JPS6172688A - Electroconductive zrb2 composite sintered body - Google Patents

Electroconductive zrb2 composite sintered body

Info

Publication number
JPS6172688A
JPS6172688A JP59193969A JP19396984A JPS6172688A JP S6172688 A JPS6172688 A JP S6172688A JP 59193969 A JP59193969 A JP 59193969A JP 19396984 A JP19396984 A JP 19396984A JP S6172688 A JPS6172688 A JP S6172688A
Authority
JP
Japan
Prior art keywords
sintered body
sic
zrb2
resistance
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59193969A
Other languages
Japanese (ja)
Other versions
JPS6339542B2 (en
Inventor
音次郎 木田
優 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59193969A priority Critical patent/JPS6172688A/en
Priority to US06/751,528 priority patent/US4636481A/en
Priority to EP85108300A priority patent/EP0170889B1/en
Priority to DE8585108300T priority patent/DE3569365D1/en
Publication of JPS6172688A publication Critical patent/JPS6172688A/en
Publication of JPS6339542B2 publication Critical patent/JPS6339542B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a東上の利用分野) 本発明はZrFh  (2R化ジルコニウム)質複合焼
結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Application of Tojo The present invention relates to a ZrFh (2R zirconium) composite sintered body.

一般的に全屈硼化物セラミックスは高融点で高硬度、高
強度、高耐食の特徴を有し、従来から切削工具、熱機関
部品材料などとして用いられているが、実際に実用化さ
れているものの多くはチタンの硼化物であって、ジルコ
ニウムの硼化物は殆ど実用化されていないのが実状であ
る。−に発明のZrBz質複合焼結体は、高融点、高強
度、高#蝕、高硬度、導電性、耐酸化性等の優れた特徴
を有するので高温耐蝕性部材1機械部材、発熱体、FL
極、誘導炉用ルツボ等に広く使用できる材料である。
In general, total boride ceramics have the characteristics of high melting point, high hardness, high strength, and high corrosion resistance, and have traditionally been used as materials for cutting tools and heat engine parts, but have never been put into practical use. The reality is that most of these are titanium borides, and zirconium borides are hardly ever put into practical use. - The ZrBz composite sintered body of the invention has excellent characteristics such as high melting point, high strength, high corrosion resistance, high hardness, electrical conductivity, and oxidation resistance, so it can be used as a high temperature corrosion resistant member 1 mechanical member, heating element, FL
It is a material that can be widely used for electrodes, induction furnace crucibles, etc.

(従来の技術) ZrB2質の複合焼結体として現在広く実用化されてい
るものは殆どないが特許などには種々のものが提案され
ている。
(Prior Art) Currently, there are almost no ZrB2 composite sintered bodies that are in widespread practical use, but various ones have been proposed in patents and the like.

即ち、焼結助剤又は複合材などのZrB2焼結体におけ
る副成分としてはMoSi2などの珪化物、TaN 、
 Hf N 、 BNなどの窒化物、ZrO2などの酸
化物、SiC,84Cなどの炭化物1種々の金属などが
知られている。
That is, silicides such as MoSi2, TaN,
Nitrides such as HfN and BN, oxides such as ZrO2, carbides such as SiC and 84C, and various metals are known.

(発明が解決しようとする問題点) 例えば珪化物については特公昭3B−8098にZrS
i2が、また米国特許第3705112号ニMoSi2
などが開示されているが、これらのSi系化合物は高温
雰囲気下での焼結で溶融又は分解するための組織が多孔
質で結晶の粒成長が大きくなることが多く、そのため強
度も、#触性も十分でないことが多いし、#酸化性も5
iQ2の皮膜としての効果が予測されるがこれらの副成
分のみで空気中での使用には上方でない。
(Problems to be solved by the invention) For example, regarding silicides, ZrS
i2 is also known as U.S. Pat. No. 3,705,112 MoSi2
However, these Si-based compounds often have a porous structure that causes large crystal grain growth because they melt or decompose when sintered in a high-temperature atmosphere. The properties are often insufficient, and the oxidation properties are also 5.
Although iQ2 is expected to be effective as a film, it is not suitable for use in air due to these subcomponents alone.

