JPS627023A - Forming method for liquid crystal display device - Google Patents

Forming method for liquid crystal display device

Info

Publication number
JPS627023A
JPS627023A JP14612785A JP14612785A JPS627023A JP S627023 A JPS627023 A JP S627023A JP 14612785 A JP14612785 A JP 14612785A JP 14612785 A JP14612785 A JP 14612785A JP S627023 A JPS627023 A JP S627023A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
electrode
crystal display
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14612785A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP14612785A priority Critical patent/JPS627023A/en
Publication of JPS627023A publication Critical patent/JPS627023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To orientate the liquid crystal substance by placing the liquid crystal substance on the surface forming the electrode of one side of a flat substrate and then, maintaining it to a temperature range capable of displaying the liquid crystal property, and by laminating a remaining substrate thereon followed by shearing it. CONSTITUTION:The elements 3 necessary to constituting the circuit such as an electrode, an electrode wiring and an active element are formed on a substrate 20, and then, the liquid crystal substance is fed in an amount which is somewhat more than the necessary amount on one side of the display cell substrate 20, and then is maintained to a temperature condition of displaying the liquid crystal phase. And then, one side of the remaining substrate 20' is overlapped on the prescribed liquid crystal material followed by sticking the two sheets of the substrates each other so as not to remain any bubble in the liquid crystal substance. Then, the two sheets of the substrates are effected the shearing treatments in one direction in several times, and then the cell is maintained to the temp. range of displaying the SmC* phase, thereby orientation the liquid crystal substance sealed in the cell. Thus, the industrial production of the liquid crystal display cell having the large area may be carried out with ease and in a mass production. By the method as mentioned above, the orientation treatment of the liquid crystal display cell having a large area may be effectively performed.

Description

【発明の詳細な説明】 「発明の利用分野」 この発明は、マイクロコンピュータ、ワードプロセッサ
またはテレビ等の表示部等に用いられる液晶表示装置の
作成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a liquid crystal display device used in a display section of a microcomputer, word processor, television, or the like.

「従来の技術」 固体表示パネルは各絵素を独立に制御する方式が大面積
用として有効である。このようなアクティブ素子を用い
たパネルとして、横方向640素子(フルカラーの場合
は640 X 3 =1920素子)また縦方向は20
0素子または526素子とする44判またはそれ以上の
大面積マトリックス構成の表示装置が求められている。
``Prior Art'' For solid-state display panels, a system in which each picture element is controlled independently is effective for large-area displays. A panel using such active elements has 640 elements in the horizontal direction (640 x 3 = 1920 elements in the case of full color) and 20 elements in the vertical direction.
There is a need for a display device with a large area matrix configuration of 44 format or larger with 0 elements or 526 elements.

さらに大面積化に伴い液晶物質のスメクチック相を用い
た高速応答性を示す液晶表示装置が作成されている。
Furthermore, as the area becomes larger, liquid crystal display devices that use the smectic phase of liquid crystal materials and exhibit high-speed response are being created.

これら大面積液晶表示装置、特にスメクチック相を用い
た液晶表示装置を作成する場合、問題となるのが液晶物
質を配向させる技術である。
When producing these large-area liquid crystal display devices, especially liquid crystal display devices using a smectic phase, a problem arises in the technique for aligning the liquid crystal material.

この方法として、温度勾配法、スペーサーエツジ法及び
ラビング法等が現在行われているが、大面積化した場合
、ラビング法のみが現在工業的に行われている。 しか
し、この方法は配向膜の表面に物理的に「キズ」をつけ
るため、大面積セル全体での均一な配向、メモリ効果等
が大きな問題となっている。
As methods for this, a temperature gradient method, a spacer edge method, a rubbing method, etc. are currently used, but only the rubbing method is currently used industrially when increasing the area. However, since this method physically "scratches" the surface of the alignment film, it poses major problems such as uniform alignment throughout the large-area cell and memory effects.

「本発明の目的」 本発明はこれらの問題を解決するための大面積用液晶表
示セル作成方法である。
``Object of the present invention'' The present invention is a method for producing a large-area liquid crystal display cell to solve these problems.

