JPS61276377A - Field-effect-type compound semiconductor device - Google Patents

Field-effect-type compound semiconductor device

Info

Publication number
JPS61276377A
JPS61276377A JP11820585A JP11820585A JPS61276377A JP S61276377 A JPS61276377 A JP S61276377A JP 11820585 A JP11820585 A JP 11820585A JP 11820585 A JP11820585 A JP 11820585A JP S61276377 A JPS61276377 A JP S61276377A
Authority
JP
Japan
Prior art keywords
layer
gaas
undoped
type
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11820585A
Other languages
Japanese (ja)
Other versions
JPH0156544B2 (en
Inventor
Masahisa Suzuki
雅久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11820585A priority Critical patent/JPS61276377A/en
Publication of JPS61276377A publication Critical patent/JPS61276377A/en
Publication of JPH0156544B2 publication Critical patent/JPH0156544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Abstract

PURPOSE:To decrease the difference between threshold voltages at room temperature and a low temperature, by providing a GaAs/n-AlGaAs hetero-junction in which the n-AlxGa1-xAs layer serving as a carrier supply layer has a specified molar ratio of Al. CONSTITUTION:A GaAs substrate 1 is provided thereon with an undoped GaAs layer 2, an undoped Al0.2Ga0.8As layer 3, an n-type Al0.2Ga0.8As layer 4, an undoped GaAs layer 5, an n-type Al0.2Ga0.8As layer 6 and an n-type GaAs layer 7 in that order. Source and drain electrodes 8 and 9 are formed on the surface of this substrate to be contacted with the layer 5. Subsequentially, the layer 7 located between the electrodes 8 and 9 is partially removed and a gate electrode 10 is formed in said removed part. According to such construction, hetero- junctions are formed between the layers 6 and 5 and between the layers 5 and 4, respectively. When the layer 5 is sufficiently thin, the two-dimentional electron gas produced by the layer 6 and 4 practically acts as a single channel, and thereby the sheet carrier density can be prevented from being decreased. Accordingly, the difference between threshold voltages at room temperature and a low temperature can be decreased.

Description

【発明の詳細な説明】 〔概要〕 GaAs / n−AJGaAs ヘテロ接合FETに
おいて、キャリア供給層となるn−AllGaAsのモ
ル比を0.1以上0.22以下となし、かつチャネル部
にダブルへテロ構造を用いることにより、閾値電圧の室
温と低温における変動を小さくなし、且つシートキャリ
ア濃度り、の低下を防止する。
Detailed Description of the Invention [Summary] In a GaAs/n-AJGaAs heterojunction FET, the molar ratio of n-AllGaAs serving as a carrier supply layer is set to 0.1 or more and 0.22 or less, and a double heterojunction is formed in the channel portion. By using this structure, fluctuations in threshold voltage between room temperature and low temperature can be made small, and a decrease in sheet carrier concentration can be prevented.

〔産業上の利用分野〕[Industrial application field]

本発明はチャネルにヘテロ接合を用いた電界効果型半導
体装置に係シ、特に室温と低温における閾値変動を小さ
く抑えることができる素子構造に関する。
The present invention relates to a field effect semiconductor device using a heterojunction in a channel, and particularly to a device structure that can suppress threshold fluctuations at room temperature and low temperature.

〔従来の技術〕[Conventional technology]

従来、ヘテロ接合をチャネル部に用いた電界効果型半導
体装置(FIT )では、通常チャネルとして、アンド
ープのGaAs層とn−AlGaAs層のへテロ接合の
アンドープGaAs層側界面に生ずる高移動度2次元電
子ガスを利用し、高速動作を達成している。
Conventionally, in a field-effect semiconductor device (FIT) using a heterojunction as a channel part, a high-mobility two-dimensional structure that occurs at the interface on the undoped GaAs layer side of the heterojunction between an undoped GaAs layer and an n-AlGaAs layer is used as the normal channel. It uses electronic gas to achieve high-speed operation.

第5図にその素子断面を表わしている。半絶縁性GaA
s基板51上に、バッファ層のGaAa 52 r 2
次元電子ガス(2DEG)層57が形成されるアンド一
層がエピタキシャルに形成され、ソース、ドレイン電極
間、59及びゲート電極ωが設けられている。
FIG. 5 shows a cross section of the element. Semi-insulating GaA
On the s-substrate 51, a buffer layer of GaAa 52 r 2
An AND single layer on which a dimensional electron gas (2DEG) layer 57 is formed is epitaxially formed, and a source and drain electrode 59 and a gate electrode ω are provided.

