JPS62230674A - Zrb2 composite sintered body - Google Patents

Zrb2 composite sintered body

Info

Publication number
JPS62230674A
JPS62230674A JP61072086A JP7208686A JPS62230674A JP S62230674 A JPS62230674 A JP S62230674A JP 61072086 A JP61072086 A JP 61072086A JP 7208686 A JP7208686 A JP 7208686A JP S62230674 A JPS62230674 A JP S62230674A
Authority
JP
Japan
Prior art keywords
weight
sic
sintered body
zrb2
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072086A
Other languages
Japanese (ja)
Inventor
潤 菅原
細川 周明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP61072086A priority Critical patent/JPS62230674A/en
Publication of JPS62230674A publication Critical patent/JPS62230674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属特に溶鋼や高温金属に対する耐食性
や、高温強度、耐クリープ性、耐摩耗性等の機械的性質
に優れ、さらに導電性等の優れた性質を有しており、溶
鋼等の溶融金属用保護管、るつぼ、蒸発源用材料、ロー
ラー、ノズル、ダイス、吹き込みパイプ、攪拌羽、回転
軸、腐蝕保護リング、内張リタイル、発熱体、電極等に
広く適用できるZrB2複合焼結体に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention has excellent mechanical properties such as corrosion resistance to molten metals, particularly molten steel and high-temperature metals, high-temperature strength, creep resistance, and abrasion resistance, as well as electrical conductivity. It has excellent properties such as protective tubes for molten metal such as molten steel, crucibles, evaporation source materials, rollers, nozzles, dies, blowing pipes, stirring blades, rotating shafts, corrosion protection rings, inner retiles, This invention relates to a ZrB2 composite sintered body that can be widely applied to heating elements, electrodes, etc.

〔従来の技術〕[Conventional technology]

溶融金属や高温金属に接触する部材を形成するセラミッ
クスとしては、従来アルミナ、マグネシア、ジルコニア
等の高融点酸化物が使用されてきた。
Conventionally, high melting point oxides such as alumina, magnesia, and zirconia have been used as ceramics for forming members that come into contact with molten metal or high-temperature metal.

しかしながら、かかる酸化物系セラミックスからなる部
材は、耐火性においては一般的に優れているものの、高
温強度やクリープ特性、摩耗特性等の機械的性質におい
て劣り、また、耐熱衝撃性の点からあまり緻密質の材料
は使用できないため、耐食性においても、充分なものが
得られないという欠点があった。
However, although members made of such oxide ceramics generally have excellent fire resistance, they are inferior in mechanical properties such as high-temperature strength, creep characteristics, and wear characteristics, and they are also not dense enough in terms of thermal shock resistance. Since it is not possible to use high-quality materials, there is a drawback in that sufficient corrosion resistance cannot be obtained.

このため、例えば特開昭60−21889号公報、特開
昭60−46987号公報に記載されているように、溶
融金属やスラグ等に対して優れた耐食性を有するZrB
z質セラミックスの適用が試みられたが、その実用化に
は程遠いものがある。その原因はZrB2自体の難焼結
性と耐酸化特性の悪さによるもので、この欠点を解消す
べくクロム、ニッケル等の金属、ZrO2、Aj!20
3等の酸化物、TaN、BN等の窒化物の添加や、米国
特許第3705112号に開示されているように、Mo
Si2等の珪化物、SiC,B÷C等の炭化物やこれら
の組合せを焼結助剤や副成分として添加することによる
実現化が試みられている。とくに、MoSi2の添加に
際して、MoSi2 +84Cの形で添加することが米
国特許第3325300号に示されている。
For this reason, as described in, for example, JP-A-60-21889 and JP-A-60-46987, ZrB has excellent corrosion resistance against molten metal, slag, etc.
Attempts have been made to apply Z-quality ceramics, but their practical application is far from practical. The reason for this is that ZrB2 itself has poor sinterability and poor oxidation resistance.To overcome these drawbacks, metals such as chromium, nickel, ZrO2, Aj! 20
The addition of oxides such as No. 3, nitrides such as TaN, BN, etc., and the addition of Mo.
Attempts have been made to realize this by adding silicides such as Si2, carbides such as SiC, B÷C, and combinations thereof as sintering aids or subcomponents. In particular, US Pat. No. 3,325,300 teaches that MoSi2 is added in the form of MoSi2 +84C.

