JPH02221157A - Production of oxidation resistant high-strength carbon material - Google Patents

Production of oxidation resistant high-strength carbon material

Info

Publication number
JPH02221157A
JPH02221157A JP1040280A JP4028089A JPH02221157A JP H02221157 A JPH02221157 A JP H02221157A JP 1040280 A JP1040280 A JP 1040280A JP 4028089 A JP4028089 A JP 4028089A JP H02221157 A JPH02221157 A JP H02221157A
Authority
JP
Japan
Prior art keywords
oxidation
coke
ceramics
carbon material
carbonaceous substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1040280A
Other languages
Japanese (ja)
Inventor
Yoichi Kawano
陽一 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP1040280A priority Critical patent/JPH02221157A/en
Publication of JPH02221157A publication Critical patent/JPH02221157A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain composite carbon material which has high strength and high density and is excellent in resistance to oxidation by mixing ceramics at a specified rate with carbonaceous substance for which oxidizing treatment has been previously performed and calcining this mixture. CONSTITUTION:1-90wt.% ceramics is blended with carbonaceous substance for which oxidizing treatment has been previously performed and this compound is calcined. Any of coal-based, petroleum-based or resin-based raw coke and calcined coke may be utilized as carbonaceous substance. Raw coke which has been coked at <=550 deg.C and has >=8% volatile matter is preferably utilized. Oxidizing treatment for carbonaceous substance is preferably performed at about 300-600 deg.C for raw coke and at about 600-1200 deg.C for calcined coke. Oxidiz ing treatment time is preferably regulated to about 30-90 minutes and controlled so that consumption by oxidation is regulated to a range within about 5-20wt.%. One kind or two kinds or more of SiC, B4C, SiO2 and B2O3, etc., are preferably utilized as ceramics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐酸化性高強度炭素材の製造方法に関する。更
に詳しくは、酸化処理した炭素材にセラミックスを配合
し、焼結させた耐酸化性高密度高強度炭素材の製造方法
にrIJする。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxidation-resistant high-strength carbon material. More specifically, the method for producing an oxidation-resistant, high-density, high-strength carbon material in which ceramics are blended with an oxidized carbon material and sintered is carried out.

〔従来の技術) 炭素材は高温強度、耐熱衝撃性、高熱伝導性、良導電性
、低熱*眼性、耐薬品性など多くの優れた特性を有する
材料である。しかし高い温度条件下で酸化され易いとい
う大きな欠点がある。例えば炭素材を空気中で加熱すれ
ば、300℃付近から酸化され始め、600’C以上で
急速に酸化が進行する。
[Prior Art] Carbon materials are materials that have many excellent properties such as high temperature strength, thermal shock resistance, high thermal conductivity, good electrical conductivity, low heat*visibility, and chemical resistance. However, it has the major drawback of being easily oxidized under high temperature conditions. For example, when a carbon material is heated in air, it begins to oxidize at around 300°C and rapidly progresses above 600'C.

このlζめ、炭素材は優れた高温特性を有するにも拘ら
ず、高温下での使用は非酸化性雰囲気に限られ、大気中
での使用は困難であった。このような炭素材の欠点を補
うための方法として、耐酸化性を向上させるために、リ
ン酸化合物やホウ酸化合物を含浸させる方法。ガラス皮
膜形成成分を含浸させたり、コーティングする方法、炭
素又は黒鉛に炭化ケイ素とケイ素鉄を配合する方法又は
炭化ケイ素とケイ酸を主体とするケイIII結合剤を配
合する方法などが提案されている。しかしながらリン酸
化合物を含浸させる方法は、炭素質の酸化開始温度をせ
いぜい100〜200℃程度上昇させる方法であり、抜
本的な解決にはならない。
On the other hand, although carbon materials have excellent high-temperature properties, their use at high temperatures is limited to non-oxidizing atmospheres, and it has been difficult to use them in the atmosphere. As a method to compensate for these drawbacks of carbon materials, there is a method of impregnating them with phosphoric acid compounds or boric acid compounds in order to improve their oxidation resistance. A method of impregnating or coating with a glass film forming component, a method of blending silicon carbide and silicon iron with carbon or graphite, a method of blending a silicon III binder mainly composed of silicon carbide and silicic acid, etc. have been proposed. . However, the method of impregnating a phosphoric acid compound is a method of raising the oxidation initiation temperature of carbonaceous material by about 100 to 200°C at most, and does not provide a fundamental solution.

