JPS6148484A - Zrb2 base composite sintered body - Google Patents

Zrb2 base composite sintered body

Info

Publication number
JPS6148484A
JPS6148484A JP59168812A JP16881284A JPS6148484A JP S6148484 A JPS6148484 A JP S6148484A JP 59168812 A JP59168812 A JP 59168812A JP 16881284 A JP16881284 A JP 16881284A JP S6148484 A JPS6148484 A JP S6148484A
Authority
JP
Japan
Prior art keywords
sintered body
zrb2
powder
resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59168812A
Other languages
Japanese (ja)
Other versions
JPS6337070B2 (en
Inventor
優 瀬川
音次郎 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59168812A priority Critical patent/JPS6148484A/en
Priority to EP85108000A priority patent/EP0170864B1/en
Priority to DE8585108000T priority patent/DE3572468D1/en
Priority to US06/749,829 priority patent/US4668643A/en
Publication of JPS6148484A publication Critical patent/JPS6148484A/en
Priority to US06/916,225 priority patent/US4678759A/en
Publication of JPS6337070B2 publication Critical patent/JPS6337070B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はZrB2(2硼化ジルコニウム)質焼結体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ZrB2 (zirconium diboride) sintered body.

一般的に金属硼化物セラミックスは高融点で高硬度、高
強度、高耐蝕の特徴を有し、従来から切削工具、熱機関
部品材料などとして用いられているが、実際に実用化さ
れているものの多くはチタンの硼化物であって、ジルコ
ニウムの硼化物は殆んど実用化されていないのが実状で
ある。
In general, metal boride ceramics have the characteristics of high melting point, high hardness, high strength, and high corrosion resistance, and have traditionally been used as cutting tools and heat engine parts materials, but although they have not been put into practical use yet. Most of them are titanium borides, and the reality is that zirconium borides are hardly ever put into practical use.

本発明のzrB!複合焼結体は、高融点、高強度、高耐
蝕、高硬度、導電性、耐酸化性等の優れた特徴を有する
ので高温耐蝕性部材、機械部材、発熱体、電極、誘導炉
用ルツボ等に広く使用できる材料である。
zrB of the present invention! Composite sintered bodies have excellent characteristics such as high melting point, high strength, high corrosion resistance, high hardness, electrical conductivity, and oxidation resistance, so they can be used as high-temperature corrosion-resistant parts, mechanical parts, heating elements, electrodes, crucibles for induction furnaces, etc. It is a material that can be used widely.

(従来の技術) ZrB2質の複合焼結体として現在広く実用化されてい
るものは殆んどないが特許などには種々のものが提案さ
れている。
(Prior Art) Currently, there are almost no ZrB2 composite sintered bodies that are in widespread practical use, but various ones have been proposed in patents and the like.

即ち、焼結助剤又は複合材などのZrB2焼結体におけ
る副成分としてはMo811などの珪化物、Tag、 
 HfN、 Bli  などの窒化物、ZrO2などの
酸化物、810 、 B2Oなどの炭化物、種々の金属
などが知られている。
That is, silicides such as Mo811, Tag,
Nitrides such as HfN and Bli, oxides such as ZrO2, carbides such as 810 and B2O, and various metals are known.

(発明が解決しようとする問題点) 例えば珪化物については特公昭3B−6098にZrB
lzが、また米国特許第3705112号にMo1ll
 lzなどが開示されているが、これらのS1系化合物
は高温雰囲気下での焼結で溶融又は分解するため組織が
多孔質で結晶の粒成長が大きくなることが多く、そのた
め強度も、耐蝕性も十分でないことが多いし、耐酸化性
もS10.の皮膜としての効果が予測されるがこれらの
副成分のみで空気中での使用には十分でない。
(Problems to be solved by the invention) For example, regarding silicides, ZrB is disclosed in Japanese Patent Publication No. 3B-6098
lz also Mo1ll in U.S. Patent No. 3,705,112.
However, these S1-based compounds melt or decompose during sintering in a high-temperature atmosphere, resulting in a porous structure and large crystal grain growth, resulting in poor strength and corrosion resistance. The oxidation resistance is often insufficient, and the oxidation resistance is also less than S10. However, these subcomponents alone are not sufficient for use in air.

