JPS61234638A - Method for synchronous communication - Google Patents
Method for synchronous communicationInfo
- Publication number
- JPS61234638A JPS61234638A JP60076921A JP7692185A JPS61234638A JP S61234638 A JPS61234638 A JP S61234638A JP 60076921 A JP60076921 A JP 60076921A JP 7692185 A JP7692185 A JP 7692185A JP S61234638 A JPS61234638 A JP S61234638A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- bit
- carrier
- section
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0054—Detection of the synchronisation error by features other than the received signal transition
- H04L7/0066—Detection of the synchronisation error by features other than the received signal transition detection of error based on transmission code rule
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は複数の機器、端末装置間の通信時における送信
受信の同期通信方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a communication method for synchronizing transmission and reception during communication between a plurality of devices and terminal devices.
従来の技術 従来、複数の通信装置間の信号通信の際には。Conventional technology Conventionally, when communicating signals between multiple communication devices.
種々の通信方式があるが、装置間の距離がある程度離れ
、かつ信頼性を確保して通信を行うとすれば、シリアル
の同期式通信方法をとるのが、もつとも一般的である。Although there are various communication methods, it is common to use a serial synchronous communication method if devices are to be separated by a certain distance and communication is to be performed while ensuring reliability.
この同期式通信方式として調歩同明方式や、ピント同期
方式等がありそれぞれ通信に応じた同期方式を採用して
いる。This synchronous communication method includes the start-stop-domei method and the focus-synchronization method, each of which employs a synchronization method depending on the type of communication.
第7図人に調歩同期方式の信号波形の一例、Bにビット
同期方式の信号波形の一例を示す。STAはスタートビ
ットで、このスタートビットを検出し同期の確立を行う
。′
次にスタートビット検出一定時間後にb7.b6゜b5
.b4.b6.b2.b4.boの順に各々ビットの状
態をサンプリングし、1,0の判定を行う。更にパリテ
ィビットをサンプリングし、STOなるストップビット
を受信して一連のメツセージ受信を終了する。この方式
は1バイトの信号伝送ごとに同期確立を行う方式であり
、送信側、受信側のサンプリング信号の周期が一定であ
る事が必要である。Bはビット同期方式の信号波形で、
Sはビット同期信号である。ここで同期信号が情報信号
のビットと相対的に一定した位置にあれば、ビッ3 /
、−
ト同期信号を基準にサンプリング信号を作成すれば、各
々のビットを正確にサンプリングすることができる。FIG. 7 shows an example of the signal waveform of the start-stop synchronization method, and FIG. 7B shows an example of the signal waveform of the bit synchronization method. STA is a start bit, and it detects this start bit and establishes synchronization. ' Next, after a certain period of time when the start bit is detected, b7. b6゜b5
.. b4. b6. b2. b4. The state of each bit is sampled in the order of bo, and a determination of 1 or 0 is made. Furthermore, the parity bit is sampled, and a stop bit called STO is received to complete the series of message reception. In this method, synchronization is established every time one byte of signal is transmitted, and it is necessary that the period of the sampling signals on the transmitting side and the receiving side be constant. B is the signal waveform of the bit synchronization method,
S is a bit synchronization signal. If the synchronization signal is at a constant position relative to the bit of the information signal, bit 3 /
, - If a sampling signal is created based on the synchronization signal, each bit can be sampled accurately.
発明が解決しようとする問題点
、L記した調歩同期方式は、スタートビットを基準に1
1ビツトの同期を行うから、送信側のビット送出タイミ
ングと、受信側の受信タイミングが一致している必要が
あり、送信側と受信側の基本クロックのバラツキ等によ
って送信側と受信側のタイミングのズレが発生すると、
スタートビット直後のビットは正確に検出されるが、ス
トップビットに近づくに従って送信信号と受信信号との
間に差が発生し、その差てよって隣のビットをサンプリ
ングしてしまう欠点があった。The problem to be solved by the invention is that the start-stop synchronization method described in L is based on the start bit.
