JPS61276367A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61276367A
JPS61276367A JP11786485A JP11786485A JPS61276367A JP S61276367 A JPS61276367 A JP S61276367A JP 11786485 A JP11786485 A JP 11786485A JP 11786485 A JP11786485 A JP 11786485A JP S61276367 A JPS61276367 A JP S61276367A
Authority
JP
Japan
Prior art keywords
layer
epitaxial layer
epitaxial
buried
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11786485A
Other languages
Japanese (ja)
Other versions
JPH0628263B2 (en
Inventor
Tomoi Hara
原 友意
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11786485A priority Critical patent/JPH0628263B2/en
Publication of JPS61276367A publication Critical patent/JPS61276367A/en
Publication of JPH0628263B2 publication Critical patent/JPH0628263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high withstanding bi-polar IC which has a reduced hFE and can prevent VCE(sat) from increasing, by forming an N epitaxial layer with an SiCl4 source on a P-type Si substrate having an N layer and a P layer buried, by burying a P layer, and by overlapping an N epitaxial layer with a small specific resistance thereon with an SiH4 source. CONSTITUTION:On a P<-> Si substrate 1, an N<+> layer 2 is buried by diffusing As, then a P layer 3 is buried by diffusing BCl3 and an N<-> epitaxial layer 4 is overlapped with a reducing reaction of SiCl4 at about 1,170 deg.C. By diffusing BCl3 from the surface, a P layer 5 is buried over the layer 3, and by thermal decomposition of SiH4 at about 1,050 deg.C, an N<-> epitaxial layer 6b is overlapped, with self-addition of B being less than the layer 4. In this way, an inverted layer or a high resistance layer can be prevented from occurring at the interface between the epitaxial layers, and if the layer is increased in concentration, the self-addition can be perfectly eliminated. Accordingly, if an NPN transistor is made, with a P layer 10 being formed, which separates the epitaxial layers 4, 6b, an extremely high diffusion yield can be realized without reducing the hFE and increasing the VCE(sat).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に少くとも2層エピ
タキシャル層構造を有する高耐圧バイポーラ集積回路の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a high voltage bipolar integrated circuit having at least a two-layer epitaxial layer structure.

〔従来の技術〕[Conventional technology]

従来、バイポーラ集積回路(以下ICという)において
例えばNPN)ランジスタであるエピタキシャル層内に
ベース拡散層とエミッタ拡散層を順次形成した縦型トラ
ンジスタの高耐圧化を実現するために、以下の様な対策
が施されている。
Conventionally, in bipolar integrated circuits (hereinafter referred to as ICs), the following measures have been taken to achieve high breakdown voltage of vertical transistors, such as NPN transistors, in which a base diffusion layer and an emitter diffusion layer are sequentially formed in an epitaxial layer. is applied.

(1)  拡散層の深さc以下、xjという)を深くす
る。
(1) The depth of the diffusion layer (below c, referred to as xj) is increased.

(2)エピタキシャル層比抵抗(以下、5epi とい
う)を高くする。
(2) Increase the epitaxial layer resistivity (hereinafter referred to as 5epi).

(3)エピタキシャル層厚(以下、 tepiという)
を厚くする。
(3) Epitaxial layer thickness (hereinafter referred to as tepi)
thicken.

(1)については例えはペース拡散層の深さxjを深く
シ、ペース拡散層の曲率による表面又は側面部の電界集
中を緩和し、耐圧を向上させるものである。(2)につ
いては、ペース・コレクタ接合からエピタキシャル層側
へ伸びる空乏層の広がシを大きくし、表面又は側面又は
底面部の電界集中を緩和し耐圧を向上させるものである
。(3)1ついてはペース・コレクタ接合からエピタキ
シャル層側へ伸びる空乏層が高濃度層例えは高濃度埋込
層にぶつかシリーチスルーして耐圧が低下しないようK
し、耐圧を向上させるものである。
Regarding (1), for example, the depth xj of the pace diffusion layer is increased to alleviate electric field concentration on the surface or side surface due to the curvature of the pace diffusion layer, thereby improving the withstand voltage. Regarding (2), the spread of the depletion layer extending from the pace-collector junction toward the epitaxial layer is increased, thereby relaxing electric field concentration on the surface, side surfaces, or bottom portion, and improving breakdown voltage. (3) Regarding 1, the depletion layer extending from the pace-collector junction to the epitaxial layer side collides with the high-concentration layer, for example, the high-concentration buried layer, and prevents the breakdown voltage from decreasing due to leak-through.
This improves the withstand voltage.