つぎに窒化物については、米国特許第3305374に
開示されているTaNは高硬度材料としてZrBz 、
 TIB!等に添加され、工具材料、装飾材に応用され
ているが高硬度、高強度の点では優れているが高温耐蝕
部材、発熱体、電極、誘導炉用ルツボ等の高温酸化雰囲
気に使用する場合耐酸化性、耐スポール性、耐蝕性など
の点で十分ではない。
Next, regarding nitrides, TaN disclosed in U.S. Patent No. 3,305,374 is used as a high hardness material, and ZrBz,
TIB! It is added to materials such as tool materials and decorative materials, and is excellent in terms of high hardness and high strength, but when used in high-temperature oxidizing atmospheres such as high-temperature corrosion-resistant parts, heating elements, electrodes, induction furnace crucibles, etc. It is not sufficient in terms of oxidation resistance, spalling resistance, corrosion resistance, etc.

つぎに炭化物については米国特許第3775157に8
101米国特許第5325500にB、CやStCが開
示されなどしているが、米国時:  許第377513
7のStCのみの添加では耐酸化性の点で不十分でsb
又第3525300のMo1312−)−B4C,Mo
811+ SIC!+14(3の添加ではMo8 lz
が焼結温度より低融点であり焼結中に融けて、分解した
り、粒成長を促進するなど組織を多孔質化するため高密
度化しにくい。従って特に高温構造部材として要求され
る材料には至っていkい。
Next, regarding carbides, U.S. Patent No. 3,775,157 and 8
101 US Pat. No. 5,325,500 discloses B, C, and StC, but in the US: Patent No. 377,513.
Addition of only StC of 7 is insufficient in terms of oxidation resistance and sb
Also No. 3525300 Mo1312-)-B4C, Mo
811+ SIC! +14 (Mo8 lz for addition of 3
has a melting point lower than the sintering temperature, so it melts during sintering, decomposes, promotes grain growth, and makes the structure porous, making it difficult to increase density. Therefore, it has not yet reached the level where it is a material particularly required for high-temperature structural members.

このような点に鑑み本発明者らは先にMO8Izを加え
ることのないSI C−)−B40の添加又は5tc−
)−BHの添加をしたものについて検討し改良されたZ
rB2焼結体を得ることに成功した。これらはそれなシ
にZrBz焼結体の実用化を可能とするものであったが
また改良されるべき余地が残っていることも事実であっ
た。例えばjlO+BNの添加系はBN  含有量を増
やすことで耐スポール性を向上させる事ができるなどの
点で満足できるものであったが難焼結性のBN  を添
加゛することで緻密質焼結体が得られにくく強度や硬度
などの点では必ずしも十分でなく従って高温高強度部材
などの用途には適したものとはいえないものであった。
In view of these points, the present inventors added SIC-)-B40 without adding MO8Iz first, or added 5tc-B40 without adding MO8Iz first.
) - Z that was improved by studying the one with the addition of BH
We succeeded in obtaining an rB2 sintered body. Although these have made it possible to put ZrBz sintered bodies into practical use, it is also true that there remains room for improvement. For example, the addition system of jlO + BN was satisfactory in that spalling resistance could be improved by increasing the BN content, but by adding BN, which is difficult to sinter, dense sintered bodies were It is difficult to obtain such properties, and the strength and hardness are not necessarily sufficient, and therefore, it cannot be said to be suitable for applications such as high-temperature, high-strength members.

また、5tc−14c  の添加系は強度、硬度、及び
耐酸化性などの点では満足できるものであつたが、耐ス
ポール性や耐食性などの点では必ずしも十分でなく、従
って鉄鋼用などの耐スポール、耐蝕部材などの用途には
適したものとはいえないものであった。
In addition, although the 5tc-14c additive system was satisfactory in terms of strength, hardness, and oxidation resistance, it was not necessarily sufficient in terms of spalling resistance and corrosion resistance, and therefore it was used for spalling resistance such as steel. , it could not be said to be suitable for uses such as corrosion-resistant members.