つぎに窒化物については、米国特許第3305374に
開示されているTaNは、高強度材料としてZrB2 
、Ti82等に添加され、工具材料、装飾材に応用され
ているが高硬度、高強度の点では優れているか高温#蝕
部材、発熱体、電極、誘導炉用ルツボ等の高温酸化雰囲
気に使用する場合#酸化性、耐スポール性、耐蝕性など
の点で十分ではない。
Next, regarding nitrides, TaN disclosed in U.S. Pat. No. 3,305,374 is used as a high-strength material, and
, Ti82, etc., and is applied to tool materials and decorative materials, but it is superior in terms of high hardness and high strength.It is used in high-temperature oxidizing atmospheres such as high-temperature corrosive parts, heating elements, electrodes, and induction furnace crucibles. # Insufficient oxidation resistance, spall resistance, corrosion resistance, etc.

つぎに炭化物については米国特許第3775137ニs
ic、米国特許第3325300 ニBa CやSiC
が開示されなどしているが、米国特許第3775137
のSiCのみの添加では#酸化性の点で不十分でア4J
又部3325300 ノMoSi2 +3a C,Mo
Si2 +S:C*B、 c、の添加ではMoSi2が
焼結温度により低融点であり焼結中に融けて、分解した
り、粒成長を促進するなど組織を多孔質化するため高密
度(ヒしにくい、従って特に高温構造部材として要求さ
れる材料には至っていない。
Next, regarding carbides, U.S. Patent No. 3775137
ic, U.S. Patent No. 3325300 NiBaC and SiC
has been disclosed, but US Pat. No. 3,775,137
Addition of only SiC is insufficient in terms of oxidation and A4J
Matabe3325300 ノMoSi2 +3a C,Mo
Si2 + S: With the addition of C*B, c, MoSi2 has a low melting point depending on the sintering temperature, and it melts during sintering, decomposing, and promoting grain growth, making the structure porous. Therefore, it is not a material that is particularly required for high-temperature structural members.

このような点に鑑み、本発明者らは先にMoSi2を加
えることのないSiC+ 84 Gの添加又はSiC÷
8Nの添加をしたものについて検討し改良させたZrB
2質複合焼結体を得ることに成功した。
In view of these points, the present inventors added SiC+84G without adding MoSi2 first, or added SiC÷84G without adding MoSi2 first.
ZrB studied and improved with 8N added
We succeeded in obtaining a two-quality composite sintered body.

これらは、それなりにZrB2質複合焼結体の実用化を
可能とするものであったが、また改良されるべき余地が
残っていることも事実であった。
Although these methods have made it possible to put ZrB dual composite sintered bodies to practical use, it is also true that there remains room for improvement.

例えば、SiC+ Ba Cの添加系はBNN含有上増
やすことで耐スポール性を向上させることができるなど
の点で満足できるものであったが、難焼結性のBNを添
加することで緻密質焼結体が得られに〈〈強度や硬度な
どの点では必ずしも十分でなく、貨って高温高強度部材
などの用途には適したものとはいえないものであった。
For example, the addition system of SiC + Ba C was satisfactory in that spalling resistance could be improved by increasing the BNN content; However, it was not always possible to obtain a solid body with sufficient strength and hardness, and the material was not suitable for use as a high-temperature, high-strength member.

また、SiC+Ba Cの添加系は1強度、硬度及び#
酸化性などの点では満足できるものであったが、耐スポ
ール性、耐食性や可変導電性などの点では必ずしも上方
でなく、従って鉄鋼用など耐食部材などの用途には適し
たものとはいえないものであった。
In addition, the addition system of SiC + Ba C has 1 strength, hardness and #
Although it was satisfactory in terms of oxidation resistance, etc., it was not necessarily superior in terms of spall resistance, corrosion resistance, variable conductivity, etc., and therefore it could not be said to be suitable for applications such as corrosion-resistant parts for steel etc. It was something.

