JPH0710747B2 - Boride-zirconium oxide-carbonitride ceramic materials - Google Patents

Boride-zirconium oxide-carbonitride ceramic materials

Info

Publication number
JPH0710747B2
JPH0710747B2 JP2160842A JP16084290A JPH0710747B2 JP H0710747 B2 JPH0710747 B2 JP H0710747B2 JP 2160842 A JP2160842 A JP 2160842A JP 16084290 A JP16084290 A JP 16084290A JP H0710747 B2 JPH0710747 B2 JP H0710747B2
Authority
JP
Japan
Prior art keywords
boride
zirconium oxide
carbonitride
weight
total amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2160842A
Other languages
Japanese (ja)
Other versions
JPH0450173A (en
Inventor
忠彦 渡辺
一久 菖蒲
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2160842A priority Critical patent/JPH0710747B2/en
Priority to US07/716,928 priority patent/US5143869A/en
Publication of JPH0450173A publication Critical patent/JPH0450173A/en
Publication of JPH0710747B2 publication Critical patent/JPH0710747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides

Description

【発明の詳細な説明】 本発明は、耐摩材料、切削工具材料として好適な高密度
を有する新規な金属ホウ化物基セラミックス燒結体に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a novel metal boride-based ceramic sintered body having a high density suitable as a wear resistant material and a cutting tool material.

〈従来の技術〉 これまで、耐摩材料、切削工具材料として、二ホウ化チ
タンをマトリックスとし、ZrO2を添加燒結したセラミッ
クス(特許1236549号)や、さらに立方晶炭化物を添加
燒結したセラミックス(特願昭57-012965号)が、本発
明者らによって提案されており、これは特に靱性を必要
とする耐摩材に適している。しかし、工業の発達の顕著
な近年、易燒結性の追求とさらなる物性の向上が要求さ
れている。
<Prior art> Until now, as a wear-resistant material and a cutting tool material, titanium diboride was used as a matrix and ZrO 2 was added and sintered (Patent No. 1236549), and cubic ceramic was further added and sintered (Special Application No. 57-012965) has been proposed by the present inventors, which is particularly suitable for a wear resistant material that requires toughness. However, in recent years when industrial development is remarkable, pursuit of easy sinterability and further improvement of physical properties are required.

そこで、本発明者らは、ホウ化金属−酸化ジルコニウム
−金属炭化物系セラミックスの特性改善を更にするため
に研究を重ねた結果、金属炭化物の代わりに金属炭窒化
物を添加することにより一層の特性の改善が可能である
ことを見出し、この知見に基づいて本発明をなすに至っ
たものである。
Therefore, the inventors of the present invention have conducted research to further improve the characteristics of the metal boride-zirconium oxide-metal carbide based ceramics, and as a result, added metal carbonitrides instead of metal carbides to further improve the characteristics. The present invention has been completed based on this finding.

〈発明が解決しようとする課題〉 本発明の目的は、耐摩工具や切削工具として、広範囲に
使用できる機械的性質のすぐれた易燒結な金属ホウ化物
基セラミックスを提供することにある。
<Problems to be Solved by the Invention> An object of the present invention is to provide an easily sinterable metal boride-based ceramic having excellent mechanical properties, which can be widely used as a wear resistant tool or a cutting tool.

〈課題を解決するための手段〉 上述したように、本発明者らは、金属ホウ化物系セラミ
ックスの燒結性ならびに得られたセラミックスの機械的
特性の改善をするため、金属炭化物ではなく、炭化物に
さらに窒素を固溶させた金属炭窒化物を添加剤として用
いると、燒結温度を低くできる上、抗折力や靱性が向上
することを確かめ、本発明をなすに至っている。
<Means for Solving the Problems> As described above, the inventors of the present invention, in order to improve the sinterability of the metal boride-based ceramics and the mechanical properties of the obtained ceramics, are not metal carbides but carbides. Further, it has been confirmed that the use of a metal carbonitride having a solid solution of nitrogen as an additive can lower the sintering temperature and can improve the transverse rupture strength and the toughness, and have completed the present invention.