またガラス皮膜形成成分を含浸又はコーディングすれば
、炭素材の耐酸化性はかなり改善されるが、これは炭素
材表面に形成されるガラス皮膜に依存するため、コーテ
ィングのむら、皮膜の損傷や炭素材とガラス皮膜の熱膨
脹係数の差に起因する剥離などにより、酸化が局部的に
進行するおそれがあり、安定した効果は期待できない。
In addition, the oxidation resistance of the carbon material can be considerably improved by impregnating or coating it with glass film-forming components, but this depends on the glass film formed on the surface of the carbon material, so it may cause uneven coating, damage to the film, or There is a risk that oxidation will progress locally due to peeling caused by the difference in thermal expansion coefficient between the glass film and the glass film, and stable effects cannot be expected.

また生コークス粉末に炭化ホウ素粉末、炭化ケイ素粉末
を配合し、焼結した耐酸化性高強度炭素材(特開昭59
−131576号公報)や、摩砕処理したコークス粉末
とセラミックス粉末を混合又は混合摩砕して焼結する炭
素−セラミックス複合vJ(特開昭56−140075
号公報)も知られている。また炭化ケイ素、炭化ホウ素
及び酸化アルミニウムをコークスに対して配合jノだ材
料を用いた耐熱性ファン(特開昭60−60299号公
報)も提案されている。
In addition, raw coke powder is mixed with boron carbide powder and silicon carbide powder and sintered to create an oxidation-resistant high-strength carbon material (Japanese Patent Laid-Open No. 59
-131576), carbon-ceramic composite VJ (Japanese Patent Laid-Open No. 140075/1983), which is a mixture of ground coke powder and ceramic powder, or a carbon-ceramic composite VJ (Japanese Patent Application Laid-Open No. 140075/1982), which is prepared by mixing or mixing and grinding and sintering ground coke powder and ceramic powder.
No. 2) is also known. Furthermore, a heat-resistant fan (Japanese Patent Application Laid-Open No. 60-60299) has been proposed using a material in which silicon carbide, boron carbide, and aluminum oxide are mixed with coke.

これらは、それぞれ、それなりの耐酸化性、高密度化は
達成されているが、本発明は、これらの方法を更に改善
し、更に耐酸化性に優れた高密度の炭素系複合材を提供
するものである。
Each of these has achieved a certain degree of oxidation resistance and high density, but the present invention further improves these methods and provides a high-density carbon-based composite material with further excellent oxidation resistance. It is something.

〔発明が解決しようとする課題〕 本発明の目的は高強度、高密度であると共に、特に耐酸
化性の優れた炭素質、セラミックス複合材の製造方法を
提供することである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for manufacturing a carbonaceous and ceramic composite material that has high strength, high density, and particularly excellent oxidation resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は炭素質にセラミックスを1〜90重帛%配合し
、焼結させて高密度、高強度複合材を製造する方法にお
いて、炭素質として予め酸化処理をしたものを使用する
ことを特徴とする耐酸化性、高強度炭素材の製造方法で
ある。
The present invention is a method for manufacturing a high-density, high-strength composite material by blending 1 to 90% by weight of ceramics with carbonaceous material and sintering the mixture, which is characterized in that the carbonaceous material is previously oxidized. This is a method for producing oxidation-resistant, high-strength carbon materials.

