JPS61228693A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS61228693A
JPS61228693A JP7065785A JP7065785A JPS61228693A JP S61228693 A JPS61228693 A JP S61228693A JP 7065785 A JP7065785 A JP 7065785A JP 7065785 A JP7065785 A JP 7065785A JP S61228693 A JPS61228693 A JP S61228693A
Authority
JP
Japan
Prior art keywords
layer
inp
current
semiconductor laser
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7065785A
Other languages
Japanese (ja)
Inventor
Kunihiko Kodama
邦彦 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7065785A priority Critical patent/JPS61228693A/en
Publication of JPS61228693A publication Critical patent/JPS61228693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent leaking currents from a current stripe layer in a semiconductor laser, by continuously providing a super lattice layer comprising a BaxCa1-xF2 layer and an InP layer, on both side surfaces of a current stripe layer including an active layer, which undergoes mesa etching, and on the surface of a buffer layer, as current layers of III-V-group semiconductor laser. CONSTITUTION:On an N-InP substrate 11, an N-InP layer of a buffer layer 12, an InGaAsP layer which is an active layer 13, and a P-InP layer which is a clad layer 14 undergo mesa etching, and a current stripe part is formed. Super lattice layers 16 comprising BaxCa1-xF2/InP are formed on the mesa-etched side surface and on the surface of the buffer layer 12 so that the several tens of layers are alternately laminated in the form of bent continuous layers. Therefore, a blocking layer is not necessary at the embedded part. A non-doped InP layer 17 is formed. Since the current constriction layers 16, which are formed by alternately laminating BaxCa1-xF2 and InP, are an insulator, leaking currents are remarkably reduced.

Description

【発明の詳細な説明】 [概要] 本発明は、半導体レーザ発光装置であって、■−V族半
導体レーザの電流狭窄層を、本発明では活性層を含む電
流ストライプのメサエッチングを行なった両側面と、バ
ッファ層の表面に弗化バリウムカルシウム層とインジウ
ム燐層からなる超格子層を連続的に設けることにより、
半導体レーザの電流ストライプ層からの漏洩電流を防止
したものである。
[Detailed Description of the Invention] [Summary] The present invention provides a semiconductor laser light emitting device, in which a current confinement layer of a ■-V group semiconductor laser is formed by mesa-etching a current stripe including an active layer on both sides. By continuously providing a superlattice layer consisting of a barium calcium fluoride layer and an indium phosphorus layer on the surface and the surface of the buffer layer,
This prevents leakage current from the current stripe layer of the semiconductor laser.

[産業上の利用分野] 本発明は、半導体発光装置に係り、特に半導体レーザの
新しい電流狭窄層の構造に関する。
[Industrial Application Field] The present invention relates to a semiconductor light emitting device, and particularly to a new current confinement layer structure of a semiconductor laser.

近時、半導体発光装置として半導体レーザが広範囲に使
用されており、その半導体レーザの構造も多種にわたる
が、比較的一般的な構造として、埋め込み型のダブルへ
テロ構造の半導体レーザが利用されている。
Recently, semiconductor lasers have been widely used as semiconductor light-emitting devices, and there are many types of semiconductor laser structures, but a buried double heterostructure semiconductor laser is used as a relatively common structure. .

従来この半導体レーザでは、電流狭窄層としてp−n接
合が用いられているが、p−n接合の半導体レーザでは
例えば半導体レーザの動作温度が50℃程度の高温にな
ると、p−n接合部に逆方向の飽和電流が増加し、又電
流ストライプ層と電流狭窄層界面における漏洩電流が増
加して、半導体レーザの高出力動作に限界があるため、
これの改善が要望さている。
Conventionally, this semiconductor laser uses a p-n junction as a current confinement layer, but in a p-n junction semiconductor laser, when the operating temperature of the semiconductor laser reaches a high temperature of about 50 degrees Celsius, the p-n junction The saturation current in the reverse direction increases, and the leakage current at the interface between the current stripe layer and the current confinement layer increases, which limits the high output operation of the semiconductor laser.
Improvements to this are requested.

[従来の技術] 第3図は、従来構造における半導体レーザの要部斜視図
を示している。
[Prior Art] FIG. 3 shows a perspective view of essential parts of a semiconductor laser having a conventional structure.

n−1nP基板1があり、その表面にバッファ層2のn
−InP層があって、メサ形状になされた活性層3はI
nGaAsPで形成され、その上にクラッド層4として
p−1nP層があり、その表面にコンタクト層5として
p −(n G a A S P層が形成されている。
There is an n-1nP substrate 1 with a buffer layer 2 on its surface.
-The active layer 3, which has an InP layer and has a mesa shape, is an I
It is formed of nGaAsP, on which a p-1nP layer is formed as a cladding layer 4, and a p-(nGaAsP layer is formed as a contact layer 5 on its surface).

