JPS61256322A - Production of liquid crystal display device - Google Patents

Production of liquid crystal display device

Info

Publication number
JPS61256322A
JPS61256322A JP9928585A JP9928585A JPS61256322A JP S61256322 A JPS61256322 A JP S61256322A JP 9928585 A JP9928585 A JP 9928585A JP 9928585 A JP9928585 A JP 9928585A JP S61256322 A JPS61256322 A JP S61256322A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
electrode
cell
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9928585A
Other languages
Japanese (ja)
Other versions
JPH0711635B2 (en
Inventor
Toshimitsu Konuma
利光 小沼
Shunpei Yamazaki
舜平 山崎
Takashi Inushima
犬島 喬
Akira Mase
晃 間瀬
Mitsunori Sakama
坂間 光範
Kohei Okitsu
沖津 康平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP60099285A priority Critical patent/JPH0711635B2/en
Publication of JPS61256322A publication Critical patent/JPS61256322A/en
Publication of JPH0711635B2 publication Critical patent/JPH0711635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To orient uniformly a liquid crystal over a large area without generating defects at all by irradiating the light condensed or magnified by means of an optical system on a liquid crystal display cell from at least the front or rear of thereof during or after the injection of the liquid crystalline material thereby arranging the molecular orientation of the liquid crystalline material. CONSTITUTION:The 1st electrode 21, a composite diode 6 consisting of an NP<->N or NIN semiconductor laminate, the 2nd electrode 16 and further the 3rd electrode 23 consisting of a light transmittable conductive film in tight contact with the 2nd electrode are provided on a glass substrate 20 so as to cover the semiconductor laminate 6 and the org. resin in the side and periphery. Two sheets of the substrates 20, 20' are thereafter adhered and a spacer is inserted therebetween. The periphery is solidified with a resin to form the liquid crystal cell. The cell is put into a vacuum vessel and the liquid crystal is injected thereon. The light processed to a rectangular shape is irradiated on the liquid crystal cell from one side. DOBAMBC is used as the liquid crystal material and an Xe lamp having the output at which the liquid crystal material can be heated up to the isotropic liquid state is used as the light source and is processed to the rectangular shape. The orientation of the liquid crystal with the above-mentioned light is made possible.

Description

【発明の詳細な説明】 「発明の利用分野」 この発明は、マイクロコンピュータ、ワードプロセッサ
またはテレビ等の表示部等に用いられる液晶表示装置の
作成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a liquid crystal display device used in a display section of a microcomputer, word processor, television, or the like.

「従来の技術」 固体表示パネルは各絵素を独立に制御する方式が大面積
用として有効である。このようなアクティブ素子を用い
たパネルとして、横方向640素子(フルカラーの場合
は640 X 3 =1920素子)また縦方向は20
0素子または526素子とする44判またはそれ以上の
大面積マトリックス構成の表示装置が求められている。
``Prior Art'' For solid-state display panels, a system in which each picture element is controlled independently is effective for large-area displays. A panel using such active elements has 640 elements in the horizontal direction (640 x 3 = 1920 elements in the case of full color) and 20 elements in the vertical direction.
There is a need for a display device with a large area matrix configuration of 44 format or larger with 0 elements or 526 elements.

さらに大面積化に伴い液晶物質のスメチソク相を用いた
高速応答性を示す液晶表示装置が作成されている。
Furthermore, with the increase in area size, liquid crystal display devices are being created that exhibit high-speed response using a liquid crystal material having a smectic phase.

「発明が解決しようとする問題点」 これら大面積液晶表示装置、特にスメチック相を用いた
液晶表示装置を作成する場合、問題となるのが液晶物質
を配向させる技術である。
"Problems to be Solved by the Invention" When producing these large-area liquid crystal display devices, especially liquid crystal display devices using a smectic phase, a problem is the technique for aligning the liquid crystal material.

