JPS61247661A - Oxidation-resistant high strength carbon material - Google Patents

Oxidation-resistant high strength carbon material

Info

Publication number
JPS61247661A
JPS61247661A JP60089853A JP8985385A JPS61247661A JP S61247661 A JPS61247661 A JP S61247661A JP 60089853 A JP60089853 A JP 60089853A JP 8985385 A JP8985385 A JP 8985385A JP S61247661 A JPS61247661 A JP S61247661A
Authority
JP
Japan
Prior art keywords
powder
oxidation
silicon carbide
boron carbide
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60089853A
Other languages
Japanese (ja)
Inventor
一太郎 小川
吉田 久良
和夫 小林
山本 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60089853A priority Critical patent/JPS61247661A/en
Publication of JPS61247661A publication Critical patent/JPS61247661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業」−の利用分野〉 本発明は、耐酸化性に1費れると共に高強度を有し、各
種機械部品材料、窯業用材料、化学工業用材料、電気電
子部品材料として幅広い用途を有する炭素系材料に関す
るものである。
[Detailed description of the invention] <Field of application in industry> The present invention has excellent oxidation resistance and high strength, and is suitable for use in various mechanical parts materials, ceramic materials, chemical industry materials, electrical and electronic components. This invention relates to carbon-based materials that have a wide range of uses as materials.

〈従来の技術〉 炭素系材料は、高温強度、耐熱衝撃性、高熱伝導性、良
導電性、低熱膨張性等多くの侵t′lt、:特性を有す
る材料であるが、高ン晶域で醇化され易いという欠点が
ある。例えば炭素系材料を大気中て加熱すると300℃
付近から酸化が起乙!J 、fi00℃以1になるとそ
の酸化1,1菩17<進行−4乙の−Cあろ3.その為
に炭素系材料を+l’N記載で使用−4ろ場合にはJ1
酔化性雰囲気と17なければならず、使用1″−C大き
な制約があ−) j、7 。
<Prior art> Carbon-based materials have many properties such as high temperature strength, thermal shock resistance, high thermal conductivity, good electrical conductivity, and low thermal expansion. It has the disadvantage of being easily corrupted. For example, when a carbon-based material is heated in the atmosphere, it reaches 300°C.
Oxidation is occurring from nearby! J, when fi becomes 1 below 00℃, its oxidation 1,1 Bodhisattva 17 < progress -4 Otsu's -C 3. For that reason, use carbon-based materials with +l'N description -4, J1
Must be in an intoxicating atmosphere and 17, use 1''-C has major restrictions-) j, 7.

この炭素系材ネ1の欠点である高1品て酸化さ第1易い
特性を改善する為に、未発明各等は特開昭591315
7fi号公報及び特開昭592131’t74′1!7
公報て示さi]る様な炭素 セラミック複合キイを開発
しt:5.乙の両公報にて示される材料は、牛:l−ク
ス粉末を「体とし、こねに炭化ホウ素粉末と炭化ゲイ素
粉末とを配合しtコ粉末混合物の焼結体であり、この様
な材料に、Lれば炭素系材料の高温酸化が相゛11抑制
される事を確認iノた。
In order to improve the shortcoming of this carbon-based material, which is that it is highly oxidized and easily oxidized, various uninvented works have been published in Japanese Patent Application Laid-Open No. 591315.
Publication No. 7fi and Japanese Unexamined Patent Publication No. 592131't74'1!7
A carbon-ceramic composite key as shown in the publication was developed and t:5. The material shown in both publications is a sintered body of a powder mixture made by mixing boron carbide powder and silicon carbide powder with boron carbide powder and silicon carbide powder. It was confirmed that high-temperature oxidation of carbon-based materials can be significantly suppressed by adding L to the material.

〈発明が解決し、Lうとする問題点〉 本発明では1述の特開昭5(L−131576号公報で
示される生コークスに炭化ホウ素と炭化ケイ素を配合し
lコ屁合物から得た焼結体、更にはその炭化ホウ素と炭
化ノrイ素との配合割合を特定の値どなした特開昭59
−213Fi7H:)公報に示さオ]る焼結体のll′
に高域での耐酸化性を更に高めようとするものである。
<Problems to be solved by the invention> In the present invention, boron carbide and silicon carbide are blended into the raw coke disclosed in Japanese Patent Laid-Open No. 131576 (L-131576). Unexamined Japanese Patent Publication No. 59/1989, in which the sintered body and the blending ratio of boron carbide and nitrogen carbide were adjusted to a specific value.
-213Fi7H:) ll' of the sintered body shown in the publication
The aim is to further improve oxidation resistance at high frequencies.