通常の場合、n−AjGmAs 54のAjのモル比は
X=0.3がほとんどである。これは、ヘテロ接合団に
おけるバンドの不連続はなるべく大きくとった゛ 方が
シートキャリア濃度n、が大きくできるため、GaAs
/AjGaAsの格子のミスマツチが許容される範囲内
でAjのモル比Xを大きくしようとしたためであシ、こ
れらのことがらx:0.3が選ばれている。
In normal cases, the molar ratio of Aj in n-AjGmAs 54 is almost always X=0.3. This is because the sheet carrier concentration n can be increased by making the band discontinuity in the heterojunction as large as possible.
/Aj: 0.3 was selected because the molar ratio X of Aj was attempted to be increased within a range that allowed the mismatch of the GaAs lattice.

第4図に従来のGaAs層 n−AJGaAaヘテロ構
造部のエネルギバンド図を表わしてあり、x:0.3で
は、GaAs層  n−AjGaAs  の格子のミス
マツチはほと□んど問題にならない。しかし、!>0.
3 Kなると、第4図にE、と指示するように界面準位
が生じ素子特性が劣化する。
FIG. 4 shows an energy band diagram of a conventional GaAs layer n-AJGaAa heterostructure, and when x: 0.3, mismatch in the lattice of the GaAs layer n-AjGaAs hardly becomes a problem. but,! >0.
When the temperature reaches 3 K, interface states are generated as indicated by E in FIG. 4, and the device characteristics deteriorate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、x=0.3とした従来の素子においては
、十分高速動作が可能であるが、n−Al6.HG a
 6 、y A sはDXセンターと呼ばれる深い不純
物準位を有するため、これを用いて作製した素子では、
室温における閾値電圧vthと低温(77K )におけ
るvthが大きく異なるという問題がある。例えば、3
00 K ”t’ f) Vth = −0,8Vが7
7にテVth=−0,3Vに変わってしまう。
As mentioned above, the conventional element with x=0.3 is capable of sufficiently high-speed operation, but n-Al6. HG a
6, yA s has a deep impurity level called a DX center, so in devices fabricated using it,
There is a problem in that the threshold voltage vth at room temperature and vth at low temperature (77K) are significantly different. For example, 3
00 K "t' f) Vth = -0,8V is 7
7, the voltage Vth changes to -0.3V.

これに対して、X≦0.22のn−Ajz Gal−1
Aaを用いた素子では% vthの室温と低温での変動
は十分小さくできることがわかっている。しかし表から
、この構造ではチャネルのシートキャリア濃度n、が減
少し、FET%性が劣化するという欠点が生ずる。
On the other hand, n-Ajz Gal-1 with X≦0.22
It is known that in devices using Aa, fluctuations in %vth between room temperature and low temperature can be made sufficiently small. However, as shown in the table, this structure has the disadvantage that the sheet carrier concentration n in the channel decreases and the FET ratio deteriorates.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はGaAs / n−AJGaAsヘテロ接合を
チャネルに用いるFETにおいて、原子供給lとなるn
−hlxGa、−xAsのAlのモル比Xを0.1≦x
≦0.22となし、かつチャネル部をダブルへテロ構造
とする。
The present invention provides an FET using a GaAs/n-AJGaAs heterojunction for the channel, in which the n
-hlxGa, -xAs molar ratio X of Al is 0.1≦x
≦0.22, and the channel portion has a double heterostructure.

〔作用〕[Effect]

第1図の実施例を採って説明すると、アンドープGaA
s層5の上側及び下側にn−Al64 caOJ As
層6及び4が備えられ、それぞれの眉間にヘテロ接合が
形成されており、所謂ダブルへテロ構造となっている。
Taking the example of FIG. 1 and explaining it, undoped GaA
n-Al64 caOJ As on the upper and lower sides of the s layer 5
Layers 6 and 4 are provided, and a heterojunction is formed between each glabella, resulting in a so-called double heterostructure.

それによシ、上、下のn−A764 Ga@4AI層6
.4がそれぞれ電子供給層として機能し、2つの電子供
給層から生じる2次元電子ガスはアンドープGaAs層
5が十分薄い時は2つのチャネルとならずに実効的に1
つのチャネルとして作用し、チャネルのn、はシングル
へテロ構造のn、の約2倍となる。
Besides, upper and lower n-A764 Ga@4AI layers 6
.. 4 each function as an electron supply layer, and when the undoped GaAs layer 5 is sufficiently thin, the two-dimensional electron gas generated from the two electron supply layers does not form two channels, but effectively becomes one channel.
The n of the channel is approximately twice that of the single heterostructure.