このような点に鑑み、優れた特質を備えていながらその
特質を生かしきれず極めて限られた用途にしか実際に使
われていないZrB2質焼結体について、従来の問題点
を克服すべく研究を進めた結果、tCれた高密度、高強
度、#酸化性、耐食性特に可変導電性(TL気抵抗)及
び耐スポール性などの諸性能を兼ね備えかついくつかに
ついてはその特質を著しく向上せしめた焼結体の開発に
成功したものである。
In view of these points, we are conducting research to overcome the conventional problems with ZrB2 sintered bodies, which have excellent properties but are not fully utilized and are actually used for only extremely limited applications. As a result of this progress, we have developed a sintered product that combines various properties such as high density, high strength, oxidation resistance, corrosion resistance, especially variable conductivity (TL resistance), and spall resistance, and has significantly improved some of its characteristics. This was a successful development of the structure.

(問題を解決するための手段) 即ち、本発明はZrB2を主成分とし、屯贋%で1〜1
5%のS+C,5〜20%の84C及び3〜40%のA
I、Nを含むことで特徴づけられた導電性のZrB7質
複合焼結体を要旨とするものである。
(Means for solving the problem) That is, the present invention uses ZrB2 as a main component, and has a concentration of 1 to 1
5% S+C, 5-20% 84C and 3-40% A
The gist is a conductive ZrB7 composite sintered body characterized by containing I and N.

本発明に用いる ZrB2は例えば酸化ジルコニウム、
酸化ljl素およびカーボンの程合物を高温で反応させ
ることにより得られ、本焼結体の製造には67及的に純
度の高いものを用いるのが好ましく、また粒径も可及的
に小さい粉末が好ましい。
ZrB2 used in the present invention is, for example, zirconium oxide,
It is obtained by reacting a mixture of ljl oxide and carbon at high temperature, and it is preferable to use one with the highest purity in the production of this sintered body, and the particle size is also as small as possible. Powders are preferred.

具体的には純度99%以上、モ均粒径10pm特には1
7tm以下のものがそれである。
Specifically, the purity is 99% or more, the average particle size is 10 pm, especially 1
This includes those with a diameter of 7 tm or less.

また副成分として存在せしめるSiC及びALN 。SiC and ALN are also present as subcomponents.

BNについては、焼結体としてそのような化合物として
所定雀が存在していればよいので、出発原料としてはど
のような形態のものとして配合してもよいか、SiC及
びBN、ALN以外の原料を使用した場合には焼結段階
で特別なI!に!慮が必要となるため1通常配合原料と
してSiC及びBN。
As for BN, it is sufficient that a specified number of such compounds exists as a sintered body, so it is not clear what form it can be blended as a starting material, and raw materials other than SiC, BN, and ALN. When using a special I! during the sintering stage. To! 1. SiC and BN are usually used as blended raw materials.

ALNとして調整しておくのがよい。It is better to adjust it as ALN.

このSiC及びON、ALN原料についても可及的に純
度の高いものが好ましく通常89%以上のものがよい。
The raw materials for SiC, ON, and ALN are preferably as pure as possible, preferably 89% or higher.

原料混合物は通常これら3種の微粉末を均一に1帛合す
ることにより調整するが、粉砕混合を目的として超微粉
砕しても同様である。一般に混合原料の粒度は10ル■
以下がよ〈好ましくはモ均粒径1μm以下にまで十分調
整しておくことである。
The raw material mixture is usually prepared by uniformly combining these three kinds of fine powders, but the same effect can be obtained by ultrafinely pulverizing them for the purpose of pulverizing and mixing. Generally, the particle size of mixed raw materials is 10 l■
The following is necessary: Preferably, the average particle diameter is sufficiently adjusted to 1 μm or less.

これらの粉砕はSiCポールを用いることが適当である
It is appropriate to use a SiC pole to crush these particles.

本発明焼結体はこれらの混合物を例えば黒鉛型に充填し
、真空中又はアルゴン、ヘリウム。
The sintered body of the present invention is prepared by filling a mixture of these into a graphite mold, for example, in a vacuum or in argon or helium.

