板はGaASに限らず、他の
化合物半導体であってもよい。ゲート電極材料も、WN
に限らず、WS i、WAJ2.WS i N。
Note that the method for manufacturing a HESFET of the present invention is not limited to the above embodiments. For example, the substrate is not limited to GaAS, but may be other compound semiconductors. The gate electrode material is also WN
Not limited to WS i, WAJ2. WS i N.

MOTaNなど、高融点金属を少なくとも含む導電性材
料であればよい。熱処理方法についても、実施例の方法
に限らず、S j O2、S j N 1SiON、A
J2N等を被覆膜として用いたキャップアニール法、あ
るいはASH3雰囲気中でのキャップレスアニール法な
どでもよい。さらに、第1段階の熱処理と第2段階の熱
処理との熱処理方法も必ずしも同一である必要はない。
Any conductive material containing at least a high melting point metal such as MOTaN may be used. The heat treatment method is not limited to the method of the example, but also includes S j O2, S j N 1SiON, A
A cap annealing method using J2N or the like as a coating film, a capless annealing method in an ASH3 atmosphere, etc. may be used. Furthermore, the heat treatment methods for the first stage heat treatment and the second stage heat treatment do not necessarily have to be the same.

(発明の効果〕 以上説明したように本発明によれば、良好なショットキ
接合を有し、均一性、再現性に優れたMESFETを得
ることができる。
(Effects of the Invention) As explained above, according to the present invention, a MESFET having a good Schottky junction and excellent uniformity and reproducibility can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する為の工程断面図、
第2図及び第3図は本発明の他の実施例を説明する為の
工程断面図、第4図は従来の製造方法を説明する工程断
面図である。 11・・・半絶縁性GaAS基板、 12・・・n型活性層、 13・・・アモルファス状態のWN1!、13b・・・
WNゲート電極、 14、15・・・ソース及びドレイン領域、16、17
・・・PSGIIi。 14a、15b・・・ソース・ドレイン電極。 代理人 弁理士 則 近 恵 佑 同    竹 花 喜久男 第1図 第1図 第2図 第3図 第4図
FIG. 1 is a process sectional view for explaining one embodiment of the present invention.
2 and 3 are process cross-sectional views for explaining another embodiment of the present invention, and FIG. 4 is a process cross-sectional view for explaining a conventional manufacturing method. 11... Semi-insulating GaAS substrate, 12... N-type active layer, 13... WN1 in amorphous state! , 13b...
WN gate electrode, 14, 15...source and drain region, 16, 17
...PSGIIi. 14a, 15b...source/drain electrodes. Agent Patent Attorney Nori Megumi Chika Yudo Takehana KikuoFigure 1Figure 1Figure 2Figure 3Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)化合物半導体基板上にゲート電極となる耐熱性金
属を構成元素として含む導電膜を形成し、この導電膜を
マスクとしてイオン注入を行ってソース及びドレイン領
域を形成してなる化合物半導体電界効果トランジスタを
製造する際に、前記導電膜の少なくとも一部を結晶化す
る為の第1の熱処理工程と、前記ソース及びドレイン領
域形成の為の第2の熱処理工程とに分け、第2の熱処理
工程の温度より第1の熱処理工程の温度を低くしたこと
を特徴とする化合物半導体電界効果トランジスタの製造
方法。
(1) A compound semiconductor field effect obtained by forming a conductive film containing a heat-resistant metal as a constituent element to serve as a gate electrode on a compound semiconductor substrate, and performing ion implantation using this conductive film as a mask to form source and drain regions. When manufacturing a transistor, the conductive film is divided into a first heat treatment step for crystallizing at least a portion of the conductive film and a second heat treatment step for forming the source and drain regions, and the second heat treatment step 1. A method of manufacturing a compound semiconductor field effect transistor, characterized in that the temperature of the first heat treatment step is lower than the temperature of .
(2)第1の熱処理工程の温度は400℃〜500℃で
、第2の熱処理工程の温度は750℃〜850℃である
特許請求の範囲第1項記載の化合物半導体電界効果トラ
ンジスタの製造方法。
(2) The method for manufacturing a compound semiconductor field effect transistor according to claim 1, wherein the temperature of the first heat treatment step is 400°C to 500°C, and the temperature of the second heat treatment step is 750°C to 850°C. .
(3)第1の熱処理工程は導電膜を加工した後であるこ
とを特徴とする特許請求の範囲第1項記載の化合物半導
体電界効果トランジスタの製造方法。
(3) The method for manufacturing a compound semiconductor field effect transistor according to claim 1, wherein the first heat treatment step is performed after processing the conductive film.
(4)第1の熱処理工程は導電膜を加工する前であるこ
とを特徴とする特許請求の範囲第1項記載の化合物半導
体電界効果トランジスタの製造方法。
(4) The method for manufacturing a compound semiconductor field effect transistor according to claim 1, wherein the first heat treatment step is performed before processing the conductive film.
(5)第1の熱処理工程はイオン注入後であることを特
徴とする特許請求の範囲第1項記載の化合物半導体電界
効果トランジスタの製造方法。
(5) The method for manufacturing a compound semiconductor field effect transistor according to claim 1, wherein the first heat treatment step is performed after ion implantation.
(6)化合物半導体基板はGaAsであることを特徴と
する特許請求の範囲第1項記載の化合物半導体電界効果
トランジスタの製造方法。
(6) The method for manufacturing a compound semiconductor field effect transistor according to claim 1, wherein the compound semiconductor substrate is GaAs.
(7)導電膜は窒化タングステンであることを特徴とす
る特許請求の範囲第1項記載の化合物半導体電界効果ト
ランジスタの製造方法。
(7) The method for manufacturing a compound semiconductor field effect transistor according to claim 1, wherein the conductive film is tungsten nitride.
JP4865686A 1986-03-07 1986-03-07 Manufacture of compound-semiconductor field-effect transistor Pending JPS62206886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4865686A JPS62206886A (en) 1986-03-07 1986-03-07 Manufacture of compound-semiconductor field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4865686A JPS62206886A (en) 1986-03-07 1986-03-07 Manufacture of compound-semiconductor field-effect transistor