即ち、本発明は、基本的には、(A)MB2,M2B5型ホウ
化物(Mは金属を示す)の1種以上に、(B)ZrO2を全
量に対し10〜70%添加した混合粉末を基本成分とし、こ
れに、(C)Ti(C,N),Zr(C,N)の1種以上を2〜70
重量%添加したホウ化物−酸化ジルコニウム−炭窒化物
系セラミックス材料に係わるものである。
That is, according to the present invention, basically, 10 to 70% of (B) ZrO 2 is added to one or more of (A) MB 2 and M 2 B 5 type boride (M represents a metal). The added mixed powder is used as a basic component, and one or more kinds of (C) Ti (C, N) and Zr (C, N) are added to this in an amount of 2 to 70%.
The present invention relates to a boride-zirconium oxide-carbonitride-based ceramic material added in a weight percentage.

さらに具体的に説明すると、上記(A),(B)及び
(C)の3成分系の混合物を真空燒結してホウ化物−酸
化ジルコニウム−炭窒化物系セラミックス材料を形成す
る場合には、その燒結温度を1700℃以上にする必要があ
る。燒結温度がこれよりも低い場合には、所期の抗折力
や靱性が得られない(表1のNo.1参照)。
More specifically, in the case of forming a boride-zirconium oxide-carbonitride ceramic material by vacuum-sintering the ternary mixture of (A), (B) and (C), The sintering temperature must be 1700 ° C or higher. If the sintering temperature is lower than this, the desired transverse rupture strength and toughness cannot be obtained (see No. 1 in Table 1).

また、上記(A)のMB2やM2B5の六方晶系ホウ化物の2
種以上に(B)及び(C)の成分を混合し普通燒結する
と、(Ti,Ta)B2や(Ti,Zr)B2のような固溶体を形成す
る化学反応を生じ、その燒結温度を一層低くすることが
できる(表1のNo.8及びNo.9参照)。一方、上記
(A),(B)及び(C)の混合物をホットプレスによ
り燒結する場合にも、その燒結温度を一層低くすること
ができる。
In addition, 2 ) of the hexagonal boride of MB 2 and M 2 B 5 of (A) above
When the components (B) and (C) are mixed with each other in a quantity of more than one and normally sintered, a chemical reaction that forms a solid solution such as (Ti, Ta) B 2 or (Ti, Zr) B 2 occurs, and the sintering temperature is changed. It can be made even lower (see No. 8 and No. 9 in Table 1). On the other hand, when the mixture of (A), (B) and (C) is sintered by hot pressing, the sintering temperature can be further lowered.

本発明の主成分である上記(A)成分は、TiB2,ZrB2
CrB2,VB2,TaB2,NbB2,MnB2,MoB2,HfB2,VB2,Al
B2,MgB2,ZrB2などの二ホウ化物、W2B5,MoB5などの金
属五二ホウ化物の中から選ばれた金属ホウ化物である。
これは単独で用いてもよいし、また2種以上組み合わせ
て用いてもよい。
The above-mentioned component (A), which is the main component of the present invention, comprises TiB 2 , ZrB 2 ,
CrB 2, VB 2, TaB 2 , NbB 2, MnB 2, MoB 2, HfB 2, VB 2, Al
It is a metal boride selected from diborides such as B 2 , MgB 2 and ZrB 2, and metal pentaborides such as W 2 B 5 and MoB 5 .
These may be used alone or in combination of two or more.