即ち、基板上に電極、電極配線、アクティブ素子等、回
路を構成するのに必要なものを形成後、片一方の表示セ
ル基板上に、液晶物質を必要量より若干多めに供給し、
液晶相を示す温度条件下に保持する。 その後、残りの
基板の一方の辺と重ね合わせてゆき2枚の基板を密着さ
せる。 この後2枚の基板を一方向にシェアリングを数
回行った後にS m C氷相を示す温度領域にセルを保
持し、セル中に封入された液晶性物質を配向させること
を特徴とするものである。
That is, after forming electrodes, electrode wiring, active elements, and other items necessary for configuring a circuit on a substrate, a slightly larger amount of liquid crystal material than necessary is supplied onto one display cell substrate, and
It is maintained under temperature conditions that exhibit a liquid crystal phase. Thereafter, it is overlapped with one side of the remaining substrate to bring the two substrates into close contact. After this, after shearing the two substrates in one direction several times, the cell is held in a temperature range exhibiting the S m C ice phase, and the liquid crystalline substance sealed in the cell is oriented. It is something.

以下、実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

「実施例」 第1図(A) 、 (B) 、 (C)は、本発明の配
向処理を示す。
"Example" FIGS. 1(A), (B), and (C) show the alignment treatment of the present invention.

第2図は本実施例の固体表示装置を用いた回路図を示す
FIG. 2 shows a circuit diagram using the solid state display device of this embodiment.

図面において、画素は非線型素子(6)の電極(22)
(第2の電極)より液晶(7)の一方の電極(23)(
第3の電極)に連結している。非線型素子はクロック信
号を与えるX配線のアドレス線(8) 、 (9)に第
1の電極(21)により連結している。他方、液晶(7
)の第4の電極(24)はY配線のデータ線(10)、
(11)に連結している。Y配線は他の透光性絶縁基板
、代表的にはガラス基板(第5図(C)における(20
’))側にそれぞれ対応して設けている。そしてこの第
4の電極(24)はR(赤)(Yl)、G(緑)(yz
)、B(青)(Ys図面では省略)のフィルタ(25)
 、 (25°)を有しており、フルカラー化を施して
いる。
In the drawing, the pixel is the electrode (22) of the non-linear element (6).
(second electrode), one electrode (23) of the liquid crystal (7) (
a third electrode). The non-linear element is connected by a first electrode (21) to the address lines (8) and (9) of the X wiring which provide a clock signal. On the other hand, the liquid crystal (7
) is the data line (10) of the Y wiring,
It is connected to (11). The Y wiring is connected to another light-transmitting insulating substrate, typically a glass substrate ((20
'))) are provided correspondingly to each side. And this fourth electrode (24) is R (red) (Yl), G (green) (yz
), B (blue) (omitted in Ys drawing) filter (25)
, (25°) and is fully colored.

このX配線は同一絶縁基板代表的にはガラス基板(第5
図(B) 、 (C) 、 (D)における(20) 
)上に設けられている。その結果、クロストーク(33
)がおきにくく、この部分の抵抗を109Ω以上、好ま
しくはIQIIIΩ以上とすることが可能となった。
This X wiring is connected to the same insulating substrate, typically a glass substrate (fifth
(20) in Figures (B), (C), and (D)
) is provided above. As a result, crosstalk (33
) is less likely to occur, making it possible to set the resistance of this portion to 109Ω or more, preferably IQIIIΩ or more.

かかる絵素をマトリックス構成せしめ、図面では2×2
を示した。しかし本発明はかかる小マトリックスではな
く、スケール・アップした表示装置例えば(画素100
 X 100.1920 X 200または512)と
いった大きなマトリックスのパネルに対し有効である。
Such picture elements are arranged in a matrix, 2×2 in the drawing.
showed that. However, the present invention does not use such a small matrix, but a scaled-up display device, for example (100 pixels).
Effective for large matrix panels such as 100.

かくの如き複合ダイオードを用いた画素の一部である非
線型素子の製造工程およびその特性の例を第3図、第4
図に示している。
Examples of the manufacturing process and characteristics of a nonlinear element that is part of a pixel using such a composite diode are shown in Figures 3 and 4.
Shown in the figure.

この第3図の製造工程は、第5図(A)における(30
)の領域を特に拡大して製造する場合に対応している。
The manufacturing process shown in FIG. 3 is (30
) is particularly suitable for expanding the manufacturing area.