炭素材に耐酸化性を付与するのに、酸化処理をするとは
一見矛盾するように考えられるが、本発明者はあえてこ
れを実施してみた所、意外にも高密度、高強度で耐酸化
性の優れた複合材料を得ることができた。
At first glance, it may seem contradictory to apply oxidation treatment to impart oxidation resistance to carbon materials, but the inventor of the present invention dared to carry out this process and found that the result was unexpectedly high density, high strength, and oxidation resistance. We were able to obtain a composite material with excellent properties.

本発明で用いる炭素質は、石炭系、石油系又は樹脂系の
生コークス、寵焼コークスのいずれでもよいが、550
℃以下でコーキングされ、揮発分が8%以上ある生コー
クスが好ましい。
The carbonaceous material used in the present invention may be coal-based, petroleum-based or resin-based raw coke, or roasted coke;
Preferably, raw coke is coked at a temperature below 0.degree. C. and has a volatile content of 8% or more.

これは、生コークスを使用することにより、気孔発生の
原因となる結合剤などの添加物を用いずに焼結させるこ
とが可能となり、焼結後の気孔率が極めて低く、高強度
の複合材が得られるためである。
By using raw coke, it is possible to sinter without using binders or other additives that cause porosity, resulting in a high-strength composite material with extremely low porosity after sintering. This is because it can be obtained.

しかし本発明の複合材は、これに限ることなく、鍜焼コ
ークスに対して酸化処理を行っても効果がある。
However, the composite material of the present invention is not limited to this, and it is effective even if the calcined coke is subjected to oxidation treatment.

炭素質の粉末は、20μm以下、好ましくは5μm以下
のものが良い。
The carbonaceous powder has a diameter of 20 μm or less, preferably 5 μm or less.

本発明の特徴である、炭素質に対する酸化処理は、粉砕
後の炭素質に対して行なうのが好ましい。
The oxidation treatment for carbonaceous material, which is a feature of the present invention, is preferably performed on the carbonaceous material after pulverization.

炭素質により、酸化温度は変えなければならないが、3
00〜1.200℃の温度範囲で行なう。
The oxidation temperature must be changed depending on the carbon quality, but 3
The temperature range is 00 to 1.200°C.

生コークス類に対しては低温で、鍜焼コークスに対して
は高温で行なうのが望ましい。生コークス類に対しては
、300〜600℃で行なうのが好ましく、400〜5
00℃で行なうのがさらに好ましい。
It is desirable to carry out the process at a low temperature for raw coke, and at a high temperature for roasted coke. For raw coke, the temperature is preferably 300 to 600°C, and 400 to 50°C.
It is more preferable to carry out the reaction at 00°C.

鍜焼コークス類は600〜1,200℃で行うのが好ま
しく、800〜1,000℃行なうのが更に好ましい。
The calcining of coke is preferably carried out at 600 to 1,200°C, more preferably at 800 to 1,000°C.

酸化処理時間は30〜90分が好ましく、酸化消耗量が
5〜20重世%の範囲となるようにコントロールする。
The oxidation treatment time is preferably 30 to 90 minutes and controlled so that the oxidation consumption is in the range of 5 to 20%.

酸化消耗量が5%未満では、酸化処理の効果が不十分で
あり、酸化消耗量が20%を超えると経済的に好ましく
ない。
When the amount of oxidation consumption is less than 5%, the effect of the oxidation treatment is insufficient, and when the amount of oxidation consumption exceeds 20%, it is economically unfavorable.

本発明に用いるセラミックス材料は、炭化物、酸化物、
窒化物などが用いられるが、炭化ケイ素(S i C)
 、炭化ホウ素(B4C)、酸化ケイ素(SiO□)、
酸化ホウ素(B203)などが好適であり、単独又は2
種類以上混合してもよい。
Ceramic materials used in the present invention include carbides, oxides,
Nitride etc. are used, but silicon carbide (S i C)
, boron carbide (B4C), silicon oxide (SiO□),
Boron oxide (B203) and the like are suitable, alone or in combination
More than one type may be mixed.