また、米国特許第3775137号にSiCの添加、米
国特許第3325300号にMoSi2 +SiC+B
4 Cの添加、特開昭61−21980号公報にSiC
+B+C(7)添加が開示されている。これらのSiC
添加、SiC+MoSi2添加、SiC+84G添加等
はそれぞれSiC等の添加により耐酸化性の向上を狙っ
たものである。
In addition, the addition of SiC to US Patent No. 3,775,137, and the addition of MoSi2 + SiC + B to US Patent No. 3,325,300.
4 Addition of C, SiC in JP-A No. 61-21980
+B+C (7) addition is disclosed. These SiC
Addition, SiC+MoSi2 addition, SiC+84G addition, etc. are aimed at improving oxidation resistance by adding SiC and the like.

また、特開昭61−21979号にSi C+ B N
 (D添加が開示されているが、この系もSiCによる
耐酸化性の向上とBNによる耐熱衝撃抵抗の向上を目的
としている。
Moreover, Si C+ B N
(Addition of D is disclosed, but this system also aims to improve oxidation resistance by SiC and thermal shock resistance by BN.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの焼結助剤や副成分の添加によってZrBz自体
の難焼結性と耐酸化性の問題はかなり改善され、とくに
MoSi2は5i02皮膜の生成による耐酸化性の向上
が認められているが、その耐酸化性は充分ではなく、ま
たMoSi2自身は溶融金属に侵され易<、ZrB’2
焼結体の溶融金属に対する耐食性を悪くするという問題
がある。また、他のSiC。
By adding these sintering aids and subcomponents, the problems of difficulty in sintering and oxidation resistance of ZrBz itself have been considerably improved, and in particular, it has been recognized that MoSi2 has improved oxidation resistance due to the formation of a 5i02 film. Its oxidation resistance is not sufficient, and MoSi2 itself is easily attacked by molten metal.
There is a problem in that the corrosion resistance of the sintered body to molten metal deteriorates. Also, other SiC.

84C等の溶融金属に対する耐食性はあまり良くなく、
特に溶鋼に対しては非常に激しく侵食される。すなわち
、耐酸化性を向上するために、これらの炭化物、珪化物
を添加することによりZrB2自身の持つ溶融金属に対
する耐食性が劣化してしまうという問題を生じる。
Corrosion resistance against molten metals such as 84C is not very good,
In particular, it is attacked very violently by molten steel. That is, adding these carbides and silicides to improve oxidation resistance causes a problem in that the corrosion resistance of ZrB2 itself to molten metal deteriorates.

また、この耐食性を維持するために、がかる添加物を少
量に抑えようとすると、酸化抵抗が低下し、また、焼結
性も阻害されて耐食性自身も低下する。
Furthermore, if an attempt is made to suppress the amount of such additives to a small amount in order to maintain this corrosion resistance, the oxidation resistance will decrease, and the sinterability will also be inhibited, resulting in a decrease in the corrosion resistance itself.

本発明における解決すべき課題は、ZrB2系セラミッ
クスにおけるかかる耐酸化性と溶融金属に対する耐食性
という相対する2つの問題の同時解決にある。
The problem to be solved by the present invention is to simultaneously solve two opposing problems of oxidation resistance and corrosion resistance to molten metal in ZrB2 ceramics.

c問題点を解決するための手段〕 本発明は、ZrB2に添加するSiCの溶融金属、特に
溶鋼に対する耐食性をAl化合物を添加することによっ
て向上せしめ、これにより耐酸化性に優れ、また耐食性
に優れたZrB2複合焼結体を得るものである。
c) Means for Solving Problems] The present invention improves the corrosion resistance of SiC added to ZrB2 against molten metal, especially molten steel, by adding an Al compound, thereby providing excellent oxidation resistance and corrosion resistance. A ZrB2 composite sintered body is obtained.

