JPS61250676A - Manufacture of liquid crystal display unit - Google Patents

Manufacture of liquid crystal display unit

Info

Publication number
JPS61250676A
JPS61250676A JP60090841A JP9084185A JPS61250676A JP S61250676 A JPS61250676 A JP S61250676A JP 60090841 A JP60090841 A JP 60090841A JP 9084185 A JP9084185 A JP 9084185A JP S61250676 A JPS61250676 A JP S61250676A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
electrode
display device
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60090841A
Other languages
Japanese (ja)
Inventor
正幸 大林
三村 秋男
細川 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60090841A priority Critical patent/JPS61250676A/en
Publication of JPS61250676A publication Critical patent/JPS61250676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液晶表示装置の製造方法に係シ、特によシ簡略
化され友製造工檻をもち、非線形素子を用いて各画素電
極に電荷を蓄積・保持させることによシ表示を行なう液
晶表示装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of manufacturing a liquid crystal display device, and particularly to a method of manufacturing a liquid crystal display device, which has a highly simplified manufacturing process and uses a nonlinear element to apply charge to each pixel electrode. The present invention relates to a liquid crystal display device that performs display by storing and holding data.

〔発明の背景〕[Background of the invention]

液晶表示装置は、低電圧駆動可能、低消費電力という利
点にもかかわらず、表示可能な情報量が少ないという欠
点を有してい次。これを解決するため、薄膜トランジス
タ(TPT )や金属−絶縁体−金属(MIM)構造な
どの能動素子あるいは非線形素子を各画lAK接続する
ことが考えられている。
Although liquid crystal display devices have the advantage of being able to be driven at low voltage and having low power consumption, they have the disadvantage of being able to display only a small amount of information. To solve this problem, it has been considered to connect active elements or nonlinear elements such as thin film transistors (TPT) and metal-insulator-metal (MIM) structures to each pixel.

MIM素子とは第7図に示すように、基板22上で下部
金属層19と上部金属層20との間に絶縁性薄膜21を
形成゛し、下部金属層19と上部金属層20の間に第8
図に示すような電圧・電流特性をもkせた非線形素子の
ことである。
As shown in FIG. 7, an MIM element is a device in which an insulating thin film 21 is formed between a lower metal layer 19 and an upper metal layer 20 on a substrate 22, and an insulating thin film 21 is formed between a lower metal layer 19 and an upper metal layer 20 on a substrate 22. 8th
It is a nonlinear element that also has voltage/current characteristics as shown in the figure.

このMIM*子は以下のような動作をする。りまシ、上
下の金属層間19.20に低い電圧が印加されていると
きはこの、VIM素子は高抵抗性惇すので、MIM素子
をスイッチに見たてると、スイツチが開いている状態に
相当する。一方、上下の金属層間19.20に高い電圧
が印加されているときはこのMIM素子は低抵抗性を示
すので、スイッチが閉じている状態に相当する。
This MIM*child operates as follows. However, when a low voltage is applied between the upper and lower metal layers, the VIM element has a high resistance, so if you treat the MIM element as a switch, the switch will be in an open state. Equivalent to. On the other hand, when a high voltage is applied between the upper and lower metal layers 19 and 20, this MIM element exhibits low resistance, which corresponds to a state in which the switch is closed.

このMIM素子を各画素に接続すると、実質的に信号線
から各画素が分離された形となる九め、・液晶表示装置
の画素数を大幅に増加させることができ、表示情報量が
多くなる。
When this MIM element is connected to each pixel, each pixel is essentially separated from the signal line.9) The number of pixels in the liquid crystal display device can be greatly increased, increasing the amount of displayed information. .

MIM素子は他のTPTなどの素子忙比べ製造工程が簡
単であることから、大型基板を比較的作シ易いといわれ
ている。しかし、MIM素子側基板の完成までKは、下
部金属層の形成、絶縁性薄膜の形成、上部金属の形成、
表示用電極の形成、配向膜の形成、配向処理などの工程
を含1む、とくに、絶縁性薄膜の形成には、下部金属層
の陽極酸化などの方法が用いられておシ、複雑な工程と
なっている。
MIM elements are said to be relatively easy to produce large substrates because the manufacturing process is simpler than that of other elements such as TPT. However, until the completion of the MIM element side substrate, K requires the formation of the lower metal layer, the formation of the insulating thin film, the formation of the upper metal layer,
In particular, the formation of insulating thin films involves processes such as the formation of display electrodes, alignment film formation, and alignment treatment, and involves methods such as anodic oxidation of the lower metal layer, which is a complicated process. It becomes.