Since 1-bit synchronization is performed, the bit sending timing on the sending side and the receiving timing on the receiving side must match, and the timing on the sending and receiving sides may vary due to variations in the basic clocks on the sending and receiving sides. When a misalignment occurs,
Although the bit immediately after the start bit is detected accurately, a difference occurs between the transmitted signal and the received signal as they approach the stop bit, and the problem is that the adjacent bit is sampled based on this difference.
一方、ビット同期方式は、同期信号をメツセージフレー
ムとは別に送信し、同期信号を基準にメツセージフレー
ムをサンプリングするから、前記の調歩同期方式の様な
送受信タイミングのズレによるビット誤差は発生しない
。しかし、同期信号をメツセージフレームと別に伝送し
なければならないから、同明信号を伝送するだめの別線
か、同期信号を信号と多重するだめの多重化手段が必要
であり、その分コストアップになる欠点がある。On the other hand, in the bit synchronization method, the synchronization signal is transmitted separately from the message frame, and the message frame is sampled based on the synchronization signal, so that bit errors due to shifts in transmission/reception timing as in the start-stop synchronization method described above do not occur. However, since the synchronization signal must be transmitted separately from the message frame, a separate line for transmitting the synchronization signal or a multiplexing means for multiplexing the synchronization signal with the signal is required, which increases costs. There is a drawback.
問題点を解決するだめの手段
本発明は、前述の欠点を解決するため、1ビット単位で
搬送キャリヤの有無を反転するエンコード方式をとり、
更に搬送キャリヤを検出するたびに同期を行う構成にし
たものである。Means for Solving the Problems In order to solve the above-mentioned drawbacks, the present invention employs an encoding method that inverts the presence or absence of a carrier on a bit-by-bit basis.
Furthermore, the structure is such that synchronization is performed every time a transport carrier is detected.
作用
本発明による同期通信方法は受信信号の搬送キャリヤを
検出するたびに同期が行われるため、フレーム同期方法
の様に送信装置、受信装置間のクロックの誤差が送受信
に及ぼす影響を少くすることができる。Function: Since the synchronous communication method according to the present invention performs synchronization every time the carrier of the received signal is detected, unlike the frame synchronization method, it is possible to reduce the influence of clock errors between the transmitting device and the receiving device on transmission and reception. can.
実施例
以下1本発明の実施例について第1図〜第6図をもとに
説明する。第1図は本発明による通信方式を用いた通信
伝送端末のブロック図、第2図は各部の信号波形図であ
る。Embodiment One embodiment of the present invention will be described below with reference to FIGS. 1 to 6. FIG. 1 is a block diagram of a communication transmission terminal using the communication method according to the present invention, and FIG. 2 is a signal waveform diagram of each part.
搬送通信装置は、信号重畳分離用高周波トラン5 、、
。The carrier communication device includes a high frequency transformer 5 for signal superposition and separation.
.
ス1.受信増幅部2.復調部3.送受信コントローラ4
1機器制御部5.アドレス設定部6によって構成される
。ここで、信号の受信について説明する。商用電力線a
に商用電源と高周波信号が重畳された信号が存在すると
、商用電力成分と高周波信号成分は信号重畳分離用の高
周波トランス1で分離され、高周波信号成分は受信増幅
部2で増幅され、復調部3に入力される。基調部3は高
周波信号を分周し、送受信コントローラ4に入力する。S1. Reception amplifier section 2. Demodulator 3. Transmission/reception controller 4
1 equipment control unit 5. It is constituted by an address setting section 6. Here, signal reception will be explained. commercial power line a
When there is a signal in which a commercial power supply and a high frequency signal are superimposed, the commercial power component and the high frequency signal component are separated by a high frequency transformer 1 for signal superimposition and separation, the high frequency signal component is amplified by a reception amplification section 2, and a demodulation section 3. is input. The keynote section 3 divides the frequency of the high frequency signal and inputs it to the transmission/reception controller 4.