次に、(B)成分として用いられるZrO2は、部分安定化
ZrO2、正方晶ZrO2、立斜晶ZrO2のいずれでもよいし、ま
た2種以上を混合してもよい。ZrO2の添加量は、10〜70
%の範囲が好ましい。この範囲を逸脱すると十分な機械
的強度が得られないので好ましくない。
Next, ZrO 2 used as the component (B) is partially stabilized.
Any of ZrO 2 , tetragonal ZrO 2 , and cubic orthorhombic ZrO 2 may be used, or two or more of them may be mixed. The amount of ZrO 2 added is 10 to 70.
% Range is preferred. If it deviates from this range, sufficient mechanical strength cannot be obtained, which is not preferable.

本発明の材料の第3成分として添加配合される上記
(C)成分の立方晶系炭窒化物としては、Ti(C,N)とZ
r(C,N)の1種又は2種の混合物を用いることができ
る。この炭窒化物は、全重量に対し2〜70重量%の範囲
で添加することが必要である。この範囲を逸脱すると、
燒結が困難になったり、得られる燒結体の機械的物性の
改善が困難になる。
The cubic carbonitrides of the above-mentioned component (C) which are added and blended as the third component of the material of the present invention include Ti (C, N) and Z
One or a mixture of two types of r (C, N) can be used. It is necessary to add the carbonitride in the range of 2 to 70% by weight based on the total weight. If you deviate from this range,
It becomes difficult to sinter, and it becomes difficult to improve the mechanical properties of the obtained sinter.

本発明のセラミックス材料は、原料混合物を造粒の後、
金型成形やラバープレスで成形し、そののち真空、不活
性ガスあるいは還元性ガス、窒素ガス等の雰囲気で、16
00〜1900℃((A)〜(C)の3成分系では1700〜1900
℃)で60〜200min加熱することにより緻密な燒結体が得
られる。また、その後HIP処理することもできる。
The ceramic material of the present invention, after granulating the raw material mixture,
Mold by die molding or rubber press, then in a vacuum, inert gas or reducing gas, nitrogen gas, etc., 16
00 to 1900 ° C (1700 to 1900 in the three-component system of (A) to (C)
A dense sintered body can be obtained by heating at 60 ° C) for 60 to 200 minutes. Moreover, HIP processing can also be performed after that.

さらに、上記真空燒結の代わりにホットプレスを使用す
ることができ、この場合には、1600〜1900℃において緻
密な燒結体を得ることができる。
Furthermore, a hot press can be used instead of the above vacuum sintering, and in this case, a dense sintered body can be obtained at 1600 to 1900 ° C.

このようにして耐摩材や切削工具材として好適な金属ホ
ウ化物基セラミックスが得られる。
In this way, metal boride-based ceramics suitable as a wear resistant material or cutting tool material can be obtained.

〈実施例1〉 粒子径を4μm以下に分級したTiB2とTi(C,N)、及び
0.02μmの粒子径を有するZrO2を、それぞれ30:30:40の
重量割合で混合、造粒したのち、3ton/cm2でラバーブレ
スで成形し、その後1700℃で90min真空燒結した。得ら
れた燒結体の物性を調べたところ、抗折力90kg/mm2、ビ
ッカース硬度Hv1500、インデンテーション法KIC6MPam
1/2という物性を有していた。また、組織観察では空隙
が皆無であった。この例を表1のNo.2に示す。同表中の
No.1〜5,7〜9は同一の方法で燒結し、また物性測定を
行った結果である。同表中のNo.の欄の*は比較例を示
す。
<Example 1> TiB 2 and Ti (C, N) whose particle size was classified to 4 μm or less, and
ZrO 2 having a particle diameter of 0.02 μm was mixed and granulated at a weight ratio of 30:30:40, and then granulated at 3 ton / cm 2 with a rubber brace and thereafter vacuum-sintered at 1700 ° C. for 90 minutes. The physical properties of the obtained sintered body were examined, and the bending strength was 90 kg / mm 2 , Vickers hardness was Hv1500, and the indentation method was K IC 6MPam.
It had a physical property of 1/2 . In addition, there were no voids in the structure observation. This example is shown in No. 2 of Table 1. In the table
Nos. 1 to 5 and 7 to 9 are the results obtained by sintering and measuring the physical properties by the same method. * In the No. column in the table indicates a comparative example.