Publications (1)

Publication Number Publication Date
JPS62206886A true JPS62206886A (en) 1987-09-11

Family

ID=12809392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4865686A Pending JPS62206886A (en) 1986-03-07 1986-03-07 Manufacture of compound-semiconductor field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62206886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018037530A1 (en) * 2016-08-25 2018-08-23 三菱電機株式会社 Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018037530A1 (en) * 2016-08-25 2018-08-23 三菱電機株式会社 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS62206886A (en) Manufacture of compound-semiconductor field-effect transistor
JPS59188978A (en) Manufacture of schottky gate type field effect transistor
JPH0543291B2 (en)
JPS627165A (en) Manufacture of semiconductor device
JPS6390175A (en) Manufacture of compound semiconductor field effect transistor
JP2541230B2 (en) Method for manufacturing field effect transistor
JPH05175232A (en) Thin film transistor and its manufacture
JPS6037172A (en) Manufacture of field effect transistor
JPS63281424A (en) Formation of polycide electrode
KR0167667B1 (en) Method of fabricating semiconductor
JPH0257340B2 (en)
JPS63173318A (en) Heat treatment of compound semiconductor
JPS6112079A (en) Manufacture of semiconductor element
JPH03239322A (en) Semiconductor device and its manufacture
JP2707436B2 (en) Method for manufacturing field effect transistor
JPH0216008B2 (en)
JPH04162420A (en) Manufacture of semiconductor device
JPH028457B2 (en)
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH01161873A (en) Manufacture of semiconductor device
JPH0352238A (en) Manufacture of compound semiconductor device
JPH02304934A (en) Manufacture of mis type transistor
JPH02177337A (en) Manufacture of schottky gate field effect transistor
JPS6028229A (en) Manufacture of semiconductor device
JPS6276566A (en) Manufacture of field-effect transistor