この方法として、温度勾配法、スペーサーエツジ法及び
ラビング法等が現在行われているが、大面積化した場合
、ラビング法のみが可能である。
As methods for this, the temperature gradient method, spacer edge method, rubbing method, etc. are currently used, but when the area is increased, only the rubbing method is possible.

しかし、この方法は配向膜の表面に物理的に「キズ」を
つけるため、大面積セル全体での均一な配向、メモリ効
果等が大きな問題となっている。
However, since this method physically "scratches" the surface of the alignment film, it poses major problems such as uniform alignment throughout the large-area cell and memory effects.

1問題を解決するための手段」 本発明はこれらの問題を解決するための大面積用液晶表
示セル作成方法である。
1. Means for Solving Problems 1 The present invention is a method for producing a large-area liquid crystal display cell for solving these problems.

即ち、基板上に電極、電極配線、アクティブ素子等、回
路を構成するのに必要なものを形成後、基板を張り合わ
せて液晶用セルを形成後に液晶性物質を注入時または注
入後に長方形または楕円の形成に加工された光を液晶用
セルに対し相対的に移動させていくことにより、セル中
に封入された液晶性物質を配列させることを特徴とする
ものである。  「作用」 即ち、長方形、楕円の形状に加工された光を液晶用セル
に対し相対的に移動させることによって人為的に温度勾
配を起こし、液晶を配向させるものである。
That is, after forming electrodes, electrode wiring, active elements, etc. necessary for configuring a circuit on a substrate, after bonding the substrates together to form a liquid crystal cell, a liquid crystal substance is injected into a rectangular or elliptical shape during or after injection. The feature is that the liquid crystal material sealed in the cell is aligned by moving the processed light relative to the liquid crystal cell. "Operation" That is, by moving light processed into a rectangular or elliptical shape relative to the liquid crystal cell, a temperature gradient is artificially created to orient the liquid crystal.

以下、実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

「実施例」 第2図は本実施例の固体表示装置を用いた回路図を示す
"Example" FIG. 2 shows a circuit diagram using the solid state display device of this example.

図面において、画素は非線型素子(6)の電極(22)
(第2の電極)より液晶(7)の一方の電極(23)(
第3の電極)に連結している。非線型素子はクロック信
号を与えるX配線のアドレス線(8) 、 (9)に第
1の電極(21)により連結している。他方、液晶(7
)の第4の電極(24)ばX配線のデータ線(10)、
(II)に連結している。X配線は他の透光性絶縁基板
、代表的にはガラス基板(第5図(C)における(20
’))側にそれぞれ対応して設けている。そしてこの第
4の電極(24)はR(赤)(Yl)、G(緑)(yz
)、B(青)(ys図面では省略)のフィルタ(25)
 、 (25’ )を有しており、フルカラー化を施し
ている。
In the drawing, the pixel is the electrode (22) of the non-linear element (6).
(second electrode), one electrode (23) of the liquid crystal (7) (
a third electrode). The non-linear elements are connected by first electrodes (21) to address lines (8) and (9) of the X wiring which provide clock signals. On the other hand, the liquid crystal (7
) the fourth electrode (24) of the X wiring data line (10),
(II). The X wiring is connected to another light-transmitting insulating substrate, typically a glass substrate ((20
'))) are provided correspondingly to each side. And this fourth electrode (24) is R (red) (Yl), G (green) (yz
), B (blue) (omitted in the ys drawing) filter (25)
, (25'), and is in full color.

このX配線は同一絶縁基板代表的にはガラス基板(第5
図(B) 、 (C) 、 (D)における(20))
 J二に設けられている。その結果、クロストーク(3
3)がおきにくく、この部分の抵抗を109 Ω以上、
好ましくは1010Ω以上とすることが可能となった。
This X wiring is connected to the same insulating substrate, typically a glass substrate (fifth
(20) in Figures (B), (C), and (D))
It is located in J2. As a result, crosstalk (3
3) is difficult to occur, so the resistance of this part should be set to 109 Ω or more.
Preferably, it became possible to set the resistance to 1010Ω or more.