〈実施例2〉 粒子径を4μm以下に分級したTiB2とZr(C,N)、さら
に0.02μmの粒径のZrO2を30:30:40の重量割合で混合
し、その混合物を黒鉛型に充填し、真空中で200kg/cm2
のダイ圧力でプレスしながら、1700℃で60minホットプ
レスした。得られた燒結体の抗折力は90kg/mm2、硬度17
00Hv、KIC4MPam1/2と測定された。また組織観察では空
隙が皆無であった。この例を表1のNo.6に示す。No.10,
11は同様の方法で実験を行ったものである。また、No.1
2と13は比較例として同様に実験したものである。
<Example 2> TiB 2 and Zr (C, N) whose particle size was classified to 4 μm or less, and further ZrO 2 with a particle size of 0.02 μm were mixed at a weight ratio of 30:30:40, and the mixture was made into a graphite type. To 200 kg / cm 2 in vacuum
Hot pressing was performed at 1700 ° C. for 60 minutes while pressing with the die pressure. The bending strength of the obtained sintered body is 90 kg / mm 2 , and the hardness is 17
It was measured to be 00Hv, K IC 4MPam 1/2 . Moreover, there were no voids in the structure observation. An example of this is shown in No. 6 of Table 1. No.10,
No. 11 is an experiment conducted by the same method. Also, No.1
2 and 13 are the same experiments as comparative examples.

なお、一般にホットプレス燒結体は真空燒結体よりち密
で高強度、高硬度を有するものである。
In general, the hot-press sintered body is denser and has higher strength and higher hardness than the vacuum sintered body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ホウ化物の1種以上と全量当り10〜70重量
%の酸化ジルコニウム粉末を基本成分とし、これに立方
晶系Ti(C,N),Zr(C,N)の内の1種以上の炭窒化物を
全量に対して2〜70重量%添加した3成分系の混合物を
1700℃以上で普通燒結してなるホウ化物−酸化ジルコニ
ウム−炭窒化物系セラミックス材料。
1. A zirconium oxide powder of at least one boride and 10 to 70% by weight based on the total amount of zirconium oxide as a basic component, and one of cubic Ti (C, N) and Zr (C, N). A ternary mixture containing at least 2 to 70% by weight of carbonitride of at least one kind is added.
A boride-zirconium oxide-carbonitride ceramic material that is normally sintered at 1700 ° C or higher.
【請求項2】六方晶系ホウ化物の2種以上と全量当り10
〜70重量%の酸化ジルコニウム粉末を基本成分とし、こ
れに立方晶系Ti(C,N),Zr(C,N)の内の1種以上の炭
窒化物を全量に対して2〜70重量%添加した混合物を普
通燒結してなるホウ化物−酸化ジルコニウム−炭窒化物
系セラミックス材料。
2. Two or more kinds of hexagonal boride and 10 per total amount.
~ 70% by weight of zirconium oxide powder as a basic component, and 2 to 70% by weight of one or more carbonitrides of cubic Ti (C, N) and Zr (C, N) based on the total amount. % Boride-zirconium oxide-carbonitride ceramic material obtained by normally sintering a mixture added.
【請求項3】ホウ化物の1種以上と全量当り10〜70重量
%の酸化ジルコニウム粉末を基本成分とし、これに立方
晶系Ti(C,N),Zr(C,N)の内の1種以上の炭窒化物を
全量に対して2〜70重量%添加した混合物をホットプレ
スにより燒結してなるホウ化物−酸化ジルコニウム−炭
窒化物系セラミックス材料。
3. One or more boride compounds and 10 to 70% by weight of the total amount of zirconium oxide powder as a basic component, and one of cubic Ti (C, N) and Zr (C, N). A boride-zirconium oxide-carbonitride ceramic material obtained by sintering by hot pressing a mixture containing 2 to 70% by weight of at least one kind of carbonitride with respect to the total amount.
JP2160842A 1990-06-18 1990-06-18 Boride-zirconium oxide-carbonitride ceramic materials Expired - Lifetime JPH0710747B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2160842A JPH0710747B2 (en) 1990-06-18 1990-06-18 Boride-zirconium oxide-carbonitride ceramic materials
US07/716,928 US5143869A (en) 1990-06-18 1991-06-18 Boride-zirconium oxide-nitrogen carbide-based ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160842A JPH0710747B2 (en) 1990-06-18 1990-06-18 Boride-zirconium oxide-carbonitride ceramic materials