第3図(A) 、 (B) 、 (C) 、 (D−2
)は第5図C−C”の縦断面図に対応している。第3図
(D−1)は第5図におけるA−A’の縦断面図に対応
し、その素子構造を示している。
Figure 3 (A), (B), (C), (D-2
) corresponds to the longitudinal sectional view taken along line A-A' in FIG. 5. FIG. 3 (D-1) corresponds to the longitudinal sectional view taken along line A-A' in FIG. There is.

第3図(A)において、透光性絶縁基板としてコーニン
ク7059ガラス(20)を用いた。この上面にスパッ
タ法または電子ビーム蒸着法により導電膜であるアルミ
ニューム(14)とその上のクロム膜(15)を0.1
〜0.5μおよび500〜1500人の厚さにそれぞれ
形成した。アルミニュームの下にさらにガラスとの密着
性を助長させるために、クロム(500〜1500人)
を形成してもよい。
In FIG. 3(A), Konink 7059 glass (20) was used as the light-transmitting insulating substrate. On this top surface, a conductive film of aluminum (14) and a chromium film (15) on top of it are deposited by sputtering or electron beam evaporation.
They were formed to a thickness of ~0.5μ and 500-1500μ, respectively. Chrome (500-1500) is added under the aluminum to further promote adhesion to the glass.
may be formed.

この後、これらの全面にプラズマ気相反応法を用イテN
IN(NP−N、NIPIN、NrPI−INを含む)
構造を有する非単結晶半導体よりなる複合ダイオードを
形成した。即ち、N型半導体をシランに13.56MH
2の高周波グロー放電を行うことにより、200〜30
0℃に保持された基板上の被形成面上に非単結晶半導体
を作る。
After this, plasma vapor phase reaction method was applied to these entire surfaces.
IN (including NP-N, NIPIN, NrPI-IN)
A composite diode made of a non-single crystal semiconductor structure was formed. That is, 13.56MH of N-type semiconductor with silane
By performing the high frequency glow discharge of 2, 200 to 30
A non-single-crystal semiconductor is formed on a surface of a substrate maintained at 0°C.

その電気伝導度は、10−フ〜10− ’ (Ωcm+
) −’を有し、500〜2500人の厚さとした。次
に10−”〜1O−7torrまで、十分真空引きをし
た。シラン(SimHzs−z例えばmmlの5in4
)とDMS(St(CHりs)とを用いさらに必要に応
じてB、H,を添加してI型の非単結晶半導体を300
人〜0.5μの厚さに形成した。例えば0.2μの厚さ
に、DNS/ (DNS+SiH*) = 1/80.
 BzHa/SiH+−7PPMとしてP−型の5ix
C+−xを形成した。
Its electrical conductivity is 10-f~10-' (Ωcm+
) -', with a thickness of 500 to 2,500 people. Next, the vacuum was sufficiently drawn to 10-” to 10-7 torr.
) and DMS (St(CHris)) and further add B, H, if necessary to form an I-type non-single crystal semiconductor.
It was formed to a thickness of ~0.5μ. For example, for a thickness of 0.2μ, DNS/(DNS+SiH*) = 1/80.
P-type 5ix as BzHa/SiH+-7PPM
C+-x was formed.

さらに10−’〜10−’torrまで十分真空引きを
した。
Further, the vacuum was sufficiently drawn to 10-' to 10-' torr.

その上にN型半導体を50〜500人の厚さに積層して
NP−N接合の5i−5iXC+−* (0<X<1)
 −5tヘテロ接合を形成させた。
Layer an N-type semiconductor on top of it to a thickness of 50 to 500 to form an NP-N junction of 5i-5iXC+-* (0<X<1)
-5t heterojunction was formed.

この後、この上面に、遮光用のクロム(16)を電子ビ
ーム蒸着法またはスパッタ法により第2の電極として積
層した。
Thereafter, chromium (16) for light shielding was laminated as a second electrode on the upper surface by electron beam evaporation or sputtering.