MIM素子の製造工程の簡略化に関しては、特開昭58
−127985号がある。
Regarding the simplification of the manufacturing process of MIM elements, see Japanese Patent Application Laid-open No. 58
There is No.-127985.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、非線形素子形成の比めのより簡略化さ
れり製造工程を有する液晶表示装置の製造方法を提供す
ることKある。
An object of the present invention is to provide a method for manufacturing a liquid crystal display device that has a simpler manufacturing process than that of nonlinear element formation.

〔発明の概要〕[Summary of the invention]

本発明の%微とするところは、透明基板上に行或は列側
電極を形成し、この上に一部が重なるように表示用電極
を形成しt後に熱処理することによp重なシ部分に非線
形素子を形成する構成としている。
The feature of the present invention is that row or column side electrodes are formed on a transparent substrate, display electrodes are formed thereon so as to partially overlap with each other, and a p-overlapping image is formed by heat treatment after t. The configuration is such that a nonlinear element is formed in a portion.

詳しくは表示用電極として用いる酸化物透明電極中の酸
素で表示用電極と行或は列側1に極との界面に行或は列
側電極に用いた金属の酸化物の絶縁膜を形成し非線形素
子を形成するものである。
Specifically, an insulating film of the metal oxide used for the row or column side electrode is formed at the interface between the display electrode and the electrode on the row or column side 1 using oxygen in the oxide transparent electrode used as the display electrode. It forms a nonlinear element.

〔発明の実施例〕[Embodiments of the invention]

〔実施例1〕 以下1本発明の一実施例を第1図、第2図によシ説明す
る。
[Embodiment 1] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

ガラス基板l上に行或は列側電極2として多結晶3iを
気相化学反応(CVD)法で厚さ0.3μmに堆積させ
ホトエツチングによシ25μm幅にパターニングする。
Polycrystalline 3i is deposited as row or column electrodes 2 on a glass substrate 1 to a thickness of 0.3 .mu.m by vapor phase chemical reaction (CVD) and patterned to a width of 25 .mu.m by photoetching.

次に表示用電極3としての工’l’ Q (■ndiu
m ’l’in 0xide  )を高周波スパッタリ
ングで全面に0.2μmの厚さに形成する。そして、ホ
トエツチングによ#)220μmX 200μmの長方
形に255mX30Itmの突起部がつい次形で、この
突起部が、前に形成した行或は列側電極2に重なるよう
にパターニングする。そして、窒素中、400Cで30
分間熱処理する。この熱処理によシ、ITOa中の酸素
が1行或は列側電極2としての多結晶Si側に拡散して
いき、多結晶Siとの界面に薄い5i02層が形成され
、非線形素子を形成する。
Next, the electrode 'l' Q (■ndiu
m'l'in 0xide) is formed to a thickness of 0.2 μm over the entire surface by high-frequency sputtering. Then, by photo-etching, a 220 μm×200 μm rectangle is followed by a 255 m×30 Itm protrusion, and patterned so that this protrusion overlaps the previously formed row or column side electrode 2. and 30 at 400C in nitrogen.
Heat treat for minutes. Through this heat treatment, oxygen in ITOa diffuses to the polycrystalline Si side serving as the first row or column side electrode 2, and a thin 5i02 layer is formed at the interface with the polycrystalline Si, forming a nonlinear element. .

以上で非線形素子は完成する。With the above steps, the nonlinear element is completed.

液晶表示装置とする几めには、非線形素子側の基板には
配向膜6を全面に形成配向処理する。そして対向する基
板にはガラス基板5に対向電極4としてITOを高周波
スパッタリングで全面にα3μmの厚さに形成し次後に
幅210μmの帯状にホトエツチングによシバターニン
グする。この上に配向膜6を形成し、対向基板を形成す
る。
In order to form a liquid crystal display device, an alignment film 6 is formed and aligned over the entire surface of the substrate on the nonlinear element side. On the opposing substrate, ITO is formed as a counter electrode 4 on the entire surface of the glass substrate 5 by high frequency sputtering to a thickness of α3 μm, and then is patterned into a band shape of 210 μm in width by photoetching. An alignment film 6 is formed on this to form a counter substrate.

この2枚の基板を組合せてセルを組シ液晶7を封入する
These two substrates are combined to form a cell and liquid crystal 7 is sealed.

゛ 以上で液晶表示装置が完成する。なお、この時・液
晶の表示モードに従って配向処理法や偏光板の組合せを
変える必要がある。
゛ With the above steps, the liquid crystal display device is completed. At this time, it is necessary to change the alignment treatment method and the combination of polarizing plates according to the display mode of the liquid crystal.

〔実施例2〕 他の実施例を第3図、!4図によシ説明する。[Example 2] Another example is shown in Figure 3! This will be explained with reference to Figure 4.