Publications (2)

Publication Number Publication Date
JPH0450173A JPH0450173A (en) 1992-02-19
JPH0710747B2 true JPH0710747B2 (en) 1995-02-08

Family

ID=15723589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160842A Expired - Lifetime JPH0710747B2 (en) 1990-06-18 1990-06-18 Boride-zirconium oxide-carbonitride ceramic materials

Country Status (2)

Country Link
US (1) US5143869A (en)
JP (1) JPH0710747B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725589B2 (en) * 1992-10-12 1995-03-22 工業技術院長 High toughness titanium carbonitride-zirconium oxide ceramic material
US5712211A (en) * 1996-05-09 1998-01-27 Korea Institute Of Machinery & Materials Electrical discharge machinable MG-PSZ/TIB2 ceramic composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598053A (en) * 1974-05-23 1986-07-01 Sumitomo Electric Industries, Ltd. Ceramic compacts
JPS597669A (en) * 1982-07-05 1984-01-14 Komori Printing Mach Co Ltd Paper drift preventing device in paper discharge portion of printer
JPS597668A (en) * 1982-07-06 1984-01-14 Ricoh Co Ltd Sorter having reversing device
JPS5918349B2 (en) * 1982-07-12 1984-04-26 工業技術院長 Titanium carbonitride-metal boride ceramic materials
US4889836A (en) * 1988-02-22 1989-12-26 Gte Laboratories Incorporated Titanium diboride-based composite articles with improved fracture toughness
JPH0627036B2 (en) * 1988-06-22 1994-04-13 日本鋼管株式会社 High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics

Also Published As

Publication number Publication date
US5143869A (en) 1992-09-01
JPH0450173A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
JPS5924751B2 (en) Sintered shaped body
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
JPH06128680A (en) Sintered metal material mixture based on boride, nitride and iron binder metal
EP0349740B1 (en) Complex boride cermets
EP0347920B1 (en) High strength high toughness TiB2 ceramics
US20100304138A1 (en) Boron suboxide composite material
JP3607945B2 (en) Reactive synthesis of high-strength zirconium boride-silicon carbide composites
JPH0710747B2 (en) Boride-zirconium oxide-carbonitride ceramic materials
JPH069264A (en) Wc-al2o3 sintered composite compact
JP3051603B2 (en) Titanium compound sintered body
US5036028A (en) High density metal boride-based ceramic sintered body
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JPH03290355A (en) Al2o3-wc-based high-strength-high-toughness sintered material
JP2759290B2 (en) Manufacturing method of aluminum oxide sintered body
JP2840688B2 (en) Manufacturing method of aluminum oxide sintered body
Kaiser et al. SI3N4/SIC composites using conventional and nanosized powders
EP0241514A1 (en) Dense ceramics containing a solid solution and method for making the same
Peng et al. Mechanical Properties and Microstructure of Boron Carbide-Lanthanum Boride Porous Composites
JPH0437653A (en) Production of ceramics sintered body
JPH0483753A (en) Ceramic reinforced with alumina fiber
JPH0725591B2 (en) High toughness boride-zirconium oxide-titanium carbonitride ceramic materials
JPH0331668B2 (en)
WO1988000578A1 (en) Method of forming a ceramic product

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term