炭素質に対するセラミックスの配合割合は1〜90重R
%の範囲である。好ましくは10〜30重量%である。
The blending ratio of ceramics to carbonaceous material is 1 to 90 parts R
% range. Preferably it is 10 to 30% by weight.

1重量%未満では高温での耐酸化性が期待できず、又9
0重M%を超えると、複合材の硬度の上昇はあるが、炭
素材にくらべ、耐熱衝撃性が劣ってくるので好ましくな
い。
If it is less than 1% by weight, oxidation resistance at high temperatures cannot be expected;
If it exceeds 0% by weight, the hardness of the composite material will increase, but the thermal shock resistance will be inferior to that of carbon materials, which is not preferable.

使用するセラミックス粒子の大きさは、炭素材と同様2
0μm以下、好ましくは5μm以下のものが良い。
The size of the ceramic particles used is the same as that of the carbon material.
It is preferably 0 μm or less, preferably 5 μm or less.

このようにして調製した粉体材料を混合し、ホットプレ
ス成型又は成型、焼成することにより、気孔率が極めて
低(、高強度で耐酸化性の複合材料を得ることができる
By mixing the powder materials prepared in this manner, hot press molding or molding, and firing, a composite material with extremely low porosity (high strength and oxidation resistance) can be obtained.

〔作用〕[Effect]

炭素質を予め酸化処理することにより、何故焼結した複
合材料が高密度、高強度で耐酸化性が優れるのかの作用
については明らかではないが、酸化処理により炭素質表
面に酸素含有基が吸着され、成型復熱処理する時に、吸
着した酸素含有基がCO又はCO2で脱ガスする際、コ
ークス表面を活性化し、粉末粒子間の結合を強め複合材
をより緻密化するため、成型後の酸化は内部からは起こ
り難くなるためと推定される。
It is not clear why pre-oxidation treatment of carbonaceous material gives sintered composite materials high density, high strength, and excellent oxidation resistance, but oxygen-containing groups are adsorbed on the carbonaceous surface due to oxidation treatment. During the molding reheating process, the adsorbed oxygen-containing groups degas with CO or CO2, activating the coke surface and strengthening the bonds between powder particles and making the composite more dense. It is presumed that this is because it is less likely to occur from within.

〔実施例〕〔Example〕

以下に、*施例によって、本発明を更に具体的に説明す
るが、本発明は、この実施例によって限定されるもので
はない。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

(実施例) 約500℃でコークス化した炭素系生コークス(揮発分
平均11%)をショークラッシャーとインパクトクラッ
シャーで粉砕し、平均粒径10μmの粉末とした。この
コークス粉末を350〜400℃で40分間空気酸化し
た。
(Example) Carbon-based raw coke (average volatile content: 11%) coked at about 500° C. was crushed using a show crusher and an impact crusher to form powder with an average particle size of 10 μm. This coke powder was air oxidized at 350-400°C for 40 minutes.

炭化ホウ素粉末(平均粒径5μm)と炭化ケイ素粉末(
平均粒径5μm)とを第1表に示す割合で加え、ミキサ
ーで混合した後、1t/cjの圧力でCEP成型した。
Boron carbide powder (average particle size 5 μm) and silicon carbide powder (
(average particle size: 5 μm) were added in the proportions shown in Table 1, mixed with a mixer, and then CEP molded at a pressure of 1 t/cj.

更に不活性雰囲気中で2.000℃で焼成した。Further, it was fired at 2,000°C in an inert atmosphere.

焼結体を10X10X60(層)に切り出し、空気流中
(4j/sin、) 、1.000℃X2Hrsで酸化
試験を行った。
The sintered body was cut into 10×10×60 (layers), and an oxidation test was conducted at 1.000° C. for 2 hours in an air flow (4j/sin).