かかる絵素をマトリックス構成せしめ、図面では2×2
を示した。しかし本発明はかがる小マトリックスではな
く、スケール・アンプした表示語置例えば(画素100
 X100,1920X200または512)といった
大きなマトリックスのパネルに対し有効である。
Such picture elements are arranged in a matrix, 2×2 in the drawing.
showed that. However, the present invention does not use a small matrix, but a scaled and amplified display word, for example (100 pixels).
Effective for large matrix panels such as 100x100, 1920x200 or 512).

かくの如き複合ダイオードを用いた画素の一部である非
線型素子の製造工程およびその特性の例を第3図、第4
図に示している。
Examples of the manufacturing process and characteristics of a nonlinear element that is part of a pixel using such a composite diode are shown in Figures 3 and 4.
Shown in the figure.

この第3図の製造工程は、第5図(A)における(30
)の領域を特に拡大して製造する場合に対応している。
The manufacturing process shown in FIG. 3 is (30
) is particularly suitable for expanding the manufacturing area.

第3図(八)、 (B) 、 (C) 、 (D−2)
は第5図c−c’の縦断面図に対応している。第3図(
D−1)は第5図における^−A゛の縦断面図に対応し
、その素子構造を示している。
Figure 3 (8), (B), (C), (D-2)
corresponds to the longitudinal cross-sectional view of FIG. 5 c-c'. Figure 3 (
D-1) corresponds to the vertical cross-sectional view of ^-A'' in FIG. 5, and shows the element structure.

第3図(八)において、透光性絶縁基板としてコーニン
ク7059ガラス(20)を用いた。この上面にスパッ
タ法または電子ビーム蒸着法により導電膜であるアルミ
ニューム(14)とその上のクロム膜(15)を0.1
〜0.5 μおよび500〜1500人の厚さにそれぞ
れ形成した。アルミニュームの下にさらにガラスとの密
着性を助長させるために、クロム(500〜1500人
)を形成してもよい。
In FIG. 3 (8), Konink 7059 glass (20) was used as the light-transmitting insulating substrate. On this top surface, a conductive film of aluminum (14) and a chromium film (15) on top of it are deposited by sputtering or electron beam evaporation.
Formed to a thickness of ˜0.5 μm and 500-1500 μm, respectively. Chromium (500 to 1500) may be formed under the aluminum to further promote adhesion with glass.

この後、これらの全面にプラズマ気相反応法を用いてN
IN(NP−N、NIPIN、NIPドINを含む)構
造を有する非単結晶半導体よりなる複合ダイオードを形
成した。即ち、N型半導体をシランに13.56MH2
の高周波グロー放電を行うことにより、200〜300
℃に保持された基板」二の被形成面上に非単結晶半導体
を作る。
After this, N is applied to the entire surface using plasma gas phase reaction method.
A composite diode made of a non-single crystal semiconductor having an IN (including NP-N, NIPIN, and NIP-do-IN) structure was formed. That is, 13.56MH2 of N-type semiconductor with silane
By performing high frequency glow discharge of 200 to 300
A non-single-crystal semiconductor is formed on the surface of the substrate held at 2°C.