−酸化炭素などの中性或は遺児性の雰囲気下で、ホット
プレスするか上記混合物をラバープレス成形してから常
圧焼成するなどにより得ることができる。尚、焼成温度
は1800〜2300℃、焼成時間は試料の大きさ等に
もよるが通常0.5時間〜5時間程度が適当である。
- It can be obtained by hot pressing in a neutral or orphan atmosphere such as carbon oxide, or by rubber press molding the above mixture and then firing at normal pressure. Note that the firing temperature is 1800 to 2300°C, and the firing time is usually about 0.5 to 5 hours, although it depends on the size of the sample.

未発明焼結体において、5in(シリコンカーバイド)
は少なくとも玉量%(以ド同じ)で11   %は必要
であるが、これはそれ以下では耐酸化性が十分でなく高
密度化も難しくなるからであり、一方多すぎても耐スポ
ール性や高耐食性の効果が発揮されないなどのため好ま
しくなく最大15%にとどめることが必要であり、望ま
しくは3〜IQ%である。
In the uninvented sintered body, 5 inches (silicon carbide)
is required to be at least 11% in ball weight percentage (hereinafter the same), because if it is less than that, the oxidation resistance will not be sufficient and it will be difficult to achieve high density.On the other hand, if it is too high, the spall resistance and Since the effect of high corrosion resistance is not exhibited, it is undesirable to limit the content to a maximum of 15%, and preferably 3 to IQ%.

B、C:(ポロンカーバイド)は少なくとも5%は必要
であるが、これはそれ以下だと高密度化か困難となるか
らであり、一方、多すぎても耐熱性が低下したり、耐酸
化性が悪くなるなどのため好ましくなく最大20%にと
どめることが必要であり、望ましくは7〜15%である
B, C: (polon carbide) must be at least 5%, because if it is less than that, it will be difficult to achieve high density.On the other hand, if it is too much, the heat resistance will decrease or the oxidation resistance It is undesirable to limit the content to a maximum of 20%, as the properties deteriorate, and the preferable range is 7 to 15%.

ALN  (アルミニウムナイトライド)は少なくとも
3ゾロは必要であるが、これはそれ以ドだと電気抵抗が
小さく発熱体等の電気部材としての特徴が十分に発揮さ
れず、一方、多すぎても電気抵抗が大となり発熱体等の
電気部材としての特徴が得られないなどのため好ましく
なく最大40%にとどめることが必要であり、望ましく
は5〜30である。
ALN (aluminum nitride) requires at least 3 z, but if it is more than that, it has low electrical resistance and cannot fully demonstrate its characteristics as an electrical component such as a heating element. Since the resistance becomes large and the characteristics of an electric member such as a heating element cannot be obtained, it is undesirable and needs to be kept at a maximum of 40%, and is preferably 5 to 30%.

また、これらのSiCとB、 GとAL、Nはその合量
として少なくとも8zは必要で・最大60%程度まで存
在せしめうろことも可能であるが、合量が多すぎるとそ
れに伴なってZrB2の特性を損ってくることになるの
で通常は合量として15〜50%が適切である。
In addition, the total amount of these SiC, B, G, AL, and N is required to be at least 8z, and it is possible to have them present up to about 60%, but if the total amount is too large, ZrB2 will decrease accordingly. Since this will impair the properties, a total amount of 15 to 50% is usually appropriate.

尚、本発明焼結体は、これらの副成分以外の成分即ち残
部は実質的にZrB2からなるものであるがZrB2買
の特質を損なわない範囲でZrB2以外の成分例えばT
i87などが少6畳含まれていても勿論差支えはないが
、可及的少量にとどめることが望ましい。
In the sintered body of the present invention, components other than these subcomponents, i.e., the remainder, essentially consist of ZrB2, but components other than ZrB2, such as T, may be added to the extent that the characteristics of ZrB2 are not impaired.
Of course, there is no problem even if there is a small amount of i87 etc., but it is desirable to keep it to a small amount as much as possible.

また、副成分としても本発明焼結体の目的効果を木質的
に損なわない範囲において他の成分か含まれていても勿
論差支えはないか、不可避的不純物を含めて町及的少を
にとどめることが必要である。
In addition, it is of course possible to include other components as subcomponents as long as they do not impair the intended effect of the sintered body of the present invention in terms of wood quality, and should be kept to a minimum including unavoidable impurities. It is necessary.