(比較例) 比較例として、空気酸化処理をせずセラミックスを添加
しない場合(比較例1)と、空気酸化処理をせず、セラ
ミックを添加した場合(比較例2)とを合わせて示した
(Comparative Example) As a comparative example, a case where no air oxidation treatment was performed and no ceramics were added (Comparative Example 1), and a case where no air oxidation treatment was performed and ceramics were added (Comparative Example 2) were shown together.

〔発明の効果〕〔Effect of the invention〕

本発明により、酸化処理してgl製した炭素粉を用いて
製造した複合材は、高強度、高密度で、優れた耐酸化性
に加え、炭素材の特徴である高温強度、耐熱衝撃性等を
併せもつため、窯業用材料、化学工業用材料、航空宇宙
用材料等に利用が期待できる。
According to the present invention, the composite material manufactured using oxidized and GL-manufactured carbon powder has high strength, high density, and excellent oxidation resistance, as well as high temperature strength and thermal shock resistance, which are characteristics of carbon materials. Therefore, it can be expected to be used in ceramic materials, chemical industry materials, aerospace materials, etc.

Claims (1)

【特許請求の範囲】[Claims]  炭素質にセラミックスを1〜90重量%配合し、焼結
させて高密度、高強度複合材を製造する方法において、
炭素質として予め酸化処理をしたものを使用することを
特徴とする耐酸化性高強度炭素材の製造方法。
In a method of manufacturing a high-density, high-strength composite material by blending 1 to 90% by weight of ceramics with carbonaceous material and sintering the mixture,
A method for producing an oxidation-resistant high-strength carbon material, characterized by using carbon material that has been oxidized in advance.
JP1040280A 1989-02-22 1989-02-22 Production of oxidation resistant high-strength carbon material Pending JPH02221157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040280A JPH02221157A (en) 1989-02-22 1989-02-22 Production of oxidation resistant high-strength carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040280A JPH02221157A (en) 1989-02-22 1989-02-22 Production of oxidation resistant high-strength carbon material

Publications (1)

Publication Number Publication Date
JPH02221157A true JPH02221157A (en) 1990-09-04

Family

ID=12576205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040280A Pending JPH02221157A (en) 1989-02-22 1989-02-22 Production of oxidation resistant high-strength carbon material

Country Status (1)

Country Link
JP (1) JPH02221157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824741A (en) * 2017-11-10 2018-03-23 沈阳明禾石英制品有限责任公司 A kind of ceramic core sintering combined stuffing and its application process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824741A (en) * 2017-11-10 2018-03-23 沈阳明禾石英制品有限责任公司 A kind of ceramic core sintering combined stuffing and its application process

Similar Documents

Publication Publication Date Title
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
US4320204A (en) Sintered high density boron carbide
US2752258A (en) Silicon nitride-bonded silicon carbide refractories
US8097548B2 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
CA1226303A (en) Silicon carbide refractories having modified silicon nitride bond
JPS6138144B2 (en)
JPH02175660A (en) Silicon-penetrated silicon carbide member with porous surface and preparation of said silicone carbide
EP0170889B1 (en) Zrb2 composite sintered material
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
JPS6141862B2 (en)
JPH0212893B2 (en)
US3329514A (en) Refractory body and method of making same
JPH02221157A (en) Production of oxidation resistant high-strength carbon material
JPS632913B2 (en)
US3199993A (en) Sintered bodies being resistant to heat, oxidation and wear
JPS6212191B2 (en)
JPS6126550A (en) Manufacture of refractories containing gllasified material
JPS61247661A (en) Oxidation-resistant high strength carbon material
JPH0244078A (en) Porous ceramic composite material and production thereof
JPS624356B2 (en)
JPS6246508B2 (en)
RU2165910C2 (en) Method of preparing composite material
JPH06100366A (en) Production of ceramic-carbon composite material
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JPH02279510A (en) Method for antioxidative treatment of carbon material