このような点に鑑み、優れた特質を備えていながらその
特質を生かしきれず極めて限られた用途にしか実際に使
われていないZrB2質焼結体について、従来の問題点
を克服すべく研究を進めた結果、優れた高密度、高強度
、耐酸化性、耐蝕性さらには耐スポール性などの諸性能
を兼ね備えかついくつかについてはその特質特にこの種
複合体としての強度向上を著しく向上せしめた焼結体の
開発に成功したのである。
In view of these points, we are conducting research to overcome the conventional problems with ZrB2 sintered bodies, which have excellent properties but are not fully utilized and are actually used for only extremely limited applications. As a result of this progress, we have achieved a combination of various properties such as excellent high density, high strength, oxidation resistance, corrosion resistance, and even spalling resistance, and in some cases, we have significantly improved the strength of this type of composite. They succeeded in developing a sintered body.

(問題を解決するための手段) 即ち、本発明はZrB1を主成分とし、重2%で1〜1
5チのstc、s〜20%のB、O及び3〜25チのB
M  を含むととで特徴づけられた高強度ZrB2質複
合焼結体を要旨とするものである。
(Means for solving the problem) That is, the present invention uses ZrB1 as the main component, and contains 1 to 1
5ch stc, s~20% B, O and 3~25ch B
The gist of this invention is a high-strength ZrB dual composite sintered body characterized by containing M2.

本発明に用いるZrB1は例えば酸化ジルコニウム、酸
化硼素およびカーボンの混合物を高温で反応させること
により得られ、本焼結体の製造には可及的に純度の高い
ものを用いるのが好ましく、また粒径も可及的に小さい
粉末が好ましい。
ZrB1 used in the present invention can be obtained, for example, by reacting a mixture of zirconium oxide, boron oxide, and carbon at high temperature, and it is preferable to use ZrB1 with as high purity as possible for producing the present sintered body, and It is preferable to use a powder whose diameter is as small as possible.

具体的には純度??−以上、平均粒径10μm特には1
μm以下のものがそれである。
Specifically, purity? ? - or more, average particle size 10 μm, especially 1
This is less than μm.

また副成分として存在せしめるSiC! 、 33.c
及びBN  については、焼結体としてそのような化合
物として所定量が存在していればよいので、出発原料と
してはどのような形態のものとして配合してもよいが、
5IC9B4C及びBN  以外の原料を使用した場合
には焼結段階で特別な配慮が必要となるため、通常配合
原料としてS、IC。
Also, SiC exists as a subcomponent! , 33. c.
As for BN and BN, it is sufficient that they are present in a predetermined amount as such compounds in the form of a sintered body, so they may be blended in any form as starting materials;
5IC9B4When using raw materials other than C and BN, special consideration is required at the sintering stage, so S and IC are usually used as blended raw materials.

B4C及びBM  として調整しておくのがよい。It is best to adjust them as B4C and BM.

このSac 、 B40及びBN  原料についても可
及的に純度の高いものが好ましく通常?9チ以上のもの
がよい。
It is preferable that these Sac, B40 and BN raw materials have as high a purity as possible. 9 inches or more is better.

原料混合物は通常これら3種の微粉末を均一に混合する
事により調整するが、粉砕混合を目的として超微粉砕し
ても同様である。一般に混合原料の粒度は10μm以下
がよく好ましくは平均粒径1μm以下にまで十分調整し
ておくことである。
The raw material mixture is usually prepared by uniformly mixing these three types of fine powders, but the same effect can be obtained by ultrafinely pulverizing them for the purpose of pulverizing and mixing. Generally, the particle size of the mixed raw material is preferably 10 μm or less, and preferably the average particle size is sufficiently adjusted to 1 μm or less.

これらの粉砕はStCポールを用いることが適当である
It is appropriate to use a StC pole for these pulverizations.

本発明焼結体はこれらの混合物を例えば黒鉛型に充填し
、真空中又はアルゴン、ヘリウム、−酸化炭素などの中
性或は還元性の雰囲気下で、ホットプレスするか上記混
合物をラバープレス成形してから常圧焼成するなどによ
り得ることができる。伺、焼成温度は1800〜230
0℃、焼成時間は試料の大きさ等にもよるが通常c1.
5〜5時間程度が適当である。
The sintered body of the present invention can be obtained by filling a graphite mold with these mixtures and hot-pressing the mixture in vacuum or in a neutral or reducing atmosphere such as argon, helium, or carbon oxide, or molding the above-mentioned mixture with a rubber press. It can be obtained by, for example, baking at normal pressure. The firing temperature is 1800~230℃.
0°C, the firing time depends on the size of the sample, etc., but is usually c1.
Approximately 5 to 5 hours is appropriate.