送受信コントローラ4は第4図のメソセージ信号の自局
向はアドレス部DAと、アドレス設定部6で設定された
アドレスとを比較し、信号が自局向はアドレスであれば
第4図のコマンド部COMで指定されたコマンドに従っ
て機器制御部5を制御する。第2図は各部の波形を示し
、a、b、cはそれぞれ第1図のa、b、cに対応する
。なおり′はbの円で指示された部分の拡大図である。The transmitting/receiving controller 4 compares the address section DA of the message signal shown in FIG. 4 for the local station with the address set in the address setting section 6, and if the signal is for the local station address, the command section of FIG. The device control unit 5 is controlled according to the command specified by COM. FIG. 2 shows the waveforms of each part, and a, b, and c correspond to a, b, and c in FIG. 1, respectively. Note ' is an enlarged view of the part indicated by the circle in b.
本発明は、第3図の様なエンコード方式をとる。The present invention uses an encoding method as shown in FIG.
ここで、信号は+ 1g 、50″、ゞ5TOP”
。Here, the signal is +1g, 50", ゞ5TOP"
.
′″EOM″の4つの状態があり、各々の信号は最小単
位時間T1の1倍、2倍、3倍、4倍の時間によって表
わされ、隣り合うビット間は、必ずキャリヤ信号の有無
が反転するエンコード方式をとる。第3図人は1′の信
号が4ビツト連続した信号であり1本発明のエンコード
方式によって図の様にT1 時間ごとにキャリヤの有無
が反転する。There are four states, ``EOM'', and each signal is represented by times 1, 2, 3, and 4 times the minimum unit time T1, and there is always a presence or absence of a carrier signal between adjacent bits. Uses an inverted encoding method. In FIG. 3, the signal 1' is a 4-bit continuous signal, and by the encoding method of the present invention, the presence or absence of a carrier is inverted every T1 time as shown in the figure.
Bはビットデータ″O′の連続であり2XT4時間で表
わされる搬送キャリヤの連続である。Cは5TOPビツ
トであり、第4図の様に8ビツトのデータの境界にあり
、8ビット単位のデータを区別するためて使われ、3X
T1 時間で表わされる。B is a series of bit data "O", and is a series of carriers expressed in 2XT4 time.C is 5 TOP bits, which are located at the boundaries of 8-bit data as shown in Figure 4, and are data in units of 8 bits. 3X
T1 is expressed in time.
9は同様(6第41″様憾全10′・1−′!終了を表
わし、4XT、時間で表わされる。Similarly, 9 represents the end (6 41''-like total 10', 1-'!, and is expressed in 4XT, time).
第4図で、S、Aは自局アドレス、D9人は相手局アド
レス(相手局からの自局向はアドレス部)B、CはDA
TA部のバイト長、COMは制御用コマンド、DAT人
は制御データ、S、Cはメツセージの誤り検出用符号で
ある。In Figure 4, S and A are the addresses of your own station, D9 are the addresses of the other station (the address part is from the other station to your own station), and B and C are the DA.
The byte length of the TA section, COM is a control command, DAT is control data, and S and C are message error detection codes.
第6、図、第6図を使って1本発明のビット復調アルゴ
リズムについて、最初はキャリヤがある場7 /、−
合について説明する。任意のビット長のキャリヤ信号a
が入力されると、復調部3のカウンタ7は、カウントア
ンプを開始し、同時に送受信コントローラ4のIRQ端
子に入力される。送受信コントローラ4はIRQを受は
付けると14時間の間カウンタ出力の監視を行いその間
だ一定以北のカウント数が検出されれば、ノイズではな
く、正常なキャリヤ信号と判定し、IRQ発生後送受信
コントローラ4の内部タイマーtを自走させT1時間経
過後にカウンタ7の値の監視を行う。カウンタ値が設定
範囲内であれば、キャリヤのT1時間の連続と判別する
。カウンタ値を確認後、ただちにリセット信号rを出力
する。カウンタ7はりセットされるが、キャリヤ信号が
継続しているので。The bit demodulation algorithm of the present invention will first be explained using FIGS. 6 and 6 for the case where there is a carrier. carrier signal a of arbitrary bit length
When input, the counter 7 of the demodulator 3 starts counting amplifier, and at the same time, the signal is input to the IRQ terminal of the transmitting/receiving controller 4. When the transmitting/receiving controller 4 receives an IRQ, it monitors the counter output for 14 hours, and if a count number above a certain value is detected during that time, it determines that it is not noise but a normal carrier signal, and transmits/receives after the IRQ occurs. The internal timer t of the controller 4 is run automatically and the value of the counter 7 is monitored after a time T1 has elapsed. If the counter value is within the set range, it is determined that the carrier is continuous for T1 time. After checking the counter value, immediately output the reset signal r. Counter 7 is set, but the carrier signal continues.