ガラス基板8上に行或は列側電極9として多結晶Sil
:CVD法によシ厚さ0.3μm堆積させホトエツチン
グによF)113図に示すような突起を持つ形に形成す
る。次に表示用電極lOとしてITOを高周波スパッタ
リングで全面に厚さ0.2μm形成しホトエツチングに
よシ%220μmX200μmの長方形に形成し、行或
は列側電極9の突起部に重なるようにパターニングする
。この後、実施例1と同様に、熱処理、配向膜12の形
成、対向電極11を具え九対向基板の形成、セルの組立
て、液晶の封入などの工程を経て液晶表示装置が完成す
る。
Polycrystalline Sil is formed on the glass substrate 8 as row or column side electrodes 9.
: Deposited to a thickness of 0.3 μm by CVD and photoetched to form a protrusion as shown in Fig. F)113. Next, as a display electrode 1O, ITO is formed to a thickness of 0.2 μm over the entire surface by high-frequency sputtering, and is formed into a rectangle of 220 μm×200 μm by photoetching, and patterned so as to overlap the projections of the row or column side electrodes 9. Thereafter, in the same manner as in Example 1, a liquid crystal display device is completed through steps such as heat treatment, formation of an alignment film 12, formation of a nine-face substrate including a face electrode 11, assembly of cells, and filling of liquid crystal.

〔実施例3〕 ま九、他の実施例を第5図、第6図によシ説明する。[Example 3] Another embodiment will be explained with reference to FIGS. 5 and 6.

ガラス基板13上に行或は列側電極14として多結晶S
iをCVD法によシ厚さ0.3μm堆積させホトエツチ
ングによシ幅25μmにパターニングする。次に基板全
面に絶縁層17とじと硅シん酸ガラス(PSG)をCV
D法によシ厚さ0.6μm形成し、行或は列側電極14
上に25μm×13μmのスルーホールをCFaプラズ
マを用いドライエツチングによ多形成する。そして、こ
のスルーホールを通して、行或は列電極14に直接接触
させる形で表示電極15としてITOを高周波スパッタ
リングで形成し友後に第5図に示すような形にパターニ
ングする。この後、実施例1゜2と同様に、熱処理、配
向膜18の形成、対向電極16を具えた対向基板の形成
、組立て、液晶の封入などの工程を経て液晶表示装置を
完成する。
Polycrystalline S is formed on the glass substrate 13 as row or column side electrodes 14.
I was deposited to a thickness of 0.3 .mu.m by CVD and patterned to a width of 25 .mu.m by photoetching. Next, an insulating layer 17 is applied to the entire surface of the substrate and silicate glass (PSG) is applied by CVD.
The row or column side electrodes 14 are formed with a thickness of 0.6 μm by the D method.
Through holes of 25 .mu.m.times.13 .mu.m are formed on the top by dry etching using CFa plasma. Then, ITO is formed as a display electrode 15 by high frequency sputtering so as to be in direct contact with the row or column electrode 14 through this through hole, and then patterned into the shape shown in FIG. 5. Thereafter, as in Example 1-2, a liquid crystal display device is completed through steps such as heat treatment, formation of an alignment film 18, formation of a counter substrate with a counter electrode 16, assembly, and filling of liquid crystal.

以上の実施例では表示電極と行或は列側電極にそれぞれ
、ITO及び多結晶S1を用いているが。
In the above embodiments, ITO and polycrystalline S1 are used for the display electrode and the row or column side electrodes, respectively.

これらの材料の組み合せは、これに限定されるものでは
なく、表示電極には他の酸化物透明電極・行或は列側電
極には、この酸化物透明電極中の酸素によシ酸化物層を
形成できる金属の組合せでもいつこうにかまわない。
The combination of these materials is not limited to this, and the display electrode may include another oxide transparent electrode, and the row or column side electrode may contain an oxide layer containing oxygen in this oxide transparent electrode. Any combination of metals that can form .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、夷造工程中で用いるホトマスクの数を
、非線形素子完成までには2枚、液晶を、切入し表示装
置として完成するまでには3枚とすることが可能となる
ため製造工程を大幅に簡略化できる。
According to the present invention, the number of photomasks used during the manufacturing process can be reduced to two for completing the nonlinear element and three for cutting the liquid crystal and completing the display device. The process can be greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の平面図、第2図は第1図のI
 −I 、1ili面図、第3図は本発明の他の実施例
の平面図、第4図は第3図の非線形素子側基板の■−■
線断面図、第5図は本発明の他の実施例の平面図、第6
図は第5図の非線形素子側基板の厘−■線断面図、第7
図は従来のMIM素子の断面の概略図、第8図はMIM
素子の電圧−直流特性の一例である。 1.5,8,13.22・・・基板、2,9.14・・
・行或は列側電極、3,10.15・・・表示用電極。 4.11.16・・・対向電極、19・・・下部金属層
。 20・・・上部金属層、21・・・絶縁性薄膜。
FIG. 1 is a plan view of an embodiment of the present invention, and FIG. 2 is a plan view of an embodiment of the present invention.
3 is a plan view of another embodiment of the present invention, and FIG. 4 is a plan view of the nonlinear element side substrate of FIG. 3.
A line sectional view, FIG. 5 is a plan view of another embodiment of the present invention, and FIG.
The figure is a cross-sectional view of the nonlinear element side substrate in Figure 5 and the line 7.
The figure is a schematic cross-sectional view of a conventional MIM element, and Figure 8 is an MIM element.
It is an example of the voltage-DC characteristic of an element. 1.5, 8, 13.22... board, 2,9.14...
- Row or column side electrodes, 3, 10.15... Display electrodes. 4.11.16... Counter electrode, 19... Lower metal layer. 20... Upper metal layer, 21... Insulating thin film.