ここでいうAffi化合物としては、窒化アルミニウム
、炭化アルミニウム、硼化アルミニウム、酸化アルミニ
ウム等の1種又は数種が住戸できるが、特に窒化アルミ
ニウム(AlN)が効果的である。
The Affi compound mentioned here can be one or more of aluminum nitride, aluminum carbide, aluminum boride, aluminum oxide, etc., and aluminum nitride (AlN) is particularly effective.

また、このAJ化合物の添加は、ZrB2自体の焼結性
を向上し、緻密な焼結体が得られるので耐食性1強度、
耐摩耗性等が向上する。
In addition, the addition of this AJ compound improves the sinterability of ZrB2 itself, and a dense sintered body can be obtained, so it has corrosion resistance of 1 strength,
Wear resistance etc. are improved.

添加するSiCとAl化合物の合量は、全量の4重量%
より少ないと焼結性と耐酸化性が悪くなり、また40重
量%以上では溶融金属に対する耐食性が不充分になる。
The total amount of SiC and Al compounds to be added is 4% by weight of the total amount.
If it is less than 40% by weight, the sinterability and oxidation resistance will be poor, and if it is more than 40% by weight, the corrosion resistance against molten metal will be insufficient.

上記のSiCとAl化合物の含量の中、AJ化合物の量
の割合が5重量%より少ないと溶融金属に対する耐食性
の向上の効果が少なく、また741%以上′多いと耐酸
化性に悪影響を与える。
If the proportion of the AJ compound in the above-mentioned contents of SiC and Al compounds is less than 5% by weight, the effect of improving the corrosion resistance against molten metal will be small, and if it is more than 741%, it will adversely affect the oxidation resistance.

このSiCとAj’化合物において、好ましい範囲は、
SiCとAl化合物の合量が10〜30重量%で、AA
’化合物が合量中10〜50重量%の場合である。
In this SiC and Aj' compound, the preferred range is:
The total amount of SiC and Al compounds is 10 to 30% by weight, and AA
'This is a case where the amount of the compound is 10 to 50% by weight based on the total amount.

SiCとAJ化合物以外の残部は実質的にZrB2から
なるが、このZrB2の内10重量%までは他の硼化物
、すなわち硼化チタン、硼化クロム、硼化モリブデン、
硼化タングステン、硼化ニオブ、硼化ランタン、硼化イ
ツトリウム、硼化ハフニウム。
The remainder other than SiC and AJ compounds consists essentially of ZrB2, but up to 10% by weight of this ZrB2 is composed of other borides, such as titanium boride, chromium boride, molybdenum boride,
Tungsten boride, niobium boride, lanthanum boride, yttrium boride, hafnium boride.

硼化ウラニウム等の硼化物で置換することができる。ま
た、少量の炭素は焼結性を促進するので、入っていても
よいが、5重量%以下が望ましい。
It can be replaced with a boride such as uranium boride. Further, a small amount of carbon may be included since it promotes sinterability, but it is preferably 5% by weight or less.

原料粉末の粒径は焼結性、耐食性や耐酸化性の問題から
小さい粒径が望ましく、平均粒径10μm以下、特に5
μm以下が好ましい。
The particle size of the raw material powder is preferably small from the viewpoint of sinterability, corrosion resistance, and oxidation resistance, and the average particle size is 10 μm or less, especially 5.
It is preferably less than μm.

前記Al化合物の添加により、溶融金属、特に溶鋼に対
する耐食性が向上することが実験的に確認されている。
It has been experimentally confirmed that the addition of the Al compound improves corrosion resistance to molten metal, especially molten steel.

その原因については、明らかではないが、A7!化合物
の添加により反応生成膜の組織形態が変化したことによ
ることが考えられる。
The cause is not clear, but A7! This is thought to be due to a change in the organizational morphology of the reaction product film due to the addition of the compound.

すなわち、この変化した反応生成膜が特に溶鋼に対して
優れた耐食性を示し、SiCと溶鋼との直接接触を阻止
する、又は反応生成膜の形態が非常に緻密で物理的にS
iCと溶鋼との直接接触を阻止するなどして、SiCが
分解して溶鋼中に溶解するのを阻止する機能を増大する
と考えられる。
In other words, this changed reaction product film exhibits excellent corrosion resistance, especially against molten steel, and prevents direct contact between SiC and molten steel, or the form of the reaction product film is so dense that it physically resists S.
It is thought that by preventing direct contact between iC and molten steel, the function of preventing SiC from being decomposed and dissolved into molten steel is increased.