一方、第3図にAjGaAsのAJのモル比とドーパン
トのイオン化エネルギの関係を示すよりに、x=0.2
2以下の場合、イオン化エネルギは十分小さく々シ、深
い準位が形成されていな、い。
On the other hand, as shown in Figure 3, which shows the relationship between the AJ molar ratio of AjGaAs and the ionization energy of the dopant, x = 0.2
If it is less than 2, the ionization energy is sufficiently small that no deep level is formed.

以上のことから、本発明によれば、電子供給層のAj 
X Ga 1−X AsのAlのモル比xt−0,22
以下となすことによりイオン化エネルギを十分小さくで
き、低温にしてもVthが変動することが防止できる。
From the above, according to the present invention, Aj of the electron supply layer
Molar ratio of Al in X Ga 1-X As xt-0,22
By doing the following, the ionization energy can be made sufficiently small, and fluctuations in Vth can be prevented even at low temperatures.

一方、AAIのモル比Xが小さくなってGaAs層 n
−AJf。
On the other hand, as the molar ratio X of AAI becomes smaller, the GaAs layer n
-AJf.

Gal−1AsIのエネルギバンドの不連続性が小さく
なることに伴ない、チャネルのシートキャリア濃度n、
が低下する欠点は、タプルヘテロ構造を用いることによ
シ改善することができ、両件用によシ低温で特性が安定
で且つn、が大で大きい電流を流すことができる高速半
導体装置が得られる。
As the discontinuity of the energy band of Gal-1AsI becomes smaller, the sheet carrier concentration in the channel n,
The disadvantage of a decrease in n can be improved by using a tuple heterostructure, and a high-speed semiconductor device with stable characteristics at low temperatures and a large n that can flow a large current can be obtained. It will be done.

なお本発明において、上述のようにアンドープGaAs
 5層の厚さを十分薄くして2つの電子供給層から生ず
る2次元電子ガスが1つのチャネルとなるようにするこ
とが望ましく%100A位の膜厚が最も望ましく、ao
X〜200Xの範囲の膜厚が実用上適用できる。60X
よシ薄いアンドープGaAs層を用いると、該層を流れ
るキャリアが上・下のAlx Ga 1− z@AIに
よる散乱を受は移動度が低下して、。
Note that in the present invention, as described above, undoped GaAs
It is desirable to make the thickness of the 5th layer sufficiently thin so that the two-dimensional electron gas generated from the two electron supply layers forms one channel, and the film thickness of about %100A is the most desirable.
A film thickness in the range of X to 200X is practically applicable. 60X
When a very thin undoped GaAs layer is used, carriers flowing through the layer are scattered by Alx Ga 1- z@AI above and below, and their mobility decreases.

しまう。一方200 X以上のアンドープGaAs層を
用いると、ゲート電極とチャネルとの距離が太きくなり
gm(相互コンダクタンス)が小さくなってしまい望ま
しくない。
Put it away. On the other hand, if an undoped GaAs layer of 200.times.

〔実施例〕〔Example〕

第1図に本発明の実施例の素子断面を表わし、第2図に
そのエネルギバンド図を表わしている。
FIG. 1 shows a cross section of an element according to an embodiment of the present invention, and FIG. 2 shows its energy band diagram.

第1図に示すように、半絶縁性GaAs+基板1上ニ次
の各層がエピタキシャル成長によ多形成されている。
As shown in FIG. 1, the following layers are formed on a semi-insulating GaAs+ substrate 1 by epitaxial growth.

膜厚  キャリア濃度 2:アンドープGaAs      1000 A3:
アンドープAjl、lGm6.@As  200又4:
n−AJ64Ga0.gAIB     200X  
 1.9X10”am−”5:アンドープGaAs  
     1GOA6 : n−Aノロ4Ga@4Al
    250〜400A 1−9X10”am−”?
 : n −GaAs          700X 
  1.9X10”am−”ここで、7はオーミック・
コンタクトを良好になすための層である。
Film thickness Carrier concentration 2: Undoped GaAs 1000 A3:
Undoped Ajl, lGm6. @As 200 or 4:
n-AJ64Ga0. gAIB 200X
1.9X10"am-"5: Undoped GaAs
1GOA6: n-A noro 4Ga@4Al
250~400A 1-9X10"am-"?
: n-GaAs 700X
1.9X10"am-" where 7 is ohmic
This is a layer for making good contact.