その電気伝導度は、10−7〜10−’(00m) ”
”を有し、500〜2500人の厚さとした。次に10
−6〜1O−7torrまで、十分真空引きをした。シ
ラン(SimHz□。2例えばm=1のS+H4)とD
MS(St (CHa) 3)とを用いさらに必要に応
じてB、l(6を添加して■型の非単結晶半導体を30
0人〜0.5μの厚さに形成した。例えば0.2μの厚
さに、DMS/(DMS+SiH,) −1/80.B
2116/5in4. =7PPMとしてP−型の5i
XC+−xを形成した。
Its electrical conductivity is 10-7 to 10-' (00m).
” with a thickness of 500 to 2,500 people. Next, 10
The vacuum was sufficiently drawn to -6 to 1 O-7 torr. Silane (SimHz□.2 e.g. S+H4 with m=1) and D
Using MS (St (CHa) 3), B and l (6) are added as necessary to form a ■-type non-single crystal semiconductor.
It was formed to a thickness of 0 to 0.5 μm. For example, for a thickness of 0.2μ, DMS/(DMS+SiH,) −1/80. B
2116/5in4. = 7PPM as P-type 5i
XC+-x was formed.

さらに10−6〜10−’torrまで十分真空引きを
した。
Further, the chamber was sufficiently evacuated to 10-6 to 10-'torr.

その上にN型半導体を50〜500人の厚さに積層して
NP−N接合の5i−3jxC+−’x (0<X4)
 −stへテロ接合を形成させた。
Layer an N-type semiconductor on top of it to a thickness of 50 to 500 to form an NP-N junction of 5i-3jxC+-'x (0<X4)
-st heterojunction was formed.

この後、この上面に、遮光用のクロム(16)を電子ビ
ーム蒸着法またはスパッタ法により第2の電極として積
層した。
Thereafter, chromium (16) for light shielding was laminated as a second electrode on the upper surface by electron beam evaporation or sputtering.

さらに、第3図(A) 、 (B)に示す如く、第1の
フォトマスク(17)■により周辺部(26)が垂直に
なるように異方性プラズマエッチを行い、積層体(18
)を構成させた。次にこれら全面に対し例えば200℃
にて半導体(6)に熱酸化を行い、固相−気相酸化によ
る酸化珪素の作製を行った。次にこれらの全面に感光性
ポリイミド樹脂(29)をコーティング法にて約2μの
厚さに形成させた。かくして、積層体(18)のF面(
16)とポリイミド樹脂(29)の上面(39)とは積
層体(18)の凸部を除きキュア後で概略同一平面(絶
縁物表面と積層体表面とがなめらかに連続している)と
なるようにさせた。例えば現像とキュアにより40〜5
0χ減少する場合は、積層体が約1μであるため、約2
μの厚さとした。次にガラス基板(20)側の裏面側よ
り紫外光(40)を公知のマスクアライナによりマスク
を用いることなく露光させた。例えばコビルト社のアラ
イナ−では約2分間露光した。その強度が300〜40
0nmの波長の紫外光(10mW/cm2)においては
15〜30秒で十分である。
Furthermore, as shown in FIGS. 3(A) and 3(B), anisotropic plasma etching was performed using the first photomask (17) so that the peripheral part (26) was vertical, and the laminated body (18)
) was configured. Next, heat the entire surface to 200°C, for example.
The semiconductor (6) was subjected to thermal oxidation, and silicon oxide was produced by solid phase-vapor phase oxidation. Next, a photosensitive polyimide resin (29) was formed on the entire surface of these by a coating method to a thickness of about 2 μm. Thus, the F-plane (
16) and the top surface (39) of the polyimide resin (29) become approximately the same plane after curing (the insulator surface and the laminate surface are smoothly continuous), excluding the convex portion of the laminate (18). I made it happen. For example, 40 to 5 depending on development and curing.
When decreasing by 0x, the thickness of the laminate is approximately 1μ, so approximately 2
The thickness was μ. Next, ultraviolet light (40) was exposed from the back side of the glass substrate (20) using a known mask aligner without using a mask. For example, with Cobilt's aligner, the exposure time was about 2 minutes. Its strength is 300-40
For ultraviolet light (10 mW/cm2) with a wavelength of 0 nm, 15 to 30 seconds is sufficient.