本発明焼結体においてaSa (シリコンカーバイド)
は少くとも重量%(以下同じ)で1%は必要であるがこ
れはそれ以下では耐酸化性が士!    分でなく高密
度化も難かしくなるからであり、一方多すぎても耐スポ
ール性や高耐蝕性の効果が発揮されないなどのため好ま
しくなく最大15チにとどめることが必要であり、望ま
しくけ3〜10チである。
aSa (silicon carbide) in the sintered body of the present invention
It is necessary to have at least 1% by weight (the same applies hereafter), but if it is less than that, the oxidation resistance will be poor! On the other hand, if the number is too large, the effects of spall resistance and high corrosion resistance will not be exhibited, so it is undesirable to limit the number to a maximum of 15. ~10chi.

B、c (ボロンカーバイド)は少くとも5チは必要で
あるがこれはそれ以下だと高密度化が困難となるからで
あり、一方多すぎても耐熱性が低下するなどのため好ま
しくなく最大20チにとどめることが必要であり、望ま
しくは7〜15チである。BN  (ボロンナイトライ
ド)は少くとも3チは必要であるがこれはそれ以下では
耐スポール、高耐蝕の特徴が十分に発揮されず一方多す
ぎても焼結が困難となって高密産品が得られないなどの
ため好ましくなく最大25チにとどめることが必要であ
υ、望ましくは5〜20チである。
B and C (boron carbide) need to be at least 5 cm, but this is because if it is less than that, it will be difficult to increase the density, while if it is too large, the heat resistance will decrease, so it is undesirable and the maximum It is necessary to limit the length to 20 inches, and preferably 7 to 15 inches. At least 3 strands of BN (boron nitride) are required, but if it is less than that, the spall-resistant and high corrosion-resistant characteristics will not be fully exhibited, and if it is too much, it will be difficult to sinter, making it difficult to obtain a high-density product. For this reason, it is undesirable to limit the number to a maximum of 25 inches, and preferably 5 to 20 inches.

またこれらのStCとB4CとBM  はその合量とし
て少くとも9チは必要で最大60チまで存在せしめうろ
ことも可能であるが含量が多すぎるとそれに伴ってZr
B2の特性を損ってくることになるので通常は含量とし
て15〜50チが適切である。
In addition, the total amount of StC, B4C, and BM is required to be at least 9, and it is possible to have a maximum of 60, but if the content is too large, Zr
Since this impairs the properties of B2, the appropriate content is usually 15 to 50 g.

伺、本発明焼結体は、これらの副成分以外の成分即ち残
部は実質的にZrB2からなるものであるがZrB2質
の特質を損わない範囲でZrBz以外の成分例えばTi
B、などが少量含まれていても勿論差支えはないが可及
的少量にとどめることが望ましい。
However, the sintered body of the present invention consists of components other than these subcomponents, that is, the remainder, which essentially consists of ZrB2, but components other than ZrBz, such as Ti, may be added to the extent that the characteristics of ZrB2 are not impaired.
Of course, there is no problem even if a small amount of B, etc. is included, but it is desirable to keep the amount as small as possible.

また、副成分としても本発明焼結体の目的効果を本質的
に損わない範囲において他の成分が含まれていて勿論差
支えないが不可避的不純物を含めて可及的少量にとどめ
ることが必要である。
In addition, other components may of course be included as subcomponents as long as they do not essentially impair the intended effects of the sintered body of the present invention, but they must be kept in as small a quantity as possible, including unavoidable impurities. It is.

本発明焼結体の組織は平均粒径数μmの粒状からなるZ
rB2微細結晶が均一に分散しており、そのZrB2結
晶粒の回シや結晶粒間に副成分であるBN、 B4C,
SIOが分布している緻密な組織構造を有していた。
The structure of the sintered body of the present invention consists of grains with an average grain size of several μm.
The rB2 microcrystals are uniformly dispersed, and the subcomponents BN, B4C,
It had a dense tissue structure in which SIO was distributed.