また、このAl化合物の内、AlNはSiCと全領域で
固溶することが知られており、SiC中への均一な固溶
がこの効果を増大しているものと考えられる。実際、分
析電子顕微鏡(EPMA)の観察によると、AlNとS
iCはZrB2以外の同一の領域に均一に分布している
のが分かる。
Furthermore, among these Al compounds, AlN is known to form a solid solution with SiC over the entire region, and it is thought that the uniform solid solution in SiC increases this effect. In fact, according to observation using an analytical electron microscope (EPMA), AlN and S
It can be seen that iC is uniformly distributed in the same region except for ZrB2.

本発明は、ZrB2複合焼結体の製造に当たって、原料
混合物は通常これら3種の粉末により調製するが、Aj
!NのようにSiCと固溶するものは粉末の合成段階で
5iC−Aj!Nの固溶体として合成された粉末を混合
してもよい。
In the present invention, when manufacturing a ZrB2 composite sintered body, the raw material mixture is usually prepared using these three types of powder, but Aj
! Substances such as N that form a solid solution with SiC are 5iC-Aj! during the powder synthesis stage! A powder synthesized as a solid solution of N may be mixed.

焼結はこれらの混合物をたとえば黒鉛容器に充填し、真
空、アルゴン、ヘリウム、−酸化炭素等の不活性又は還
元雰囲気で加圧焼結もできるが、Al化合物の添加によ
り、焼結性が向上しているので常圧焼結が可能である。
Sintering can also be carried out by filling a graphite container with a mixture of these materials and performing pressure sintering in an inert or reducing atmosphere such as vacuum, argon, helium, or carbon oxide, but the addition of an Al compound improves sinterability. Because of this, pressureless sintering is possible.

このため、複雑な形状物も容易に焼結可能で、機械加工
に費用のかかるこのようなセラミックスにおいては、経
済的に非常に有利である。
Therefore, even complicated shapes can be easily sintered, which is very economically advantageous for ceramics that are expensive to machine.

焼結温度は1700〜2200℃で、焼結時間は1〜1
0時間が好ましい。
Sintering temperature is 1700-2200℃, sintering time is 1-1
0 hours is preferred.

またこのZrB2複合焼結体は、SiCとAl化合物が
形成する粒界相が比較的電気抵抗が低いため、ZrB2
の導電性をあまり阻害せず、放電加工が非常に容易に行
える。このため、複雑形状の加工にも非常に有利であり
、また耐食性の電極や発熱体としても使用できる。
In addition, this ZrB2 composite sintered body has a relatively low electrical resistance in the grain boundary phase formed by SiC and Al compounds.
Electrical discharge machining can be performed very easily without disturbing the electrical conductivity of the material. Therefore, it is very advantageous for processing complex shapes, and can also be used as a corrosion-resistant electrode or heating element.

以下、実施例によって本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 平均粒径3μmのZrB2粉末82重量部、平均粒径0
.4 μmのSiC粉末14重量部、平均粒径1μmの
AJN粉末4重量部からなる混合粉末にノボラック樹脂
2重量部を加え、アセトン中でSiCボールミルを用い
、50時間粉砕混合した。このスラリーを乾燥造粒し、
静水圧3000kg/c+Jで成形した。
[Example 1] 82 parts by weight of ZrB2 powder with an average particle size of 3 μm, average particle size of 0
.. 2 parts by weight of novolac resin was added to a mixed powder consisting of 14 parts by weight of SiC powder of 4 μm and 4 parts by weight of AJN powder of 1 μm in average particle size, and the mixture was pulverized and mixed in acetone using a SiC ball mill for 50 hours. This slurry is dried and granulated,
It was molded under a hydrostatic pressure of 3000 kg/c+J.

得られた成形体を静ガス中で昇温し、2000℃で2時
間焼結した。得られた焼結体の嵩密度は98.3%で3
点曲げ強度は61kg/mm2であった。
The obtained molded body was heated in a static gas atmosphere and sintered at 2000° C. for 2 hours. The bulk density of the obtained sintered body was 98.3% and 3
The point bending strength was 61 kg/mm2.