すると第3図(C)に示す如く、(26)の側面を有す
る積層体に対し蔭となるその上方の凸領域は感光せず、
その側周辺のみが感光する。さらに現像を行った後、リ
ンス液により非感光性の凸部を溶去した。かくして第3
図(C)を得た。
Then, as shown in FIG. 3(C), the convex region above the laminate having the side surface of (26), which is in the shadow, is not exposed to light.
Only the area around that side is exposed to light. After further development, the non-photosensitive convex portions were dissolved away using a rinsing solution. Thus the third
Figure (C) was obtained.

次にこれらすべてを180℃30分+300℃30分+
400℃30分の加熱を窒素中で行いキュアさせた。か
くして積層体の上面である非線型素子の第2の電極をフ
ォトマスクを用いることなく露光せしめる註加えて、こ
の上面と周辺部のポリイミド樹脂の絶縁物の表面とを概
略同一平面を構成させることが可能となった。
Next, do all of this at 180℃ for 30 minutes + 300℃ for 30 minutes +
Cure was performed by heating at 400° C. for 30 minutes in nitrogen. In addition to exposing the second electrode of the non-linear element, which is the upper surface of the laminate, without using a photomask, this upper surface and the surface of the polyimide resin insulator in the periphery are configured to be approximately on the same plane. became possible.

次にこの第3図(C)の上面全面にCTFをITOまた
は酸化スズにより0.1〜0.5μの厚さに形成せしめ
た。さらに第2のフォトマスク■によりこのCTFを選
択エツチングをした。加えてこのCTF (23)が液
晶の画素用筒3の電極(第2図(23) )を構成する
が、このCTFをマスクとして画素間(31)の不要の
半導体を(D−1)に示す如く除去した。かくして、第
3図(D−1) 、 (D−2)を得た。
Next, CTF was formed on the entire upper surface of FIG. 3(C) using ITO or tin oxide to a thickness of 0.1 to 0.5 .mu.m. Furthermore, this CTF was selectively etched using a second photomask (3). In addition, this CTF (23) constitutes the electrode of the pixel tube 3 of the liquid crystal (Fig. 2 (23)), and using this CTF as a mask, unnecessary semiconductors between the pixels (31) are removed to (D-1). Removed as shown. In this way, Figures 3 (D-1) and (D-2) were obtained.

さらにこの後この半導体の(31)の側面に対しても(
29)と同様の絶縁物CTF上の配向膜形成用のポリイ
ミド樹脂の一部も充填してを形成することは有効である
Furthermore, after this, for the (31) side of this semiconductor, (
It is effective to fill a portion of the polyimide resin for forming an alignment film on the insulator CTF similar to 29).

即ち、第3図において、ガラス基板(20)上の第1の
電極(21) 、 NP−NまたはNIN半導体積層体
よりなる複合ダイオード(6)、第2の電極(16) 
、さらにこの第2の電極に密接して透光性導電膜よりな
る第3の電極(23)を半導体積層体(6)と側周辺の
有機樹脂とを覆うようにして設けた。
That is, in FIG. 3, a first electrode (21) on a glass substrate (20), a composite diode (6) made of an NP-N or NIN semiconductor laminate, and a second electrode (16)
Further, a third electrode (23) made of a light-transmitting conductive film was provided closely to the second electrode so as to cover the semiconductor laminate (6) and the organic resin around the sides.

この後、2枚の基板(20) 、 (20’ )を張り
合わせ、約10μのスペーサを間に入れ、周りを樹脂で
固めて液晶セルを形成した。この後、このセルを真空槽
内に入れ、液晶を注入した。この後長方形の形状に加工
された光(本実施例ではXeランプを用いた)を液晶セ
ルに一方側より照射した。この概略図を第1図(A)に
示す。
Thereafter, the two substrates (20) and (20') were pasted together, a spacer of approximately 10 μm was inserted between them, and the periphery was solidified with resin to form a liquid crystal cell. After that, this cell was placed in a vacuum chamber and liquid crystal was injected into it. Thereafter, the liquid crystal cell was irradiated with light processed into a rectangular shape (a Xe lamp was used in this example) from one side. A schematic diagram of this is shown in FIG. 1(A).