以上の様にして縦置トランジスタにおいてはペース・コ
レクタ間耐圧(以下BVCBOという)、エミッタ・コ
レクタ間耐圧(以下、VBcznという)を向上させる
ことができる。しかしBVcΣD ″:200■程度の
高耐圧ICにおいては第3図に示す様な2層エピタキシ
ャル廖構造が用いられ1いル0第4図は第3図のA−A
’断面図における不純物濃度プロファイルを示している
。すなわち、P型基板11CP型第2埋込層3とN型第
1埋込層2とを設け、N凰第1エピタキシャル層4を設
けた後、このN型第1エピタキシャル層4にPfi第3
埋込層5を設け、N型第2エピタキシャル層6aを設け
た後、P型分離領域10を設けて多数の島領域t−&1
.第2のエピタキシャル層4,6aに設けて、第2のエ
ピタキシャル層6aにP型ベース領域8.N型エミッタ
領域9a、N型コレクタコンタクト領域9b′f、順次
形成して高耐圧トランジスタを得ていた。
As described above, in the vertical transistor, the pace-collector breakdown voltage (hereinafter referred to as BVCBO) and the emitter-collector breakdown voltage (hereinafter referred to as VBczn) can be improved. However, in high voltage ICs with BVcΣD'': about 200cm, a two-layer epitaxial structure as shown in Figure 3 is used.
'It shows the impurity concentration profile in the cross-sectional view. That is, after providing a P-type substrate 11, a CP-type second buried layer 3 and an N-type first buried layer 2, and providing an N-type first epitaxial layer 4, a Pfi third
After providing the buried layer 5 and providing the N-type second epitaxial layer 6a, a P-type isolation region 10 is provided and a large number of island regions t-&1 are provided.
.. The second epitaxial layer 4, 6a is provided with a P type base region 8. An N-type emitter region 9a and an N-type collector contact region 9b'f were sequentially formed to obtain a high breakdown voltage transistor.

一般に2層エピタキシャル層構造の高耐圧トランジスタ
の特徴としては、 (1)  絶縁分離のための熱処理時間が短くて済む。
In general, high voltage transistors with a two-layer epitaxial structure have the following characteristics: (1) Heat treatment time for insulation separation can be shortened.

(II)  (1)によ多素子サイズの増大が比較的小
さくて済む。
(II) Due to (1), the increase in the size of multiple elements is relatively small.

[相] 低耐圧デバイス(例えijMO8)ランジスタ
、I”Lなど)との共存が可能である。
[Phase] Coexistence with low voltage devices (e.g. ijMO8 transistor, I''L, etc.) is possible.

などがある。and so on.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが・BVcmn?2QOV程度の・高耐圧ICに
なると工・ビタキシャル層の比抵抗が30Ω薗程度のか
なシ、高比抵抗になる為に、エピタキシャル層成長時に
P屋埋込層からのボロンのオートドーピングにより容易
にP−型に反転する現象がしはしは起こった。一般に高
耐圧ICでは、エピタキシャル層の厚さが厚くなるので
成長レートの大きい8iC1aソース、・が用、いられ
ておシ、8iCj4ソースによるエビタ、神シャル成長
は成長温度が1170℃程度の高温で行なわ・れる為、
オートドーピングが助長されている。この現象は特に第
1層エピタキシャル層と第2層エビ:タキシャル層の境
界領域に発生した場合、NPN)ランジスタの電流増幅
率(以下% bvzという)の低下、コレクタ飽和電圧
(以下、■CΣcsaiという)の上昇を引き起こした
However, BVcmn? For a high voltage IC of about 2QOV, the specific resistance of the bitaxial layer may be about 30Ω, and in order to achieve a high specific resistance, it is easy to do it by auto-doping boron from the P-layer buried layer during epitaxial layer growth. The phenomenon of reversal to P-type has recently occurred. In general, in high-voltage ICs, the epitaxial layer becomes thicker, so an 8iC1a source with a high growth rate is used, but growth using an 8iCj4 source requires a high growth temperature of around 1170°C. To be done and to be done,
Autodoping is encouraged. When this phenomenon occurs particularly in the boundary region between the first epitaxial layer and the second epitaxial layer, the current amplification factor (hereinafter referred to as %bvz) of the NPN transistor decreases, and the collector saturation voltage (hereinafter referred to as ■CΣcsai) decreases. ) caused a rise in