また、この試料から角棒状サンプルを切り出して溶鋼浸
漬試験、コバルト浸漬試験に供した。溶鋼浸漬試験は、
高周波誘導炉を用い、1600℃の溶鋼中に5時間浸漬
し、溶損スピードを測定した。
In addition, a square bar-shaped sample was cut out from this sample and subjected to a molten steel immersion test and a cobalt immersion test. Molten steel immersion test
Using a high frequency induction furnace, the pieces were immersed in molten steel at 1600°C for 5 hours, and the erosion speed was measured.

この試験による溶損スピードは0.05m+s/hrで
あった。コバルト浸漬試験は抵抗炉を用い、Arガス中
で1500℃×2時間浸漬し、溶損スピードを測定した
。この試験による溶損スピードは0.1mm/hrであ
った。
The erosion speed according to this test was 0.05 m+s/hr. In the cobalt immersion test, a resistance furnace was used, and the material was immersed in Ar gas at 1500° C. for 2 hours, and the erosion speed was measured. The erosion speed in this test was 0.1 mm/hr.

また、酸化試験としては、乾燥空気中1200℃で10
時間保持後、重量変化を測定した。その結果、酸化重量
は0.5mg/aJであった。
In addition, as an oxidation test, 10
After holding for a period of time, the weight change was measured. As a result, the oxidized weight was 0.5 mg/aJ.

〔比較例1〕 平均粒径3μmのZrB2粉末82重量部、平均粒径0
.4μmのSiC粉末18重量部からなる混合粉末をア
セトン中でSiCボールミルを用い、50時間粉砕混合
した。このスラリーを乾燥造粒し、黒鉛型に充填して加
圧圧力400kg/cd、焼結温度2050℃、保持時
間1時間で加圧焼結した。得られた焼結体の嵩密度は9
7.8%で3点曲げ強度は42kg/mm2であった・ また、この試料から角棒状サンプルを切り出して溶鋼浸
漬試験、コバルト浸漬試験に供した。溶鋼浸漬試験は、
高周波誘導炉を用い、1600℃の溶鋼中に5時間浸漬
し、溶損スピードを測定した。
[Comparative Example 1] 82 parts by weight of ZrB2 powder with an average particle size of 3 μm, average particle size of 0
.. A mixed powder consisting of 18 parts by weight of 4 μm SiC powder was pulverized and mixed in acetone for 50 hours using a SiC ball mill. This slurry was dried and granulated, filled into a graphite mold, and pressure sintered at a pressure of 400 kg/cd, a sintering temperature of 2050° C., and a holding time of 1 hour. The bulk density of the obtained sintered body was 9
At 7.8%, the three-point bending strength was 42 kg/mm2. A square rod-shaped sample was cut out from this sample and subjected to a molten steel immersion test and a cobalt immersion test. Molten steel immersion test
Using a high frequency induction furnace, the pieces were immersed in molten steel at 1600°C for 5 hours, and the erosion speed was measured.

この試験による溶損スピードは0.5mm/hrであっ
た。
The erosion speed according to this test was 0.5 mm/hr.

コバルト浸漬試験は抵抗炉を用い、Arガス中で150
0℃×2時間浸漬し、溶tjI溶損スピードを測定した
。この試験による溶損スピードは0.8m+m/hrで
あった。
The cobalt immersion test uses a resistance furnace at 150°C in Ar gas.
It was immersed at 0°C for 2 hours, and the melting speed of tjI was measured. The erosion speed according to this test was 0.8 m+m/hr.

また、酸化試験としては、乾燥空気中1200℃で10
時間保持後、重量変化を測定した。その結果、酸化重量
は1.0mg/−であった。
In addition, as an oxidation test, 10
After holding for a period of time, the weight change was measured. As a result, the oxidized weight was 1.0 mg/-.