ふたたびカウントを始める。次にT1時間経過後ふたた
びカウンタ値を続みキャリヤの持続時間を測定し、T1
時間のキャリヤがどれだけ持続しているかによって、ビ
ット ’o’ 、ビットゞ1′ 。Start counting again. Next, after T1 time has elapsed, the counter value is counted again to measure the duration of the carrier, and T1
Bit 'o', bit '1' depending on how long the time carrier lasts.
5TOP 、ROMを判別する。電力練玉にキャリヤ信
号がなくなると、IRQ受は付は可能状態となり次のキ
ャリヤ入力を待つ。ここで、前述のIRQ発生によって
自走開始したタイマーは、T。5TOP, determine ROM. When there is no more carrier signal in the power supply, the IRQ receiver becomes available and waits for the next carrier input. Here, the timer that started running due to the above-mentioned IRQ generation is T.
時間を一周期としたタイマ出力を出すから、以後T、ご
とのカウンタ値を監視すれば、77時間内に電力線りに
存在したキャリヤ数を判定できることになる。更に電力
線りのキャリヤ信号が無い状態からキレリヤが有る状態
に変化した時に送受信コントローラ4の内部タイマーを
リセットするから、最大でも6T4.最小2T、 で
リセットすることができるから、最悪でも前述の調歩同
期方式の約半分で、再び同期をとることができる。Since the timer output is made with time as one cycle, by monitoring the counter value every T thereafter, it is possible to determine the number of carriers present in the power line within 77 hours. Furthermore, since the internal timer of the transmitting/receiving controller 4 is reset when the state changes from no carrier signal on the power line to a state where there is a clear carrier signal, the maximum time is 6T4. Since it can be reset with a minimum of 2T, synchronization can be achieved again in about half the time required by the asynchronous synchronization method described above at the worst.
発明の効果
本発明は調歩同期方式の様にスタートビットによる1メ
ツセ一ジフレーム同期によって発生する誤差蓄積がビッ
ト当りのサンプリングに悪影響を及ぼすことが少く、さ
らにはビット同期方式の様rデータと別に同期信号を伝
送する必要がない。Effects of the Invention The present invention has the advantage that, unlike the start-stop synchronization method, error accumulation caused by one-message frame synchronization using a start bit has little adverse effect on sampling per bit, and furthermore, unlike the bit synchronization method, the error accumulation caused by synchronization of one frame per frame with a start bit has little adverse effect on sampling per bit. There is no need to transmit a synchronization signal.
壕だ搬送通信装置のキャリヤの検出がなされ、しかも、
一定時間内1で規定数似ヒのキャリヤ入力があった時に
始めて信号キャリヤと判定するから。The carrier of the underground transport communication device was detected, and
This is because it is determined that it is a signal carrier only when a specified number of similar carriers are input within a certain period of time.
9・、−フ インパルスノイズ等、持続時間の短いノイズや。9., -F Noise of short duration, such as impulse noise.
低周波ノイズによってリセットされることがなく信頼性
の高い同期方法が得られる。A highly reliable synchronization method is obtained without being reset by low frequency noise.