又、P−型反転層に至らなくても第1層エピタキシャル
層と第2層エピタキシャル層の境界領域がさらにN″″
″″型高抵抗層になシ、同様のデバイスの特性の悪化を
引き起こした。第5図はF−、型反転層又はN−一型高
比抵抗層が形成された場合のt#3図A−A’断面図の
不純物濃度ブーロファイルを示している。゛ 本発明はかかる問題点を解決すべ〈発明されるものであ
シ、少なくとも2層のエピタキシャル層を有するパイホ
ーラ高耐圧ICにおいて、1方のエピタキシャル層と他
方のエピタキシャル層の境界領域に反転層又扛高抵抗層
が発生するのを防止し、hyzの低下、 Vcz(sa
t)の上昇を防止する半導体装置の製造方法を提供する
ことにある。
Furthermore, even if the P-type inversion layer does not reach the boundary region between the first epitaxial layer and the second epitaxial layer, the boundary region is further N''''
``'' type high resistance layer, similarly caused deterioration of device characteristics. FIG. 5 shows the impurity concentration boulograph of the t#3 diagram A-A' cross-sectional view when an F- type inversion layer or an N-1 type high resistivity layer is formed. The present invention aims to solve such problems. In a pie-hole high voltage IC having at least two epitaxial layers, an inversion layer or an inversion layer is provided in the boundary region between one epitaxial layer and the other epitaxial layer. It prevents the occurrence of a high resistance layer, reduces hyz, and reduces Vcz(sa
An object of the present invention is to provide a method for manufacturing a semiconductor device that prevents an increase in t).

〔問題点を解決するための手段〕          
1本発明の半導体装置の製造方法は、一導電型半導体基
板表面より他の等電麗の第1埋込r−及び一導電型の第
2址込層を形成する工程と1.シかる後他の導電型の第
1エピタキシャル層を形成する工程と、しかる後第1エ
ピタキシャル層表面より少くとも前記−導II!型の第
3埋込層を形成する工程と、しかる後他の導を型の@2
2工ピタキシヤルを形成する工程とを含む半導体装置の
製造方法において、第1エピタキシャル層は8icla
ソースで形成し、第2エピタキシャル層はSiH4ソー
スで形成している。この時、望ましくは第2エピタキシ
ャル層の比抵抗は第1エピタキシャル層の比抵抗に比し
て小さく形成される。
[Means for solving problems]
1. A method for manufacturing a semiconductor device according to the present invention includes the steps of forming a first buried layer R- and a second buried layer of one conductivity type from the surface of a semiconductor substrate of one conductivity type. Thereafter, a step of forming a first epitaxial layer of another conductivity type, and then a step of forming at least the -conductivity type II on the surface of the first epitaxial layer. Step of forming the third buried layer of the mold, and then applying another conductive layer @2 of the mold.
In the method of manufacturing a semiconductor device including the step of forming a two-layer epitaxial layer, the first epitaxial layer is made of 8icla.
The second epitaxial layer is formed using a SiH4 source. At this time, the specific resistance of the second epitaxial layer is preferably formed to be smaller than the specific resistance of the first epitaxial layer.

〔実施例〕〔Example〕

以下、図面を参照して本発明を説明する。 The present invention will be described below with reference to the drawings.