本実施例では液晶物質としてDOBAMBGを用い、光
源としては液晶物質を等方性液体状態にまで昇温可能な
出力、本実施例ではIK−のXeランプを用い、10m
m X 200mmの長方形の形状に加工した。この光
に対し、液晶セルを5mm/分の速度で約60分で液晶
を配向させることができた。その後、液晶セルの両側に
偏光板を接着し、液晶表示セルとした。
In this example, DOBAMBG is used as the liquid crystal substance, and as a light source, an IK-Xe lamp with an output capable of heating the liquid crystal substance to an isotropic liquid state is used.
It was processed into a rectangular shape of m x 200 mm. With respect to this light, the liquid crystal could be aligned in the liquid crystal cell at a speed of 5 mm/min in about 60 minutes. Thereafter, polarizing plates were adhered to both sides of the liquid crystal cell to form a liquid crystal display cell.

なお 本発明は本実施例のみに限定されないことはいう
までもない。
Note that it goes without saying that the present invention is not limited only to this example.

特に、光源の種類及び出力は液晶物質の性質及び基板の
種類によって変更は可能である。
In particular, the type and output of the light source can be varied depending on the nature of the liquid crystal material and the type of substrate.

「効果」 □本発明により、従来は配向処理の有効な手段とされな
がらも大面積、大量生産等工業的には不向きとされてい
たものが可能となり、大面積の液晶表示セルの配向処理
に特に有効であった。
"Effects" □The present invention has made it possible to perform alignment processing that was previously considered to be an effective means of alignment treatment, but was considered unsuitable for industrial applications such as large-area, mass-production, etc., and is suitable for alignment treatment of large-area liquid crystal display cells. It was particularly effective.

また、現在工業的に用いられているラビング法等に比べ
液晶物質が直接接する部分にホコリ等のゴミを発生させ
ることがまったくないため、液晶の配向が大面積で均一
に行われ欠陥がまったく発生せず大面積にわたって均一
な液晶の配向が得られた。
In addition, compared to the rubbing method currently used industrially, it does not generate any dust or other debris in the areas where the liquid crystal material comes into direct contact, so the liquid crystal is aligned uniformly over a large area and no defects occur. Uniform alignment of liquid crystals was obtained over a large area.

又、ラビング法では、不可能といわれる、液晶物質のメ
モリー効果の利用が本発明では可能となり、大面積でか
つ高速応答性のすぐれた液晶表示セルを作成することが
できた。
Furthermore, the present invention makes it possible to utilize the memory effect of the liquid crystal material, which is said to be impossible with the rubbing method, making it possible to create a liquid crystal display cell with a large area and excellent high-speed response.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の概略図を示す。 第2図は本発明の液晶表示パネルの回路図を示す。 第3図は液晶セルの製造工程を示す縦断面図である。。 第4図は本発明に用いた複合ダイオードの非線型素子の
動作特性を示す。 第5図は本発明の表示パネルの平面図および縦断面図を
示す。
FIG. 1 shows a schematic diagram of the method of the invention. FIG. 2 shows a circuit diagram of the liquid crystal display panel of the present invention. FIG. 3 is a longitudinal sectional view showing the manufacturing process of a liquid crystal cell. . FIG. 4 shows the operating characteristics of the nonlinear element of the composite diode used in the present invention. FIG. 5 shows a plan view and a longitudinal sectional view of the display panel of the present invention.