さらに、第3図(A) 、 (B)に示す如く、第1の
フォトマスク(17)■により周辺部(26)が垂直に
なるように異方性プラズマエッチを行い、積層体(18
)を構成させた0次にこれら全面に対し例えば200℃
にて半導体(6)に熱酸化を行い、固相−気相酸化によ
る酸化珪素の作製を行った0次にこれらの全面に感光性
ポリイミド樹脂(29)をコーティング法にて約2μの
厚さに形成させた。かくして、積層体(18)の上面(
16)とポリイミド樹脂(29)の上面(39)とは積
層体(1日)の凸部を除きキュア後で概略同一平面(絶
縁物表面と積層体表面とがなめらかに連続している)と
なるようにさせた0例えば現像とキュアにより40〜5
0χ減少する場合は、積層体が約1μであるため、約2
μの厚さとした0次にガラス基板(20)側の裏面側よ
り紫外光(40)を公知のマスクアライナによりマスク
を用いることなく露光させた0例えばコビルト社のアラ
イナ−では約2分間露光した。その強度が300〜40
0nmの波長の紫外光(10d/c■2)においては1
5〜30秒で十分である。
Furthermore, as shown in FIGS. 3(A) and 3(B), anisotropic plasma etching was performed using the first photomask (17) so that the peripheral part (26) was vertical, and the laminated body (18)
), for example, at 200℃ for the entire surface of the zero-order
The semiconductor (6) was thermally oxidized and silicon oxide was produced by solid phase-vapor phase oxidation.Next, a photosensitive polyimide resin (29) was coated on the entire surface to a thickness of about 2 μm using a coating method. was formed. Thus, the upper surface of the laminate (18) (
16) and the upper surface (39) of the polyimide resin (29) are approximately the same plane after curing (the insulator surface and the laminate surface are smoothly continuous), excluding the convex portion of the laminate (1 day). For example, 40 to 5 due to development and curing.
When decreasing by 0x, the thickness of the laminate is approximately 1μ, so approximately 2
Ultraviolet light (40) was exposed from the back side of the glass substrate (20) with a thickness of μ using a known mask aligner without using a mask.For example, with Cobilt's aligner, exposure was performed for about 2 minutes. . Its strength is 300-40
1 for ultraviolet light with a wavelength of 0 nm (10 d/c 2)
5 to 30 seconds is sufficient.

すると第3図(C)に示す如く、(26)の側面を有す
る積層体に対し蔭となるその上方の凸領域は感光せず、
その側周辺のみが感光する。さらに現像を行った後、リ
ンス液により非感光性の凸部を溶去した。かくして第3
図(C)を得た。
Then, as shown in FIG. 3(C), the convex region above the laminate having the side surface of (26), which is in the shadow, is not exposed to light.
Only the area around that side is exposed to light. After further development, the non-photosensitive convex portions were dissolved away using a rinsing solution. Thus the third
Figure (C) was obtained.

次にこれらすべてを180℃30分+300℃30分+
400℃30分の加熱を窒素中で行いキュアさせた。か
くして積層体の上面である非線型素子の第2の電極をフ
ォトマスクを用いることなく露光せしめるに加えて、こ
の上面と周辺部のポリイミド樹脂の絶縁物の表面とを概
略同一平面を構成させることが可能となった。
Next, do all of this at 180℃ for 30 minutes + 300℃ for 30 minutes +
Cure was performed by heating at 400° C. for 30 minutes in nitrogen. In this way, in addition to exposing the second electrode of the nonlinear element, which is the upper surface of the laminate, without using a photomask, this upper surface and the surface of the polyimide resin insulator in the peripheral area are made to be approximately on the same plane. became possible.

次にこの第3図(C)の上面全面にCTFをITOまた
は酸化スズにより0.1〜0.5μの厚さに形成せしめ
た。さらに第2のフォトマスク■によりこのCTFを選
択エツチングをした。加えてこのCTF (23)が液
晶の画素用第3の電極(第2図(23) )を構成する
が、このCTFをマスクとして画素間(31)の不要の
半導体を(D−1)に示す如く除去した。かくして、第
3図(D−1) 、 (D−2)を得た。
Next, CTF was formed on the entire upper surface of FIG. 3(C) using ITO or tin oxide to a thickness of 0.1 to 0.5 .mu.m. Furthermore, this CTF was selectively etched using a second photomask (3). In addition, this CTF (23) constitutes the third electrode for the liquid crystal pixel (Fig. 2 (23)), and using this CTF as a mask, unnecessary semiconductors between the pixels (31) are removed to (D-1). Removed as shown. In this way, Figures 3 (D-1) and (D-2) were obtained.