Claims (1)

【特許請求の範囲】 1、2枚の基板間に液晶を封入し、少なくとも一方の基
板上に独立した表示用電極と、この表示用電極に直列に
接続された非線形素子を備えた液晶表示装置において、
行或は列側電極と表示用電極としての酸化物透明電極を
直接重て形成した後に熱処理して非線形素子を形成する
ことを特徴とする液晶表示装置の製造方法。 2、特許請求の範囲第1項において、熱処理は不活性気
体中で行なうことを特徴とする液晶表示装置の製造方法
。 3、特許請求の範囲第1項或は第2項において、行或は
列側電極は多結晶Si、結晶化Si或はアモルファスS
iであることを特徴とする液晶表示装置の製造方法。
[Claims] A liquid crystal display device in which a liquid crystal is sealed between one or two substrates, an independent display electrode on at least one of the substrates, and a nonlinear element connected in series to the display electrode. In,
1. A method of manufacturing a liquid crystal display device, which comprises forming a row or column side electrode and a transparent oxide electrode as a display electrode directly overlapping each other and then heat-treating to form a nonlinear element. 2. The method for manufacturing a liquid crystal display device according to claim 1, wherein the heat treatment is performed in an inert gas. 3. In claim 1 or 2, the row or column side electrodes are made of polycrystalline Si, crystallized Si, or amorphous S.
A method for manufacturing a liquid crystal display device, characterized in that i.
JP60090841A 1985-04-30 1985-04-30 Manufacture of liquid crystal display unit Pending JPS61250676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090841A JPS61250676A (en) 1985-04-30 1985-04-30 Manufacture of liquid crystal display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090841A JPS61250676A (en) 1985-04-30 1985-04-30 Manufacture of liquid crystal display unit

Publications (1)

Publication Number Publication Date
JPS61250676A true JPS61250676A (en) 1986-11-07

Family

ID=14009805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090841A Pending JPS61250676A (en) 1985-04-30 1985-04-30 Manufacture of liquid crystal display unit

Country Status (1)

Country Link
JP (1) JPS61250676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321691A (en) * 1986-07-15 1988-01-29 東レ株式会社 Covered transparent conductive panel and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321691A (en) * 1986-07-15 1988-01-29 東レ株式会社 Covered transparent conductive panel and manufacture thereof

Similar Documents

Publication Publication Date Title
JP2001109014A (en) Active matrix liquid crystal display device
JPH01217325A (en) Liquid crystal display device
JPH04257826A (en) Manufacture of active matrix substrate
JPS61185724A (en) Production for thin film transistor
JPS6349914B2 (en)
JPS61250676A (en) Manufacture of liquid crystal display unit
JPH05119331A (en) Active matrix substrate and its production
JPH0543095B2 (en)
JPS6269238A (en) Liquid crystal display device
JPS5922361A (en) Semiconductor device
JP2862737B2 (en) Thin film transistor and method of manufacturing the same
JP2868758B1 (en) Liquid crystal display
JP2001337619A (en) Method for manufacturing array substrate
JPH07114043A (en) Liquid crystal display device and its production
JPS6197864A (en) Thin film transistor
JPH0331823A (en) Production of liquid crystal display device and electrode substrate
JPH01255829A (en) Multilayered wiring of aluminum and ito
JPH11326949A (en) Active matrix type liquid crystal display element
JPS6050963A (en) Manufacture of thin film transistor
JPS62297880A (en) Manufacture of thin film transistor array
JPS60227229A (en) Liquid crystal display element
JPH0254577A (en) Manufacture of thin film transistor
JPH0396923A (en) Liquid crystal display device
JPS61107220A (en) Liquid-crystal display device
JPS63219175A (en) Manufacture of thin-film transistor