第1図(a)〜(C)は本発明の一実施例を示す構造断
面図である。まず第1図(a)に示すようにP−型基板
1の表面より例えはsb又はAsの拡散によりN 型第
1埋込層2を形成し、次いで例えはBCl3の拡散によ
り絶縁分離のためのP型第2埋込層3を形成し、その徒
弟1及び第2m込層2,3を含む基板1上にsepic
m25〜35Ωan、 tepi=20−25μmのN
−型第1エピタキシャル層4を成長させる。この時、第
1エピタキシャル層4は1170℃程度の8iC14の
還元反応により成長させる。
FIGS. 1(a) to 1(C) are structural sectional views showing one embodiment of the present invention. First, as shown in FIG. 1(a), an N-type first buried layer 2 is formed from the surface of a P-type substrate 1 by, for example, diffusion of SB or As, and then an insulation isolation layer is formed by diffusion of, for example, BCl3. A P-type second buried layer 3 is formed, and a sepic layer is formed on the substrate 1 including the apprentice 1 and the second buried layers 2 and 3.
m25~35Ωan, tepi=20-25μm N
--type first epitaxial layer 4 is grown. At this time, the first epitaxial layer 4 is grown by a reduction reaction of 8iC14 at about 1170°C.

次に同図(b)に示すように第1エピタキシャル層4の
表面よ’)BCImの拡散により絶縁分離のためのP型
巣3埋込層5を形成し、その後第2埋込層3を含む第1
エピタキシャル層4上にN−型第2エピタキシャル層6
bを成長させる。この第2エピタキシャル層6bは10
50℃程度の8iH4の熱分解により成長させることK
より、高温成長の8iC1aに比してボロンのオートド
ーピングが減少される。この為第1エピタキシャル層4
と同程度の比抵抗でtepi=zo〜25μm成長させ
る。その後、P型分離領域10を拡散形成することによ
って第1および第2エピタキシャル層4.6bを島領域
に分離し、P型ベース領域8.N型エミッタ領域9 a
 、 Nuコレクタコンタクト領域9bを形成してトラ
ンジスタを得る〇 第2図(a) 、 (b) 、 (C)は本発明の他の
実施例を示すもので、第2図(a)の工程で第1のエピ
タキシャル層4を形成し、第2図(b)の工程でP型巣
3埋込層5を形成した後第1エピタキシャル層4よりも
低抵抗の5epi :1〜20Ωαでtepi: 5〜
l Otim第2エピタキシャル層6aを成長させる。
Next, as shown in FIG. 4(b), a buried layer 5 of P-type holes 3 for insulation isolation is formed by diffusion of BCIm on the surface of the first epitaxial layer 4, and then a second buried layer 3 is formed. 1st including
N-type second epitaxial layer 6 on epitaxial layer 4
grow b. This second epitaxial layer 6b has 10
K grown by thermal decomposition of 8iH4 at about 50℃
Therefore, autodoping of boron is reduced compared to 8iC1a grown at high temperature. For this reason, the first epitaxial layer 4
It is grown to tepi=zo~25 μm with the same specific resistance as . Thereafter, the first and second epitaxial layers 4.6b are separated into island regions by diffusion forming the P-type isolation region 10, and the P-type base region 8.6b is separated into island regions. N-type emitter region 9a
, a transistor is obtained by forming the Nu collector contact region 9b. Figures 2(a), (b), and (C) show other embodiments of the present invention, in which the process of Figure 2(a) is performed. After forming the first epitaxial layer 4 and forming the P-type cavity 3 buried layer 5 in the process shown in FIG. ~
l Otim second epitaxial layer 6a is grown.

この時第2エピタキシャル#6aはP型巣3埋込層5を
おおう厚さとする。次に、第2図(C)に示すように適
当な気相成長法によJsepi’=25〜350αのN
−型第3エピタキシャル層7をtepi=10〜15μ
m成長させる。その後P型分離領域10.P型ペース領
域8.NMエミッタ領域9a、N型コレクタコンタクト
領域9bを形成して第1図(C)に示すようなトランジ
スタが形成される。この時第2エピタキシャル層6aは
高濃度なのでより完全にオートドーピングが防がれ、第
3エピタキシャル層7内にトランジスタか形成されるの
で、トランジスタの特性が変化することもない。
At this time, the second epitaxial layer #6a is made thick enough to cover the P-type cavity 3 buried layer 5. Next, as shown in FIG. 2(C), N of
− type third epitaxial layer 7 tepi=10~15μ
m grow. After that, P type isolation region 10. P-type pace area8. A transistor as shown in FIG. 1C is formed by forming an NM emitter region 9a and an N type collector contact region 9b. At this time, since the second epitaxial layer 6a has a high concentration, autodoping is more completely prevented, and since a transistor is formed in the third epitaxial layer 7, the characteristics of the transistor do not change.