本発明焼結体の組織は平均粒径IJ、11の粒状からな
るZr82 a細結晶が均一に分散しており。
In the structure of the sintered body of the present invention, Zr82a fine crystals consisting of 11 grains with an average grain size of IJ are uniformly dispersed.

そのZrB2結晶粒の回りや納品粒間に副成分であるA
LN、 Ba C,S、i(:が分布している微細な組
織構造を有していた。
A as a subcomponent around the ZrB2 crystal grains and between the delivered grains.
It had a fine structure in which LN, Ba C, S, i(:) were distributed.

(発明の効果) このようにして得られた本発明焼結体は、高密度、高硬
度、高強度であって、かつ#散性に優れた導電性の何食
できる焼結体であるため高温構造部材、高温耐食部材、
発熱体等の電気部材に好ましく適用可能であり、そのほ
かZrB2質複合焼結体の特質を発揮した種々の用途に
使用できるものであってその実用的価値は多大である。
(Effects of the Invention) The sintered body of the present invention thus obtained has high density, high hardness, high strength, and is a multi-edible sintered body with excellent conductivity and dispersibility. High temperature structural parts, high temperature corrosion resistant parts,
It can be preferably applied to electrical components such as heating elements, and can also be used in various other applications that exhibit the characteristics of the ZrB dual composite sintered body, so its practical value is great.

(実施例) 実施例1 Zr日日動粉末純度98%以上)、84G粉末(純度1
33%以上) 、 ALN粉末(純度99%以上)、及
び81C粉末(純度99%以上)を十分に混合粉砕すべ
く、ボットミルを使用しエタノール溶媒中でSiCボー
ルを用い3日間粉砕混合した。得られた粉末をエバポレ
ーターでアルコール除去して十分乾燥し、平均粒径0.
15gの粉末を得た。この粉末をラバープレスを用い2
000kg/ cn(で成形しアルゴン雰囲気下、23
00℃で2時間常圧焼成した。このようにして得られた
焼結体の特性を第工表に示す。
(Example) Example 1 Zr Nichido powder purity 98% or more), 84G powder (purity 1
33% or more), ALN powder (purity of 99% or more), and 81C powder (purity of 99% or more) were pulverized and mixed for three days using a bot mill using SiC balls in an ethanol solvent in order to sufficiently mix and grind them. The obtained powder was thoroughly dried by removing alcohol with an evaporator, and the average particle size was 0.
15 g of powder was obtained. Using a rubber press, apply this powder to
000kg/cn (formed under argon atmosphere, 23
It was baked at normal pressure at 00°C for 2 hours. The properties of the sintered body thus obtained are shown in Table 1.

実施例3 実施図工と同様のZrB2粉末、SiC粉末、B4C粉
末及びALN粉末をポットミルを使用しエタノール溶媒
下で51Cポールを用い3日間粉砕混合した。
Example 3 The same ZrB2 powder, SiC powder, B4C powder, and ALN powder as in the actual construction were pulverized and mixed in a pot mill for 3 days using a 51C pole in an ethanol solvent.

この粉末をエバポレーターでアルコール除去してト分乾
燥し、平均粒径0.15−の粉末を得た。この粉末を黒
鉛型に充填しアルゴン雰囲気下350kg/c+dに加
圧しながら2050℃で30分間加熱した。このように
して得られた焼結体の特性を第1表に示す。
Alcohol was removed from this powder using an evaporator and the powder was dried for several minutes to obtain a powder with an average particle size of 0.15. This powder was filled into a graphite mold and heated at 2050° C. for 30 minutes while pressurized to 350 kg/c+d in an argon atmosphere. Table 1 shows the properties of the sintered body thus obtained.

実施例2及び4乃至6ならびに比較例7乃全11所定の
配合原料を実施例1及び3に準じて調整し所定の焼成条
件で処理して得た各試料についての結果をJ1表に示す
Examples 2 and 4 to 6 and Comparative Examples 7 to All 11 Predetermined blended raw materials were prepared according to Examples 1 and 3 and processed under predetermined firing conditions. Results for each sample are shown in Table J1.