また、BN  を15%以上含んだ系の組織ではBN 
が潤滑性を有することからBN  自体は極数μm1長
さ8μm程度の板状組織から成り、主成分であるZrB
z微細結晶粒の回りに存在していた。
In addition, in tissues containing 15% or more of BN, BN
Because it has lubricity, BN itself consists of a plate-like structure with a few μm of poles and about 8 μm in length, and the main component, ZrB,
z Existed around fine crystal grains.

そして他の副成分(B4C!、810 )はほぼ粒状の
微細結晶のままZrB1結晶粒間に均一に分散していた
The other subcomponent (B4C!, 810) remained uniformly dispersed between the ZrB1 crystal grains as almost granular microcrystals.

(発明の効果) このようにして得られた本発明焼結体は高密度、高硬度
特に高強度であってかつ耐蝕性さらに耐スポール性に優
れた導電性のある焼結体であるため高温構造部材、高温
耐蝕部材、発熱体等に好ましく適用可能であシ、そのほ
かZrB2質焼結体の特質を発揮した種々の用途に使用
できるものであってその実用的価値は多大である。
(Effects of the Invention) The thus obtained sintered body of the present invention has high density, high hardness, particularly high strength, and is an electrically conductive sintered body with excellent corrosion resistance and spalling resistance. It can be preferably applied to structural members, high-temperature corrosion-resistant members, heating elements, etc., and can also be used in various other applications that exhibit the characteristics of the ZrB2 sintered body, so its practical value is great.

(実施例1) 0実施例1 ZrB2粉末(純度99チ以上)B4C粉末(純度99
%以上)、BN 粉末(純度99チ以上)及びBte粉
末(純度99チ以上)を十分に混合粉砕すべく、ボット
ミルを使用しエタノール溶媒中でStCポールを用い3
日間粉砕混合した。得うした粉末をエバポレーターでア
ルコール除去して十分乾燥し、平均粒径α15μの粉末
を得た。この粉末をラバープレスを用い2000kg/
a11で成形しアルゴン雰囲気下、2300℃で2時間
常圧焼成した。このようkして得られた焼結体の特性を
第1表に示す。
(Example 1) 0 Example 1 ZrB2 powder (purity 99+) B4C powder (purity 99+)
% or more), BN powder (purity of 99% or more), and Bte powder (purity of 99% or more) were thoroughly mixed and pulverized using a bot mill and an StC pole in an ethanol solvent.
It was ground and mixed for days. The obtained powder was thoroughly dried by removing alcohol using an evaporator to obtain a powder having an average particle size α of 15 μm. 2000 kg/kg of this powder was produced using a rubber press.
It was molded using A11 and fired under normal pressure at 2300° C. for 2 hours in an argon atmosphere. The properties of the sintered body thus obtained are shown in Table 1.

0実施例3 実施例1と同様のZrBz粉末、ssc粉末、B、0粉
末及びBM  粉末をポットミルを使用しエタノール溶
媒下StCボールを用い3日間混合粉砕した。
Example 3 The same ZrBz powder, ssc powder, B, 0 powder, and BM powder as in Example 1 were mixed and ground in a pot mill for 3 days using a StC ball in an ethanol solvent.

この粉末をエバポレーターで十分アルコールを除去して
乾燥し平均粒径Q、15μmの粉末を得た。この粉末を
黒鉛型に充填しアルゴン雰囲気下350kg/aFに加
圧しながら2050℃で30分間加熱した。
The alcohol was sufficiently removed from this powder using an evaporator and the powder was dried to obtain a powder having an average particle size Q of 15 μm. This powder was filled into a graphite mold and heated at 2050° C. for 30 minutes while pressurized to 350 kg/aF in an argon atmosphere.

このようにして得られた焼結体の特性を第1表に示す。Table 1 shows the properties of the sintered body thus obtained.

0実施例2及び4乃至6ならびに比較例7乃至12! 
  所定の配合原料を実施例1及び5に準じて調整し所
定の焼成条件で処理して得た各試料についての結果を第
1表に示す。
0 Examples 2 and 4 to 6 and Comparative Examples 7 to 12!
Table 1 shows the results for each sample obtained by adjusting predetermined mixed raw materials according to Examples 1 and 5 and processing them under predetermined firing conditions.