〈問題点を解決する為の手段〉 本発明では、先に示した本発明者等の開発に係る生コー
クス−炭化ホウ素−炭化ケイ素に対し、第4成分として
炭化ホウ素以外のポウ化物セラミックスを添加配合する
ものであり、その要旨は炭化ホウ素粉末と炭化ケイ素粉
末との合計量が5〜50容量%、残部が生コークス粉末
からなる基本成分の中の、炭化ホウ素粉末と炭化ケイ素
粉末との合計量の1〜20重景%をホウ化物セラミック
スで置換せしめた粉末混合物の焼結体から成る耐酸化性
高強度炭素材料である。
<Means for Solving the Problems> In the present invention, a poride ceramic other than boron carbide is added as a fourth component to the raw coke-boron carbide-silicon carbide developed by the inventors as described above. The gist is that the total amount of boron carbide powder and silicon carbide powder is 5 to 50% by volume, and the balance is raw coke powder. This is an oxidation-resistant high-strength carbon material consisting of a sintered body of a powder mixture in which 1 to 20 weight percent of the amount is replaced with boride ceramics.

なお本発明で用いる生コークスは、石油系、石炭系ある
いは樹脂系のいずれてもよいが600℃以下の比較的低
温で製造され、残留揮発分を有するものがよく、特に高
強度の製品を得るには残留揮発分は4重量%以」−のも
のが好ましい。また用いる生コークス粉末は25μm以
下、好ましくは5μm以下のものがよく、その量比は容
積比で50〜95%が望ましい。
Note that the raw coke used in the present invention may be petroleum-based, coal-based, or resin-based, but it is preferably produced at a relatively low temperature of 600°C or less and has residual volatile content, so that a product with particularly high strength can be obtained. The residual volatile content is preferably 4% by weight or less. The raw coke powder to be used has a diameter of 25 μm or less, preferably 5 μm or less, and its volume ratio is preferably 50 to 95%.

次に炭化ホウ素粉末と炭化ケイ素粉末とは、やはす25
7zm以下、好ましくは5μm以下の微粉末が望ましく
、1400℃近辺の高渇或に於ける耐醇化性を十分にさ
せる為には、炭化ケイ素の呈を炭化ホウ素よりも大とな
るへき配置と17で、炭化ホウ素:炭化ケイ素の重量比
を4951〜298とするのが望ましい。即ち炭化ケイ
素がこの範囲より少ない場合には1400℃近辺での耐
酸化性に劣り、逆に乙の範囲よりも多過ぎても耐酸化性
に劣るのである。なおこれらの炭化ホウ素及び炭化ケイ
素は、その代替物として焼結時に結果的に炭化ホウ素や
炭化ケイ素となる物質例えば酸化ホウ素や醸化ケイ素を
用いることも出来るものである。
Next, what is boron carbide powder and silicon carbide powder?
A fine powder of 7 zm or less, preferably 5 um or less is desirable, and in order to have sufficient solubilization resistance in high drought conditions near 1400°C, a cleavage arrangement in which silicon carbide has a larger appearance than boron carbide and 17 The weight ratio of boron carbide to silicon carbide is preferably 4951 to 298. That is, if the amount of silicon carbide is less than this range, the oxidation resistance at around 1400° C. will be poor, and if it is too much than the range B, the oxidation resistance will be poor. As a substitute for these boron carbide and silicon carbide, it is also possible to use substances that become boron carbide or silicon carbide during sintering, such as boron oxide or silicon oxide.