〔発明の効果〕〔Effect of the invention〕

以上説明した通シ、本発明によれは第2エピタキシャル
層を8iH4の熱分解により成長させているので、成長
温度が1050℃と8iC1aに比べて低温になる為第
3埋込層のボロンのオートドーピングが減少し寡、1工
ピタキシヤル層と第2エピタキシャル層の境界領域に反
転層又は高抵抗層の発生を防止することができる。又第
2エピタキシャル層を高濃度化すれはこのオートドーピ
ングはより完全に防がれる。
As explained above, according to the present invention, the second epitaxial layer is grown by thermal decomposition of 8iH4, so the growth temperature is 1050°C, which is lower than that of 8iC1a, so the boron in the third buried layer is grown automatically. Since the doping is reduced, it is possible to prevent the formation of an inversion layer or a high resistance layer in the boundary region between the first epitaxial layer and the second epitaxial layer. Furthermore, by increasing the concentration of the second epitaxial layer, this autodoping can be more completely prevented.

従って、NPN)ランジスタのIIFKの低下、VCI
(sat)の上昇を引き起こすことなく極めて高い拡散
歩留を実現することができる。
Therefore, the decrease in IIFK of NPN) transistor, VCI
An extremely high diffusion yield can be achieved without causing an increase in (sat).

尚、本発明り上記実施例に限られることなく極性を換え
ても同様に実施効果が得られる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and even if the polarity is changed, similar practical effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の一実施例を説明するた
めの製造工程を示す構造断面図、第2図(a)〜(C)
は本発明の他の実施例を説明するための製造工程を示す
構造断面図、第3図は従来の2層エピタキシャル層構造
を有するNPN)ランジスタの構造断面図、第4図は第
3図のA−A’断面の不純物濃度プロファイル、第5図
は第1エピタキシャル層と第2エピタキシャル島の境界
領域に反転層又拡高比抵抗層か形成された場合の第3図
のA−A’断面の不純物象度プロファイルである。 1・・・・・・P型基板、2・・・・・・N 型第1埋
込層、3・・・・・・P型第2埋込層、4・・・・・・
N型第1エピタキシャル層、5・・・・・・P型第3埋
込層、6a、6b・・・・・・N!第2エピタキシャル
層、7・・・・・・N−型第3エピタキシャル層、8・
・・・・・P型ベース領域、9a・・・・・・Nuエミ
ッタ領域、9b・・・・・・N型コレクタコンタクト領
域、10・・・・・・P呈分離領域、P・・・・・・P
−型反転層、q・・・・・・N=fi高比抵抗層。 代理人 弁理士  内 原   晋 パへ。 2!N+型牢l埋込看 (e) 第zYgJ 磐3図 条4 ℃
FIGS. 1(a) to (C) are structural sectional views showing the manufacturing process for explaining one embodiment of the present invention, and FIGS. 2(a) to (C)
3 is a structural cross-sectional view showing the manufacturing process for explaining another embodiment of the present invention, FIG. 3 is a structural cross-sectional view of a conventional NPN) transistor having a two-layer epitaxial layer structure, and FIG. The impurity concentration profile of the A-A' cross section, Figure 5 is the A-A' cross section of Figure 3 when an inversion layer or an expanded resistivity layer is formed in the boundary region between the first epitaxial layer and the second epitaxial island. This is the impurity frequency profile. 1... P type substrate, 2... N type first buried layer, 3... P type second buried layer, 4...
N-type first epitaxial layer, 5...P-type third buried layer, 6a, 6b...N! Second epitaxial layer, 7...N-type third epitaxial layer, 8.
...P type base region, 9a ... Nu emitter region, 9b ... N type collector contact region, 10 ... P presentation isolation region, P ... ...P
− type inversion layer, q...N=fi high resistivity layer. Agent Patent Attorney Susumu Uchihara to Pa. 2! N+ type prison l embedded view (e) No. zYgJ Iwa 3 Zujo 4 ℃

Claims (3)