さらにこの後この半導体の(31)の側面に対しても(
29)と同様の絶縁物CTF上の配向膜形成用のポリイ
ミド樹脂の一部も充填、してを形成することは有効であ
る。
Furthermore, after this, for the (31) side of this semiconductor, (
It is effective to fill a portion of the polyimide resin for forming an alignment film on the insulator CTF similar to 29).

即ち、第3図において、ガラス基板(20)上の第1の
電極(21) 、 NP−NまたはNIN半導体積層体
よりなる複合ダイオード(6)、第2の電極(16) 
、さらにこの第2の電極に密接して透光性導電膜よりな
る第3の電極(23)を半導体積層体(6)と側周辺の
有機樹脂とを覆うようにして設けた。
That is, in FIG. 3, a first electrode (21) on a glass substrate (20), a composite diode (6) made of an NP-N or NIN semiconductor laminate, and a second electrode (16)
Further, a third electrode (23) made of a light-transmitting conductive film was provided closely to the second electrode so as to cover the semiconductor laminate (6) and the organic resin around the sides.

この後、基板(20) 、 (20’)の液晶注入領域
の周囲にスクリーン印刷法にて接着剤を印刷した。 こ
の後、この基板上に液晶を載せ、スメクチックA相を示
す温度範囲に保持した。(第1図(A))次に他の基板
(20”)を基板(20)の−辺と合わせ内部に気包が
残らないようにゆっくりと合わせていく(第1図(B)
) 熱しながら圧着させ、液晶セルを完成させた。
Thereafter, an adhesive was printed around the liquid crystal injection areas of the substrates (20) and (20') by screen printing. Thereafter, a liquid crystal was placed on this substrate, and the temperature was maintained within a temperature range showing the smectic A phase. (Fig. 1 (A)) Next, align the other board (20") with the - side of the board (20) and slowly align it so that no air bubbles remain inside (Fig. 1 (B))
) The liquid crystal cell was completed by pressing and bonding while heating.

本実施例ではA4サイズ液晶セルを作成したが全面にわ
たり均一に配向していた。 本実施例では液晶物質とし
てDOBAMBCを用いたが、SmC相を示す液晶であ
ればすべて適用可能である。
In this example, an A4 size liquid crystal cell was prepared, and the alignment was uniform over the entire surface. Although DOBAMBC was used as the liquid crystal material in this embodiment, any liquid crystal exhibiting an SmC phase can be used.

その後、液晶セルの両側に偏光板を接着し、液晶表示セ
ルとした。 なお 本発明は本実施例のみに限定されな
いことはいうまでもない。
Thereafter, polarizing plates were adhered to both sides of the liquid crystal cell to form a liquid crystal display cell. Note that it goes without saying that the present invention is not limited only to this example.

特に、基板保持温度は、液晶物質の性質及び基板の種類
によって変更は可能である。
In particular, the substrate holding temperature can be changed depending on the properties of the liquid crystal material and the type of substrate.

「効果」 本発明により、簡単に大面積、大量生産等工業的に液晶
表示セルの生産が可能となり、大面積の液晶表示セルの
配向処理に特に有効であった。
"Effects" The present invention makes it possible to easily industrially produce large-area, mass-produced liquid crystal display cells, and is particularly effective in alignment treatment of large-area liquid crystal display cells.

表示セルの配向処理に特に有効であった。It was particularly effective for the alignment treatment of display cells.

また、現在工業的に用いられているラビング法等に比べ
液晶物質が直接接する部分にホコリ等のゴミを発生させ
ることがまったくないため、液晶の配向が大面積で均一
に行われ欠陥がまったく発生せず大面積にわたって均一
な液晶の配向が得られた。
In addition, compared to the rubbing method currently used industrially, it does not generate any dust or other debris in the areas where the liquid crystal material comes into direct contact, so the liquid crystal is aligned uniformly over a large area and no defects occur. Uniform alignment of liquid crystals was obtained over a large area.