次に、成長基板表面にオーミック・コンタクト用金属か
らなるソース及びドレイン電極8及び9(AuGe /
 Au等)がリフトオフ法等によυ形成され、加熱等を
施す合金法によシ、2次元原子ガスが形成されるアンド
ープGaAs層5に接触せしめられている。
Next, source and drain electrodes 8 and 9 (AuGe/
Au, etc.) is formed by a lift-off method or the like, and brought into contact with the undoped GaAs layer 5 in which a two-dimensional atomic gas is formed by an alloy method in which heating or the like is applied.

次に、ソース及びゲート電極8及び9間のn−GaAs
層7が部分的にエツチング除去され、その部分にシミッ
トキ接合用金属からたるゲート電極1G(Aj等)が形
成されている。
Next, the n-GaAs between the source and gate electrodes 8 and 9 is
The layer 7 is partially etched away, and a gate electrode 1G (Aj, etc.) made of a Schmittki junction metal is formed in that part.

5のアンドープGaAsのチャネル層を100 Xとし
た時、2つの電子供給層のAノロ、1 Gmg4 As
 4 + 6から生じる2次元電子ガスは2つのチャネ
ルとならずに、実効的に1つのチャネルとして作用する
ことがわかっておシ、その状態が第2図のエネルギバン
ド図に表われている。
When the undoped GaAs channel layer of 5 is 100X, the A thickness of the two electron supply layers is 1 Gmg4 As.
It has been found that the two-dimensional electron gas generated from 4 + 6 does not act as two channels, but effectively acts as one channel, and this state is shown in the energy band diagram of FIG.

60n−Aj64 Gmg、@Asは上部の電子供給層
であると同時くいゲートの金属(Aりとショットキ障壁
を形成する。そして、この層の厚さKよシ、FETのv
thを決定することができる。例えば、約250 Xで
エンハンスメント・モートドなり、400又でディプレ
ッション・モートドする。
60n-Aj64 Gmg, @As is the upper electron supply layer and also forms a Schottky barrier with the gate metal (A).
th can be determined. For example, at about 250X it is in enhancement mode and at 400X it is in depression mode.

本実施例によれば、例えば300にで閾値(Vth)2
>E−o、svo場合、低温77にで−0,7v程度と
、Vthの変動を従来よシ大幅に少なくでき、一方、シ
ートキャリア濃度n、もダブルへテロ接合によシ約2倍
にできる。
According to this embodiment, for example, the threshold value (Vth) is 2 at 300.
> In the case of E-o, svo, the variation in Vth can be reduced to about -0.7V at a low temperature of 77 compared to the conventional method, and the sheet carrier concentration n can also be approximately doubled by double heterojunction. can.

〔発明の効果〕〔Effect of the invention〕

以上のことから明らかなように、本発明によれば、従来
のHEMTの開発動向と逆に、チャネルのキャリアのシ
ート濃度n、よシも、低温に冷した時の閾値電圧(Vt
h)の変動防止を重点におき、キャリア供給層のAjの
モル比を小さくなし、−Vthの変化を小さくでき、一
方チャネルのn8の低下も防止することが可能となる。
As is clear from the above, according to the present invention, contrary to the development trend of conventional HEMTs, the channel carrier sheet concentration n, as well as the threshold voltage when cooled to a low temperature (Vt
Focusing on prevention of fluctuations in h), the molar ratio of Aj in the carrier supply layer is made small, so that changes in -Vth can be made small, and on the other hand, it is possible to prevent a decrease in n8 of the channel.