次に第4成分としてのポウ化物としては、例えば人18
2. TiB2. ZrB2等があり、乙のホウ化物セ
ラミックス粉末もその粒径は25μm以下、好ましくは
5μm以下の微粉末を用い、配合量としては前記炭化ホ
ウ素と炭化ケイ素との合計量の1〜20重量%を置換し
た量とする。その理由としては該ホウ化物セラミックス
の量がに記範囲よりも少ない場合には、それを添加する
事による効果たる高温域に於ける耐酸化性の向上(ン格
別の効果が見られず、逆に」二記範囲を越えると材料自
体の高温クリープ強度が低下するからである。
Next, as a poride as the fourth component, for example, human 18
2. TiB2. There are ZrB2, etc., and the boride ceramic powder (B) is a fine powder with a particle size of 25 μm or less, preferably 5 μm or less, and the blending amount is 1 to 20% by weight of the total amount of boron carbide and silicon carbide. Let it be the replaced amount. The reason for this is that when the amount of the boride ceramic is less than the range specified in 1, no particular effect can be seen in the improvement of oxidation resistance in the high temperature range, which is the effect of adding it, and the opposite is true. This is because if the temperature exceeds the range specified in 2 above, the high-temperature creep strength of the material itself decreases.

本発明の耐酸化性高強度炭素材料の製造方法は生コーク
ス粉末、炭化ホウ素粉末、炭化ケイ素粉末及びホウ化物
セラミックス粉末をそれぞれ所定量配合し、十分に磨砕
処理をする乙とにより、粘結性及び焼結性を高めた後、
成形し、非酸化性雰囲気中で1000℃以上の温度で焼
結する方法を採用する。乙の様に本発明では、気孔発生
の原因となる結合剤等の添加物は用いず、磨砕により生
じるメカノケミカル効果を利用して焼結性を付与せしめ
ている為に緻密でかつ高強度のものとなる。
The method for manufacturing the oxidation-resistant high-strength carbon material of the present invention involves blending predetermined amounts of raw coke powder, boron carbide powder, silicon carbide powder, and boride ceramic powder, and thoroughly grinding the powder to form a caking process. After increasing the properties and sinterability,
A method of molding and sintering at a temperature of 1000° C. or higher in a non-oxidizing atmosphere is adopted. As shown in Part B, the present invention does not use additives such as binders that cause pores, but utilizes the mechanochemical effect produced by grinding to impart sinterability, resulting in a dense and high-strength product. Becomes the property of

〈実施例及び作用〉 以下に本発明をその実施例に基づき詳述する。<Examples and effects> The present invention will be explained in detail below based on examples thereof.

11貴↓ 約500℃で製造した生石油コークス(揮発分約10重
量%)を振動ボールミルで1時間粉砕して得られな見掛
は比重1.35g/CT1tの生コークス粉末と、平均
粒子径が1μmのSiC,B4C,Aj’ B2. T
in;7゜Z r 82とを用い、下記第1表に示す如
き配合割合となした混合粉末を、らいかい機で5時間磨
砕した後、2t/curの圧力で成形し、不活性ガス雰
囲気中、2000℃に於いて1時間焼結して焼結体を得
た。この焼結体を7X7X5mmの大きさに切出し、予
め1300℃に保持された電気炉に入れ、空気を217
分の割合で導入する方法で測定した酸化減量を第1図に
示す。
11 Takashi ↓ Raw petroleum coke produced at about 500℃ (volatile content about 10% by weight) is crushed in a vibrating ball mill for 1 hour, resulting in an apparent raw coke powder with a specific gravity of 1.35g/CT1t and an average particle size. SiC, B4C, Aj' B2. T
In; 7°Z r 82, the mixed powder was made into a blending ratio as shown in Table 1 below, and was ground in a mill for 5 hours, then molded at a pressure of 2 t/cur, and inert gas A sintered body was obtained by sintering in an atmosphere at 2000° C. for 1 hour. This sintered body was cut into a size of 7 x 7 x 5 mm, placed in an electric furnace pre-maintained at 1300°C, and air was blown at 217°C.
Figure 1 shows the oxidation loss measured by the method of introducing at a rate of 1.

なお第1図には比較の為に、B4C7,2重量%−3i
C28,4量%−残生コークスのC−B4C−3iC系
材料についての酸化減量も併記した。
For comparison, Figure 1 shows B4C7,2%-3i by weight.
The oxidation loss of the C-B4C-3iC-based material of C28, 4% by weight of residual coke is also shown.

第1表       (重量%) 上記実施例1と同様の生コークス粉末と、SiC。Table 1 (weight%) The same raw coke powder as in Example 1 above, and SiC.