【特許請求の範囲】[Claims] (1)一導電型半導体基板表面より他の導電型の第1埋
込層及び前記一導電型の第2埋込層を形成する工程と、
しかる後前記他の導電型の第1エピタキシャル層を形成
する工程と、しかる後前記第1エピタキシャル層表面よ
り前記第2埋込層に対応する部分に前記一導電型の第3
埋込層を形成する工程と、しかる後前記他の導電型の第
2エピタキシャル層を熱分解法によって気相成長せしめ
る工程と、前記第2エピタキシャル層を含む上層エピタ
キシャル層に前記第3埋込層に達する絶縁分離拡散を施
す工程と、前記絶縁分離拡散によって囲まれる前記上層
エピタキシャル層に半導体素子を形成する工程とを含む
ことを特徴とする半導体装置の製造方法。
(1) forming a first buried layer of another conductivity type and a second buried layer of one conductivity type from the surface of a semiconductor substrate of one conductivity type;
Thereafter, a step of forming a first epitaxial layer of the other conductivity type, and a step of forming a third epitaxial layer of the one conductivity type in a portion corresponding to the second buried layer from the surface of the first epitaxial layer.
forming a buried layer; thereafter, vapor-growing the second epitaxial layer of the other conductivity type by thermal decomposition; and adding the third buried layer to the upper epitaxial layer including the second epitaxial layer. 1. A method for manufacturing a semiconductor device, comprising the steps of performing insulation isolation diffusion to reach the insulation isolation diffusion, and forming a semiconductor element in the upper epitaxial layer surrounded by the insulation isolation diffusion.
(2)前記第2エピタキシャル層の比抵抗は前記第1エ
ピタキシャル層の比抵抗に比して小さいことを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the resistivity of the second epitaxial layer is smaller than the resistivity of the first epitaxial layer.
(3)前記第2エピタキシャル層上に前記一導電型の第
3エピタキシャル層を形成して前記上層エピタキシャル
層を形成することを特徴とする特許請求の範囲第(1)
項又は第(2)項記載の半導体装置の製造方法。
(3) Claim (1) characterized in that the third epitaxial layer of one conductivity type is formed on the second epitaxial layer to form the upper epitaxial layer.
The method for manufacturing a semiconductor device according to item (2) or item (2).
JP11786485A 1985-05-31 1985-05-31 Method for manufacturing semiconductor device Expired - Lifetime JPH0628263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11786485A JPH0628263B2 (en) 1985-05-31 1985-05-31 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11786485A JPH0628263B2 (en) 1985-05-31 1985-05-31 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61276367A true JPS61276367A (en) 1986-12-06
JPH0628263B2 JPH0628263B2 (en) 1994-04-13

Family

ID=14722180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11786485A Expired - Lifetime JPH0628263B2 (en) 1985-05-31 1985-05-31 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0628263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136860A1 (en) * 2022-01-12 2023-07-20 Applied Materials, Inc. Methods of epitaxially growing boron-containing structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136860A1 (en) * 2022-01-12 2023-07-20 Applied Materials, Inc. Methods of epitaxially growing boron-containing structures

Also Published As

Publication number Publication date
JPH0628263B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
KR940008566B1 (en) Manufacturing method of semiconductor device
JPS61276367A (en) Manufacture of semiconductor device
JPS6155775B2 (en)
JPH0369180B2 (en)
JP2518929B2 (en) Bipolar semiconductor integrated circuit
JP2615652B2 (en) Manufacturing method of bipolar transistor
JPH0521442A (en) Semiconductor device
JPS62237760A (en) Manufacture of semiconductor device
JP3089755B2 (en) Semiconductor integrated circuit device
JPS5810834A (en) Semiconductor device
JPS61139063A (en) Semiconductor device and manufacture thereof
JPS644349B2 (en)
JPS63245957A (en) Lateral pnp transistor and manufacture thereof
JPH0235470B2 (en)
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH02216873A (en) Semiconductor device
JPH02232929A (en) Semiconductor device with buried layer
JPH05175327A (en) Semiconductor device and manufacture thereof
JPS6022358A (en) Semiconductor integrated circuit device
JPS6377144A (en) Semiconductor integrated circuit
JPS6314476A (en) Semiconductor device
JPH0851222A (en) Semiconductor device and its manufacture
JPS5892264A (en) Manufacture of semiconductor integrated circuit device
JPS58210659A (en) Semiconductor device and manufacture thereof
JPH02189930A (en) Manufacture of bipolar transistor