それによシ、本発明によシ、安定で、高速、高性能な半
導体装置が提供可能となる。
In addition, the present invention makes it possible to provide a stable, high-speed, and high-performance semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の要部断面図、第2図はキ実施
例のエネルギバンド図、第3図はX値とイオン化エネル
ギの関係を示す線図、 第4図は従来例のエネルギバンド図である。 福S1zばイL米例の町+i1mで漬も。 1・・・GaA@基板 2・・・アンドープGaAs 3・・・アンドープAJ(1,gGa6.@As4 ”
” n−Aj1)4G&。4AII5・・・アンドープ
GaAs 6 H= n−Aj(14Ga(1,8As7  … 
n−GaAs 8.9・・・ソース、ドレイン電極 10・・・ゲート電極 特許出願・大 富士通株式会社 代理人弁理士 玉 蟲 久 五 部 (外1名) 本発明の実施例の要部断面図 第  1  図 n−AIo2Ga6sAs 本発明の実施例のエネルギバンド図 第  2  図
Fig. 1 is a sectional view of the main part of the embodiment of the present invention, Fig. 2 is an energy band diagram of the embodiment, Fig. 3 is a diagram showing the relationship between the X value and ionization energy, and Fig. 4 is a diagram of the conventional example. It is an energy band diagram. Fuku S1zbai L rice example town + i1m pickles too. 1...GaA@Substrate 2...Undoped GaAs 3...Undoped AJ(1,gGa6.@As4"
"n-Aj1)4G&.4AII5...Undoped GaAs6H=n-Aj(14Ga(1,8As7...
n-GaAs 8.9...Source, drain electrode 10...Gate electrode Patent application/Otsuya Fujitsu Limited Representative Patent Attorney Hisashi Tamamushi (1 person) Cross-sectional view of essential parts of an embodiment of the present invention Fig. 1 Energy band diagram of the embodiment of n-AIo2Ga6sAs Fig. 2

Claims (1)

【特許請求の範囲】 基板上に、n形Al_xGa_1_−_xAs(0.1
≦x≦0.22)からなる第1のキャリア供給層、チャ
ネル層のGaAs層及びn形Al_yGa_1_−_y
As(0.1≦y≦0.22)からなる第2のキャリア
供給層の各半導体層が結晶学的に適合して形成され、 該チャネル層のGaAs層に接続する1対の電極と、該
1対の電極間の第2のキャリア供給層側に配設されたゲ
ート電極とを有することを特徴とする電界効果型化合物
半導体装置。
[Claims] On the substrate, n-type Al_xGa_1_-_xAs (0.1
≦x≦0.22), a GaAs layer as a channel layer, and an n-type Al_yGa_1_-_y
Each semiconductor layer of the second carrier supply layer made of As (0.1≦y≦0.22) is formed to be crystallographically compatible, and a pair of electrodes are connected to the GaAs layer of the channel layer; A field effect compound semiconductor device comprising: a gate electrode disposed on the second carrier supply layer side between the pair of electrodes.
JP11820585A 1985-05-31 1985-05-31 Field-effect-type compound semiconductor device Granted JPS61276377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11820585A JPS61276377A (en) 1985-05-31 1985-05-31 Field-effect-type compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11820585A JPS61276377A (en) 1985-05-31 1985-05-31 Field-effect-type compound semiconductor device

Publications (2)

Publication Number Publication Date
JPS61276377A true JPS61276377A (en) 1986-12-06
JPH0156544B2 JPH0156544B2 (en) 1989-11-30

Family

ID=14730795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11820585A Granted JPS61276377A (en) 1985-05-31 1985-05-31 Field-effect-type compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61276377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173760A (en) * 1987-12-28 1989-07-10 Matsushita Electric Ind Co Ltd Heterojunction field-effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173760A (en) * 1987-12-28 1989-07-10 Matsushita Electric Ind Co Ltd Heterojunction field-effect transistor

Also Published As

Publication number Publication date
JPH0156544B2 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
US4748484A (en) Heterojunction field effect transistor
US5105241A (en) Field effect transistor
US4772925A (en) High speed switching field effect transistor
JP2661556B2 (en) Field effect type semiconductor device
JPS6359272B2 (en)
JPH023937A (en) Field effect transistor
JPS61276377A (en) Field-effect-type compound semiconductor device
JPS61147577A (en) Complementary semiconductor device
JPS6242569A (en) Field effect transistor
JPS63161678A (en) Field effect transistor
JPH0511656B2 (en)
JPS5891681A (en) Field-effect type transistor
JP2500459B2 (en) Heterojunction field effect transistor
JPH0261149B2 (en)
JPS6027172A (en) Fet device
JPS609174A (en) Semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JPH05275453A (en) Junction fet and manufacture thereof
JP2695832B2 (en) Heterojunction field effect transistor
JPH01166568A (en) Semiconductor device
JPH0368143A (en) Heterojunction field-effect transistor
JPS61171170A (en) Semiconductor device
JPS63236358A (en) Semiconductor device
JPH04101436A (en) Field-effect transistor
JPS6317563A (en) Semiconductor device