84C,人I R2の各粉末とを用い、重量比で5iC
B4C:A l 82 = 80.328.8110.
89なる混合粉末に対し生コークス粉末の量を種々変化
せしめた混合物から実施例1と同様にして得た焼結体に
ついて曲げ強さ及び黒鉛化度の指標としての層面間隔汗
顔λを測定した結果を第2図及び第3図に示す。
Using each powder of 84C and Human I R2, the weight ratio is 5iC.
B4C: A l 82 = 80.328.8110.
Results of measuring the interlayer spacing λ as an index of bending strength and degree of graphitization for sintered bodies obtained in the same manner as in Example 1 from mixtures of mixed powder 89 with various amounts of raw coke powder are shown in FIGS. 2 and 3.

なおこれら第2図及び第3図にも比較の為に84C7,
2重量%−5iC28,4重量%−残土コークスのC−
B4C−3iC系材料についてのデータも併記する。
For comparison, these figures 2 and 3 also show 84C7,
2% by weight - 5iC28, 4% by weight - C of residual coke
Data regarding B4C-3iC-based materials are also listed.

以上の実施例の結果から明らかな如く、本発明のC−B
4C−5iCに更にAJ B2. TiB2. Zr8
2等のホウ化物を加えた材料では大気中1300℃とい
う条件下に保持されても第1図に示される如く極く僅か
しか酸化()ておらず、しかもその酸化は初期たる1時
間以内に集中しており、その後時間が経過しても酸化量
は増加していない事が判る。これは人IB2゜TiR2
,ZrB2等の第4成分として加えるホウ化物に」:す
、酸化雰囲気に於いて材料表面に形成されるガラス質被
膜が高温で極めて擾ねた酸化抑制効果を有している為と
考えられる。
As is clear from the results of the above examples, C-B of the present invention
4C-5iC and AJ B2. TiB2. Zr8
As shown in Fig. 1, even if the material containing No. 2 boride is kept in the atmosphere at 1,300°C, it is only slightly oxidized, and the oxidation occurs within the first hour. It can be seen that the amount of oxidation does not increase even after the passage of time. This is a person IB2゜TiR2
This is thought to be due to the fact that the glassy film formed on the surface of the material in an oxidizing atmosphere has an extremely weak oxidation inhibiting effect at high temperatures.

又第2図及び第3図から、本発明材料では従来品たるC
−84C−SiCに比し、その黒鉛化度が大であり、曲
げ強さも著しく向上している事が判る。
Also, from FIGS. 2 and 3, it is clear that the material of the present invention has a conventional product
It can be seen that, compared to -84C-SiC, the degree of graphitization is greater and the bending strength is also significantly improved.

なお本発明材料についてヤング率及び緻密度を測定17
た結果そのいずれをも従来品たるC−B+C−5iCに
比して大となっていることを確認した。
The Young's modulus and compactness of the material of the present invention were measured17.
As a result, it was confirmed that all of them were larger than the conventional product CB+C-5iC.

〈発明の効果〉 以上述へて来た如く、本発明によれば先に本発明者等が
開発したC−84C−5iC系材料よりも更に高温に於
ける耐酸化性が大で、かつ強度も高いという効果がある
<Effects of the Invention> As described above, according to the present invention, the oxidation resistance at high temperatures is greater than that of the C-84C-5iC-based material previously developed by the present inventors, and the strength is also increased. It also has the effect of being high.

従って本発明材料は高温域に於いても炭素系材料として
の種々の特徴を十分に発揮出来るから、各種機械部品材
料、窯業用材料、化学工業用耐食材料あるいは電気電子
部品材料等として多くの用途に用いる乙とが出来る。
Therefore, the material of the present invention can fully exhibit various characteristics as a carbon-based material even in a high temperature range, so it can be used in many applications such as materials for various mechanical parts, materials for the ceramic industry, corrosion-resistant materials for the chemical industry, and materials for electrical and electronic parts. It can be used for.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明材料及び従来材料についての酸化減量を
示すグラフ、第2図は同曲げ強さを示すグラフ、第3図
は同黒鉛化度の指標たる層面間隔圧。o2を示ずグラフ
。 特許出願人 工業技術院長(他1名) 復代理人  有吉 教哨 rつ 法 (y)zoop  劉晶阜昆 軍 苦 百 手続r山jF−二書 11発) 昭和60年 5月1711
FIG. 1 is a graph showing the oxidation loss of the material of the present invention and the conventional material, FIG. 2 is a graph showing the bending strength of the material, and FIG. 3 is the interlaminar spacing pressure, which is an index of the degree of graphitization. Graph showing o2. Patent applicant: Director of the Agency of Industrial Science and Technology (1 other person) Sub-agent: Ariyoshi Kyoto rtsuho (y) zoop Liu Jingfu Kungun's bitter procedures rzanjF-2 book 11) May 1985 1711