〔実施例2〕 平均粒径3μ−のZrB2粉末50〜97重量部、平均
粒径0.4μ端のSiC粉末2〜40重量部、平均粒径
1μmのAlN粉末1〜10重量部からなる混合粉末に
ノボラック樹脂2重量部を加え、実施例1と同様の方法
で成形・焼結を行い、焼結体を得た。
[Example 2] Mixture consisting of 50 to 97 parts by weight of ZrB2 powder with an average particle size of 3 μm, 2 to 40 parts by weight of SiC powder with an average particle size of 0.4 μm, and 1 to 10 parts by weight of AlN powder with an average particle size of 1 μm. 2 parts by weight of novolak resin was added to the powder, and molding and sintering were performed in the same manner as in Example 1 to obtain a sintered body.

実施例の焼結体丸1〜13の嵩密度1曲げ強度。Bulk density 1 bending strength of sintered bodies 1 to 13 of Examples.

溶鋼浸漬試験結果、#I化試験結果を第1表に示した。Table 1 shows the results of the molten steel immersion test and #I conversion test.

試験条件は実施例1と同一条件とした。The test conditions were the same as in Example 1.

また、比較例として比較例1と同様の方法で成形・焼結
した試料を−1〜3を第2表に示した。
In addition, as comparative examples, samples -1 to -3 that were molded and sintered in the same manner as comparative example 1 are shown in Table 2.

第  1  表 第  2  表 ※は、ZrB2以外の組成の重量%を示す。Table 1 Table 2 * indicates the weight percent of the composition other than ZrB2.

〔実施例3〕 平均粒径3μmのZrB2粉末82重量部、平均粒径0
.4μ−のSiC粉末14重量部、11化合物粉末4重
量部からなる混合粉末にノボラック樹脂2重量部を加え
、実施例1と同様の方法で焼結体を得た。このAl化合
物の種類と嵩密度、溶損スピード、酸化増量を第3表に
示した。
[Example 3] 82 parts by weight of ZrB2 powder with an average particle size of 3 μm, average particle size of 0
.. A sintered body was obtained in the same manner as in Example 1 by adding 2 parts by weight of novolak resin to a mixed powder consisting of 14 parts by weight of 4μ-SiC powder and 4 parts by weight of 11 compound powder. Table 3 shows the type, bulk density, erosion speed, and oxidation weight gain of this Al compound.

第  3  表 〔実施例4〕 平均粒径3μmのZrB2粉末77重量部、平均粒径5
μmのTi825重量部、平均粒径0.4μmのSiC
粉末14重量部、平均粒径1μmのAJN粉末4重量部
からなる混合粉末にノボラック樹脂2重量部を加え、実
施例1と同様の方法で焼結体を得た。得られた焼結体の
嵩密度は理論密度98.0%で3点曲げ強度は70.1
kg/ff1m”であった。また、溶鋼中での溶損スピ
ードは0.08m+w/hrであった。
Table 3 [Example 4] 77 parts by weight of ZrB2 powder with an average particle size of 3 μm, average particle size of 5
μm Ti 825 parts by weight, average particle size 0.4 μm SiC
A sintered body was obtained in the same manner as in Example 1 by adding 2 parts by weight of novolac resin to a mixed powder consisting of 14 parts by weight of powder and 4 parts by weight of AJN powder having an average particle size of 1 μm. The bulk density of the obtained sintered body was 98.0% of the theoretical density, and the three-point bending strength was 70.1.
kg/ff1m''.Furthermore, the melting speed in molten steel was 0.08m+w/hr.

〔発明の効果〕〔Effect of the invention〕

本発明の焼結体は、ZrBz自体が有する高温強度、耐
クリープ性、耐摩耗性等における優れた機械的性質を何
等害することなく、焼結性と共に耐酸化性と溶融金属に
対する耐食性を向上したものである。
The sintered body of the present invention has improved sinterability, oxidation resistance, and corrosion resistance against molten metal without impairing the excellent mechanical properties of ZrBz itself such as high temperature strength, creep resistance, and wear resistance. It is something.