Claims (1)

【特許請求の範囲】 1、平板基体にて形成された定間隔を有する空間に液晶
性物質を封入してなる液晶表示セルにおいて、液晶性物
質注入時又は注入後に光学系を経て集光または拡大され
た光を前記液晶表示セルの表または裏のすくなくとも一
方より照射し、液晶性物質の分子配向を整えることを特
徴とする液晶表示装置作成方法。 2、特許請求の範囲第1項において、前記、集光または
拡大された光の形状は長方形又は楕円形であることを特
徴とする液晶表示セル作成方法。
[Claims] 1. In a liquid crystal display cell in which a liquid crystal substance is sealed in spaces having regular intervals formed on a flat substrate, light is focused or expanded through an optical system during or after injection of the liquid crystal substance. A method for manufacturing a liquid crystal display device, characterized in that the light is irradiated from at least one of the front or back sides of the liquid crystal display cell to adjust the molecular orientation of the liquid crystal substance. 2. The method for manufacturing a liquid crystal display cell according to claim 1, wherein the shape of the condensed or expanded light is rectangular or elliptical.
JP60099285A 1985-05-10 1985-05-10 Liquid crystal display device manufacturing method Expired - Lifetime JPH0711635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60099285A JPH0711635B2 (en) 1985-05-10 1985-05-10 Liquid crystal display device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60099285A JPH0711635B2 (en) 1985-05-10 1985-05-10 Liquid crystal display device manufacturing method

Publications (2)

Publication Number Publication Date
JPS61256322A true JPS61256322A (en) 1986-11-13
JPH0711635B2 JPH0711635B2 (en) 1995-02-08

Family

ID=14243378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60099285A Expired - Lifetime JPH0711635B2 (en) 1985-05-10 1985-05-10 Liquid crystal display device manufacturing method

Country Status (1)

Country Link
JP (1) JPH0711635B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949518A (en) * 1982-09-16 1984-03-22 Toyo Suchiiruberuto Kogyo Kk Liquid crystal cell forming monodomain
JPS6066231A (en) * 1983-09-21 1985-04-16 Idemitsu Kosan Co Ltd Method for arranging and treating liquid crystal molecule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949518A (en) * 1982-09-16 1984-03-22 Toyo Suchiiruberuto Kogyo Kk Liquid crystal cell forming monodomain
JPS6066231A (en) * 1983-09-21 1985-04-16 Idemitsu Kosan Co Ltd Method for arranging and treating liquid crystal molecule

Also Published As

Publication number Publication date
JPH0711635B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JP3447619B2 (en) Active matrix substrate manufacturing method, intermediate transfer substrate
CN100380574C (en) Stripping method and method for producing semiconductor device
US8168511B2 (en) Display device manufacturing method and laminated structure
CN106252383B (en) Double face display panel and preparation method thereof, display device
JPH075479A (en) Production of ferromagnetic liquid crystal element
JPS61154039A (en) Selective film formation on the sides and the periphery of a laminated body
JPH0261032B2 (en)
JP2003216068A (en) Display device and substrate for display device, and method of manufacturing the same
JP2697507B2 (en) Liquid crystal display
TW201011396A (en) Flexible liquid crystal dislay panel and method for manufacturing the same
JP2003241205A (en) Method of fabricating liquid crystal display device
JP2005209756A (en) Thin film device, manufacturing method therefor crystal display device, and electroluminescence display device
JP3218861B2 (en) Manufacturing method of liquid crystal display device
JPS61256322A (en) Production of liquid crystal display device
JP2005216887A (en) Method of manufacturing thin film device, thin film device, liquid crystal display device and electroluminescence display device
JPS6311989A (en) Electro-optical display unit
JPS627023A (en) Forming method for liquid crystal display device
JPS6329937A (en) Semiconductor substrate
JP2000221521A (en) Liquid crystal display device and its production
JPH02192766A (en) Thin film semiconductor element
JPS5940684A (en) Display panel
JPH02228043A (en) Semiconductor device and manufacture thereof
JP2003080658A (en) Substrate laminating apparatus, laminated substrate and method for manufacturing electronic part
JP3369240B2 (en) Semiconductor device
JP2000284260A (en) Production of liquid crystal device