Claims (1)

【特許請求の範囲】[Claims] 1、炭化ホウ素粉末と炭化ケイ素粉末との合計量が5〜
50容量%、残部が生コークス粉末からなる基本成分の
中の、炭化ホウ素粉末と炭化ケイ素粉末との合計量の1
〜20重量%をホウ化物セラミックスで置換せしめた粉
末混合物の焼結体から成る耐酸化性高強度炭素材料。
1. The total amount of boron carbide powder and silicon carbide powder is 5~
1 of the total amount of boron carbide powder and silicon carbide powder in the basic component consisting of 50% by volume and the balance consisting of raw coke powder
An oxidation-resistant, high-strength carbon material consisting of a sintered body of a powder mixture in which ~20% by weight is substituted with boride ceramics.
JP60089853A 1985-04-24 1985-04-24 Oxidation-resistant high strength carbon material Pending JPS61247661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60089853A JPS61247661A (en) 1985-04-24 1985-04-24 Oxidation-resistant high strength carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089853A JPS61247661A (en) 1985-04-24 1985-04-24 Oxidation-resistant high strength carbon material

Publications (1)

Publication Number Publication Date
JPS61247661A true JPS61247661A (en) 1986-11-04

Family

ID=13982338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089853A Pending JPS61247661A (en) 1985-04-24 1985-04-24 Oxidation-resistant high strength carbon material

Country Status (1)

Country Link
JP (1) JPS61247661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147863A (en) * 1986-12-09 1988-06-20 川崎炉材株式会社 Carbon-containing refractories
JPS6442364A (en) * 1987-08-07 1989-02-14 Agency Ind Science Techn Carbon material having superior electric conduction and high strength
JPH01234366A (en) * 1988-03-15 1989-09-19 Agency Of Ind Science & Technol Material for glass product molding member
JPH03252357A (en) * 1990-02-28 1991-11-11 Nippon Steel Chem Co Ltd Production of carbon material for sliding current collection
JPH042659A (en) * 1990-04-16 1992-01-07 Agency Of Ind Science & Technol Neutron shielding carbon material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147863A (en) * 1986-12-09 1988-06-20 川崎炉材株式会社 Carbon-containing refractories
JPS6442364A (en) * 1987-08-07 1989-02-14 Agency Ind Science Techn Carbon material having superior electric conduction and high strength
JPH01234366A (en) * 1988-03-15 1989-09-19 Agency Of Ind Science & Technol Material for glass product molding member
JPH03252357A (en) * 1990-02-28 1991-11-11 Nippon Steel Chem Co Ltd Production of carbon material for sliding current collection
JPH042659A (en) * 1990-04-16 1992-01-07 Agency Of Ind Science & Technol Neutron shielding carbon material

Similar Documents

Publication Publication Date Title
JPS5924751B2 (en) Sintered shaped body
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
JPS6138144B2 (en)
JPS61247661A (en) Oxidation-resistant high strength carbon material
JPS62182163A (en) Silicon nitride ceramic sintered body and manufacture
JPH0212893B2 (en)
JP3186158B2 (en) Composite ceramic sintered body and method for producing the same
JP2645028B2 (en) Manufacturing method of ceramic heating element
JP4809582B2 (en) High thermal conductive graphite material and method for producing the same
JPS61158866A (en) Ceramic sintered body and manufacture
JPS62153170A (en) Silicon nitride ceramic sintered body and manufacture
JPS6212191B2 (en)
JPH0529627B2 (en)
JPH02221157A (en) Production of oxidation resistant high-strength carbon material
JPS6144768A (en) High strength boride sintered body
JP2613402B2 (en) Silicon carbide whisker reinforced silicon nitride sintered body and method for producing the same
JPS638264A (en) Silicon carbide base composite material
JPH0250075B2 (en)
JPS63107858A (en) Ceramic composite body
JPS58217469A (en) Manufacture of silicon nitride-silicon carbide composition
JPS597669B2 (en) Metal boride-zirconium oxide ceramic materials
JPH0920560A (en) Electroconductive ceramic
JPS6337068B2 (en)
JPS6172688A (en) Electroconductive zrb2 composite sintered body
JPS6246508B2 (en)