Claims (1)

【特許請求の範囲】 1、SiCとAl化合物の合量が4〜40重量%で、A
l化合物の量がSiCとAl化合物の合量の5〜70重
量%であり、SiCとAl化合物以外の残部が実質的に
ZrB_2からなることを特徴とするZrB_2複合焼
結体。 2、SiCとAl化合物の合量が10〜30重量%であ
ることを特徴とする特許請求の範囲第1項記載のZrB
_2複合焼結体。 3、Al化合物の合量がSiCとAl化合物の合量の1
0〜50重量%であることを特徴とする特許請求の範囲
第1項記載のZrB_2複合焼結体。 4、Al化合物が窒化アルミニウム、炭化アルミニウム
、硼化アルミニウム、酸化アルミニウムの1種又は数種
であることを特徴とする特許請求の範囲第1項記載のZ
rB_2複合焼結体。 5、残部に5重量%以下の炭素を含むことを特徴とする
特許請求の範囲第1項記載のZrB_2複合焼結体。
[Claims] 1. The total amount of SiC and Al compounds is 4 to 40% by weight, and A
A ZrB_2 composite sintered body, characterized in that the amount of the L compound is 5 to 70% by weight of the total amount of SiC and Al compounds, and the balance other than the SiC and Al compounds consists essentially of ZrB_2. 2. ZrB according to claim 1, characterized in that the total amount of SiC and Al compound is 10 to 30% by weight
_2 Composite sintered body. 3. The total amount of Al compounds is 1 of the total amount of SiC and Al compounds
The ZrB_2 composite sintered body according to claim 1, characterized in that the ZrB_2 composite sintered body contains 0 to 50% by weight. 4. Z according to claim 1, wherein the Al compound is one or more of aluminum nitride, aluminum carbide, aluminum boride, and aluminum oxide.
rB_2 composite sintered body. 5. The ZrB_2 composite sintered body according to claim 1, wherein the balance contains 5% by weight or less of carbon.
JP61072086A 1986-03-29 1986-03-29 Zrb2 composite sintered body Pending JPS62230674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072086A JPS62230674A (en) 1986-03-29 1986-03-29 Zrb2 composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072086A JPS62230674A (en) 1986-03-29 1986-03-29 Zrb2 composite sintered body

Publications (1)

Publication Number Publication Date
JPS62230674A true JPS62230674A (en) 1987-10-09

Family

ID=13479237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072086A Pending JPS62230674A (en) 1986-03-29 1986-03-29 Zrb2 composite sintered body

Country Status (1)

Country Link
JP (1) JPS62230674A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172688A (en) * 1984-09-18 1986-04-14 旭硝子株式会社 Electroconductive zrb2 composite sintered body
JPS61261271A (en) * 1985-05-14 1986-11-19 新日本製鐵株式会社 Refractories for molten metal
JPS61286268A (en) * 1985-06-14 1986-12-16 旭硝子株式会社 Electroconductively variable zrb2 base composite sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172688A (en) * 1984-09-18 1986-04-14 旭硝子株式会社 Electroconductive zrb2 composite sintered body
JPS61261271A (en) * 1985-05-14 1986-11-19 新日本製鐵株式会社 Refractories for molten metal
JPS61286268A (en) * 1985-06-14 1986-12-16 旭硝子株式会社 Electroconductively variable zrb2 base composite sintered body

Similar Documents

Publication Publication Date Title
US4735923A (en) Erosion-resistant silicon carbide composite sintered materials
JPH07232959A (en) Alumina-based ceramics and its production
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPS6330366A (en) Manufacture of silicon nitride-silicon carbide base composite material
JPS63225579A (en) Ceramic tool material
JPS62230674A (en) Zrb2 composite sintered body
US6534428B2 (en) Titanium diboride sintered body with silicon nitride as a sintering aid
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JP2004339591A (en) W-Ti-C TYPE COMPOSITE BODY AND ITS MANUFACTURING METHOD
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP2000053463A (en) Jig for can manufacturing
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
EP0511840B1 (en) Mullite/boron nitride composite break ring
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JPH0545548B2 (en)
JPH03126659A (en) Superhard ceramics
JPH0710747B2 (en) Boride-zirconium oxide-carbonitride ceramic materials
JPS597669B2 (en) Metal boride-zirconium oxide ceramic materials
JPH10231177A (en) Fiber-reinforced silicon nitride sintered body
JPH09278525A (en) Boride ceramic and its production
JP2005297132A (en) Aluminum nitride group cermet tool
JPS63230569A (en) Tic sintered body and manufacture