注1)#酸化性は酸素雰囲気下、 1300°CX 1
2hr11         の条件下での心事増加率
の程度性2)#熱衝撃性とは、電気炉中で各温度に2分
間急熱し水中に急冷した試料の曲げ強度を測定し強度が
急激に低下した試料の処理温度を示したものでΔTで表
わす。
Note 1) #Oxidizing property is under oxygen atmosphere, 1300°CX 1
2) #Thermal shock resistance refers to the bending strength of samples that were rapidly heated to each temperature for 2 minutes in an electric furnace and then rapidly cooled in water. The processing temperature is expressed as ΔT.

注3)’;E気抵抗抵抗4端子法で測定した値を示す。Note 3)': Indicates the value measured using the 4-terminal resistance method.

Claims (1)

【特許請求の範囲】 1、ZrB_2を主成分とし、重量%で、1〜15%の
SiC、5〜20%のB_4C及び3〜40%のALN
をそれぞれ含むことを特徴とする導電性ZrB_2質複
合焼結体。 2、SiCとB_4CとALNの合量が15〜50%で
ある特許請求の範囲第1項記載の焼結体。
[Claims] 1. ZrB_2 as the main component, 1 to 15% SiC, 5 to 20% B_4C, and 3 to 40% ALN in weight%
A conductive ZrB_2 composite sintered body characterized by containing the following. 2. The sintered body according to claim 1, wherein the total amount of SiC, B_4C, and ALN is 15 to 50%.
JP59193969A 1984-07-10 1984-09-18 Electroconductive zrb2 composite sintered body Granted JPS6172688A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59193969A JPS6172688A (en) 1984-09-18 1984-09-18 Electroconductive zrb2 composite sintered body
US06/751,528 US4636481A (en) 1984-07-10 1985-07-03 ZrB2 composite sintered material
EP85108300A EP0170889B1 (en) 1984-07-10 1985-07-04 Zrb2 composite sintered material
DE8585108300T DE3569365D1 (en) 1984-07-10 1985-07-04 Zrb2 composite sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193969A JPS6172688A (en) 1984-09-18 1984-09-18 Electroconductive zrb2 composite sintered body

Publications (2)

Publication Number Publication Date
JPS6172688A true JPS6172688A (en) 1986-04-14
JPS6339542B2 JPS6339542B2 (en) 1988-08-05

Family

ID=16316780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193969A Granted JPS6172688A (en) 1984-07-10 1984-09-18 Electroconductive zrb2 composite sintered body

Country Status (1)

Country Link
JP (1) JPS6172688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230674A (en) * 1986-03-29 1987-10-09 黒崎窯業株式会社 Zrb2 composite sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166429U (en) * 1987-04-20 1988-10-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230674A (en) * 1986-03-29 1987-10-09 黒崎窯業株式会社 Zrb2 composite sintered body

Also Published As

Publication number Publication date
JPS6339542B2 (en) 1988-08-05

Similar Documents

Publication Publication Date Title
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
EP0170864B1 (en) Zrb2 composite sintered material
US5773733A (en) Alumina-aluminum nitride-nickel composites
EP0170889B1 (en) Zrb2 composite sintered material
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JPS6172688A (en) Electroconductive zrb2 composite sintered body
JPS6121979A (en) Zrb2 sintered body
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS61286268A (en) Electroconductively variable zrb2 base composite sintered body
JPS6144768A (en) High strength boride sintered body
JPS6355165A (en) Tib2 base sintering material and manufacture
JPS6337068B2 (en)
JPS62288171A (en) Zrb2 base composite sintered body
JPS6148484A (en) Zrb2 base composite sintered body
JPS6144769A (en) High strength zrb2 composite sintered body
JPS6172687A (en) High strength zrb2 base sintered body
JPS62119168A (en) High anticorrosion high thermal shock resistance zrb2 base composite sintered body
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JPS6339544B2 (en)
JPS63147867A (en) Manufacture of silicon nitride sintered body
JPS6337066B2 (en)
JPS6212672A (en) High strength zrb2 base composite sintered body
JPS6126570A (en) Boride sintered body and manufacture
JPH06247771A (en) Boron nitride composite material and its production
JPS63252969A (en) Composite ceramic sintered body