注1)耐酸化性は酸化雰囲気下、1000℃×12hr
 の条件下での型針増加率の程度(単位面@(、f)当
りの増量(η)で表わしている。) 注2)耐熱@撃性とは電気炉中で各温度に2分間急熱し
水中に急冷した試料の曲げ強度を測定し強度が急激に低
下した試料の処理温度を示したものでΔT で表わす。
Note 1) Oxidation resistance is under oxidizing atmosphere, 1000℃ x 12 hours
The degree of increase rate of mold needles under the conditions of The bending strength of a sample heated and rapidly cooled in water is measured, and the processing temperature at which the strength suddenly decreases is expressed as ΔT.

Claims (1)

【特許請求の範囲】 1、ZrB_2を主成分とし、重量%で、1〜15%の
SiC、5〜20%のB_4C及び3〜25%のBNを
それぞれ含むことで特徴づけられた ZrB_2質複合焼結体。 2、SiCとB_4CとBNの合量が15〜50%であ
る特許請求の範囲第1項記載の焼結体。
[Scope of Claims] 1. ZrB_2 composite characterized by containing ZrB_2 as a main component and containing 1 to 15% SiC, 5 to 20% B_4C, and 3 to 25% BN, respectively, by weight%. Sintered body. 2. The sintered body according to claim 1, wherein the total amount of SiC, B_4C, and BN is 15 to 50%.
JP59168812A 1984-07-10 1984-08-14 Zrb2 base composite sintered body Granted JPS6148484A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59168812A JPS6148484A (en) 1984-08-14 1984-08-14 Zrb2 base composite sintered body
EP85108000A EP0170864B1 (en) 1984-07-10 1985-06-27 Zrb2 composite sintered material
DE8585108000T DE3572468D1 (en) 1984-07-10 1985-06-27 Zrb2 composite sintered material
US06/749,829 US4668643A (en) 1984-07-10 1985-06-28 ZrB2 composite sintered material
US06/916,225 US4678759A (en) 1984-07-10 1986-10-07 ZrB2 composite sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168812A JPS6148484A (en) 1984-08-14 1984-08-14 Zrb2 base composite sintered body

Publications (2)

Publication Number Publication Date
JPS6148484A true JPS6148484A (en) 1986-03-10
JPS6337070B2 JPS6337070B2 (en) 1988-07-22

Family

ID=15874947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168812A Granted JPS6148484A (en) 1984-07-10 1984-08-14 Zrb2 base composite sintered body

Country Status (1)

Country Link
JP (1) JPS6148484A (en)

Also Published As

Publication number Publication date
JPS6337070B2 (en) 1988-07-22

Similar Documents

Publication Publication Date Title
EP0170864B1 (en) Zrb2 composite sintered material
EP0170889B1 (en) Zrb2 composite sintered material
US4933308A (en) High strength high toughness TiB2 ceramics
JPS644983B2 (en)
JPS6148484A (en) Zrb2 base composite sintered body
JPS6337069B2 (en)
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPS6339542B2 (en)
JPS62288171A (en) Zrb2 base composite sintered body
JPS6144769A (en) High strength zrb2 composite sintered body
JPS62119168A (en) High anticorrosion high thermal shock resistance zrb2 base composite sintered body
JPS6144768A (en) High strength boride sintered body
JPS6355165A (en) Tib2 base sintering material and manufacture
JPS6163573A (en) High corrosion resistance zrb2 base composite sintered body
JPS6172686A (en) Zrb2 base composite sintered body
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP2612011B2 (en) Method for producing high-temperature corrosion-resistant sintered body
JPS6337068B2 (en)
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JPS63252968A (en) Ceramic sintered body
JPH05262567A (en) Composite sintered material of zirconium diboride
JPH05279128A (en) Zirconium diboride multiple sintered compact
JPS61286268A (en) Electroconductively variable zrb2 base composite sintered body
JPS6172687A (en) High strength zrb2 base sintered body
JPS6126570A (en) Boride sintered body and manufacture