又、ラビング法では、不可能といわれる、液晶物質のメ
モリー効果の利用が本発明では可能となり、大面積でか
つ高速応答性のすぐれた液晶表示セルを作成することが
できた
In addition, the present invention makes it possible to utilize the memory effect of liquid crystal materials, which is said to be impossible with the rubbing method, making it possible to create a liquid crystal display cell with a large area and excellent high-speed response.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の概略図を示す。 第2図は本発明の液晶表示パネルの回路図を示す。 第3図は液晶セルの製造工程を示す縦断面図である。。 第4図は本発明に用いた複合ダイオードの非線型素子の
動作特性を示す。 第5図は本発明の表示パネルの平面図および縦断面図を
示す。
FIG. 1 shows a schematic diagram of the method of the invention. FIG. 2 shows a circuit diagram of the liquid crystal display panel of the present invention. FIG. 3 is a longitudinal sectional view showing the manufacturing process of a liquid crystal cell. . FIG. 4 shows the operating characteristics of the nonlinear element of the composite diode used in the present invention. FIG. 5 shows a plan view and a longitudinal sectional view of the display panel of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、平板基体にて形成された定間隔を有する空間に液晶
性物質を封入してなる液晶表示セルにおいて、一方の平
板基体の電極形成面側に液晶性物質を載せ、液晶性を示
す温度範囲に保持下後、残りの基板と一辺をあわせ内部
に気包が残らないように重ねてゆき、2枚の基体を密着
させた後、一方にシェアリングを行い液晶性物質を配向
させることを特徴とする液晶表示装置作成方法。
1. In a liquid crystal display cell in which a liquid crystal substance is sealed in spaces having regular intervals formed on a flat substrate, the liquid crystal substance is placed on the electrode formation side of one flat substrate, and the temperature range in which liquid crystallinity is exhibited is determined. After holding the substrate, one side is aligned with the remaining substrate and stacked so that no air bubbles remain inside. After the two substrates are brought into close contact, shearing is applied to one side to orient the liquid crystal material. A method for manufacturing a liquid crystal display device.
JP14612785A 1985-07-03 1985-07-03 Forming method for liquid crystal display device Pending JPS627023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14612785A JPS627023A (en) 1985-07-03 1985-07-03 Forming method for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14612785A JPS627023A (en) 1985-07-03 1985-07-03 Forming method for liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS627023A true JPS627023A (en) 1987-01-14

Family

ID=15400755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14612785A Pending JPS627023A (en) 1985-07-03 1985-07-03 Forming method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS627023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359622A (en) * 1989-07-28 1991-03-14 Hoechst Japan Ltd Liquid crystal display element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151620A (en) * 1979-05-14 1980-11-26 Seiko Epson Corp Production of liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151620A (en) * 1979-05-14 1980-11-26 Seiko Epson Corp Production of liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359622A (en) * 1989-07-28 1991-03-14 Hoechst Japan Ltd Liquid crystal display element

Similar Documents

Publication Publication Date Title
JP3447619B2 (en) Active matrix substrate manufacturing method, intermediate transfer substrate
US20110255034A1 (en) Display device
KR101002936B1 (en) Carrier plate, method of laminating plastic plate using the same, and method of manufacturing display device having the flexibility
US20150077673A1 (en) Liquid crystal display panel and manufacturing method thereof
JPH07506909A (en) Liquid crystal display including electrodes and driving device integrated in single crystal semiconductor layer and method for manufacturing the same
JPH04170520A (en) Manufacture of liquid crystal display panel and liquid crystal display substrate
TW201011396A (en) Flexible liquid crystal dislay panel and method for manufacturing the same
JP2003216068A (en) Display device and substrate for display device, and method of manufacturing the same
JPS627023A (en) Forming method for liquid crystal display device
JP3805754B2 (en) Active matrix substrate and manufacturing method thereof
JP3218861B2 (en) Manufacturing method of liquid crystal display device
JPS627022A (en) Liquid crystal display device
JPS63101830A (en) Active matrix liquid crystal display device and its manufacture
JPH04238322A (en) Liquid crystal display device
JPH03110518A (en) Manufacture of liquid crystal display device
JPS61169883A (en) Liquid crystal display unit
JPS61256322A (en) Production of liquid crystal display device
JP3369240B2 (en) Semiconductor device
JPS6270815A (en) Liquid crystal device
JP2008216943A (en) Manufacturing method of liquid crystal device
JPS61151614A (en) Manufacture of semiconductor device
Nishido et al. 56‐4: Key Technologies for Assembling Kawara‐type Multidisplays
JPH04133034A (en) Single crystal thin film semiconductor device for optical valve substrate
JPH11271805A (en) Liquid crystal display device
JPH04116623A (en) Liquid crystal light valve device consisting of semiconductor single crystal thin film substrate