第1図は本発明による同期通信方式を採用した通信装置
のブロック図、第2図は第1図の各部の信号波形図、第
3図ムはビット″11′の連続時のキャリヤ波形図、第
3図Bはビット50′の連続時のキャリヤ波形図、第3
図Cは5TOPビツトの信号波形図、第3図りはROM
ビットの信号波形図、第4図はメツセージフレームの構
成図、第6図、は復調部の各信号波形図、第6図は復調
部の具体的構成図、第7図A、Bはそれぞれ従来方式の
信号波形図である。
1・・・・・・信号重畳分離用トランス、2・・・・・
・受信増幅部、3・・・・・・復調部、4・・・・・・
送受信コントローラ、5・・・・・・機器制御部、6・
・・・・・アドレス設定部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図
第3図
第5図
第1図FIG. 1 is a block diagram of a communication device adopting the synchronous communication method according to the present invention, FIG. 2 is a signal waveform diagram of each part of FIG. 1, and FIG. 3 is a carrier waveform diagram when bits "11'" are continuous. Figure 3B is a carrier waveform diagram when bits 50' are continuous;
Figure C is a signal waveform diagram of 5TOP bits, and the third figure is a ROM diagram.
Bit signal waveform diagram, Figure 4 is a message frame configuration diagram, Figure 6 is each signal waveform diagram of the demodulation section, Figure 6 is a concrete configuration diagram of the demodulation section, and Figures 7A and B are conventional diagrams. FIG. 3 is a signal waveform diagram of the method. 1...Transformer for signal superposition and separation, 2...
・Reception amplification section, 3... Demodulation section, 4...
Transmission/reception controller, 5... equipment control section, 6.
...Address setting section. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 5 Figure 1
Claims (1)
信装置で、搬送キャリヤの重畳される時間、搬送キャリ
ヤの休止される時間によってビットの定義を行うエンコ
ード方式をとり、搬送キャリヤが検出される毎にビット
同期を行い、更にビット同期のための信号検出を定義さ
れたビットの決められた時間から一定時間だけ行い、し
かも一定時間以上キャリヤ検出できた時にのみ同期の確
立を行うことを特徴とする同期通信方法。A carrier communication device that performs communication by superimposing high-frequency signals on a commercial power line. It uses an encoding method that defines bits by the time the carrier is superimposed and the time the carrier is stopped, and each time a carrier is detected. The method is characterized in that bit synchronization is performed, furthermore, signal detection for bit synchronization is performed for a certain period of time from a predetermined time of a defined bit, and synchronization is established only when a carrier can be detected for a certain period of time or more. Synchronous communication method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60076921A JPS61234638A (en) | 1985-04-11 | 1985-04-11 | Method for synchronous communication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60076921A JPS61234638A (en) | 1985-04-11 | 1985-04-11 | Method for synchronous communication |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61234638A true JPS61234638A (en) | 1986-10-18 |
Family
ID=13619167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60076921A Pending JPS61234638A (en) | 1985-04-11 | 1985-04-11 | Method for synchronous communication |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61234638A (en) |
-
1985
- 1985-04-11 JP JP60076921A patent/JPS61234638A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6235724A (en) | Bridge/repeater for transformer of line of electric force carrier communicator | |
EP0119003A3 (en) | Method and apparatus for the detection and regeneration of a lost token in a token based data communications network | |
JP2580211B2 (en) | Communication device | |
JPS61234638A (en) | Method for synchronous communication | |
JPH0983608A (en) | Time synchronization device | |
JPS6234425A (en) | Line of electric force carrier communicator | |
JP3085448B2 (en) | Communications system | |
JPS6336587B2 (en) | ||
JPH04157938A (en) | Communication error check method in communication system | |
JPH03192855A (en) | Synchronizing data reception circuit | |
JPH0141254Y2 (en) | ||
JP2605051B2 (en) | Communication device | |
JP2558119B2 (en) | Transceiver circuit | |
JPH0738554A (en) | Burst signal phase control circuit | |
JP2969868B2 (en) | Fixed interval short fixed length data transmission method | |
JPH0156386B2 (en) | ||
JPH0621999A (en) | Serial communication equipment | |
JPS5937748A (en) | Receiver for optical transmission | |
JPH0715419A (en) | Controller for device | |
JPS58200653A (en) | Communication system of start-stop synchronous method | |
JPH0616619B2 (en) | Out-of-sync detection circuit | |
JPS60174530A (en) | Digital phase synchronizing circuit | |
JPH01222544A (en) | Power line carrier | |
JPH0358213B2 (en) | ||
JPS61245658A (en) | Data used jointly with clock transmitting system |