埋め込み型構造として、活性層を含むメサ形状の側面に
は、電流狭窄層を形成するブロッキング層としてp−I
nP層6と、その上にn−1nPブロフキング層7が積
層されており、このような積層構造は、エピタキシャル
成長によって形成されるが、最終工程でCr / A 
uの上部電極8と、A u / S n等で形成された
下部電極9で半導体レーザが構成される。
As a buried structure, a p-I layer is formed on the side surface of the mesa shape including the active layer as a blocking layer to form a current confinement layer.
An nP layer 6 and an n-1nP broaching layer 7 are laminated thereon. Such a laminated structure is formed by epitaxial growth, but Cr/A is grown in the final step.
A semiconductor laser is constituted by an upper electrode 8 made of U and a lower electrode 9 made of A u /S n or the like.

半導体レーザを最も効率良く動作させるには、活性層3
を含めたバッファ層2とクラッド層4のメサ形状をして
いる電流ストライプ層を流れる動作層電流をメサ領域の
側面に漏洩させないようにすることが重要である。
In order to operate the semiconductor laser most efficiently, the active layer 3
It is important to prevent the active layer current flowing through the mesa-shaped current stripe layer including the buffer layer 2 and cladding layer 4 from leaking to the side surfaces of the mesa region.

然しなから、従来のp−n接合のブロッキング層を有す
る電流狭窄層では、半導体レーザの動作中の温度が上昇
すると、電流狭窄効果が低下し、動作層電流がメサ領域
の電流ストライプ層からメサ領域の側面に漏洩するとい
う不都合がある。
However, in a current confinement layer having a conventional p-n junction blocking layer, when the temperature during operation of a semiconductor laser increases, the current confinement effect decreases, and the active layer current flows from the current stripe layer in the mesa region to the mesa region. There is an inconvenience that it leaks to the sides of the area.

このように従来構造では、電流狭窄層における逆方向飽
和電流の増加や電流ストライプ部とブロック層の界面の
漏洩電流のため、半導体レーザの高出力、高温動作等が
著しく制限されるという欠点がある。
As described above, the conventional structure has the disadvantage that high output and high temperature operation of the semiconductor laser are severely restricted due to an increase in reverse saturation current in the current confinement layer and leakage current at the interface between the current stripe and the blocking layer. .

[発明が解決しようとする問題点] 埋め込み型ダブルへテロ構造の半導体レーザでは、半導
体レーザの高温動作時に、ブロッキング層のp−n接合
部での逆方向飽和電流の増加や、電流ストライプ部とブ
ロッキング層の界面の漏洩電流が流れることが問題点で
ある。
[Problems to be solved by the invention] In a buried double heterostructure semiconductor laser, during high-temperature operation of the semiconductor laser, the reverse saturation current increases at the p-n junction of the blocking layer, and the current stripe portion The problem is that leakage current flows at the interface of the blocking layer.

[問題点を解決するための手段] 第1図は、本発明の半導体レーザの原理を示す要部断面
図である。
[Means for Solving the Problems] FIG. 1 is a sectional view of essential parts showing the principle of the semiconductor laser of the present invention.

m−v族として、InP材料を使用した半導体レーザで
あり、n−InP基板11上にバッファ層12のn−I
nP層と、活性層13であるInGaAsP層と、クラ
ッド層14であるp−1nPとがメサエッチングがなさ
れて電流ストライプ部が形成され、メサエッチングをし
た側面とバッファ層12の表面上とに、弗化バリウム−
カルシウム/インジウム燐(Bax CahxF2 /
1 nP)からなる超格子層16を折れ曲がった連続層
で、数十層を交互に成長させ、従って、埋め込み部には
ブロッキング層を不要であるので、ノンドープのInP
層17を生成させたものである。
This is a semiconductor laser using InP material as an m-v group, and an n-I layer of a buffer layer 12 is formed on an n-InP substrate 11.
The nP layer, the InGaAsP layer that is the active layer 13, and the p-1nP layer that is the cladding layer 14 are mesa-etched to form a current stripe portion, and on the mesa-etched side surface and the surface of the buffer layer 12. barium fluoride
Calcium/Indium Phosphate (Bax CahxF2/
The superlattice layer 16 consisting of 1 nP) is a bent continuous layer, and several tens of layers are grown alternately. Therefore, there is no need for a blocking layer in the buried part, so non-doped InP is used.
This is the layer 17 produced.

[作用] 本発明の半導体レーザの電流狭窄層は、従来の1’n 
Pの単なるp−n接合による漏洩電流の阻止ではなく、
超格子層のBa X Ca t−x F 2が良好なる
絶縁層であることと、InPと極めて良好な格子整合す
ることを利用し、それらの層を交互に積層することで電
流狭窄層を形成するものであって、メサ形状の側面部か
らバッファ層の上面を含めて連続層で電流狭窄層を形成
することにより、完全に漏洩電流を阻止することができ
る。
[Function] The current confinement layer of the semiconductor laser of the present invention is different from the conventional 1'n
It is not just a simple p-n junction of P that prevents leakage current,
Utilizing the fact that the superlattice layer Ba x Ca t-x F 2 is a good insulating layer and has an extremely good lattice match with InP, a current confinement layer is formed by stacking these layers alternately. By forming the current confinement layer as a continuous layer from the side surface of the mesa shape to the upper surface of the buffer layer, leakage current can be completely blocked.

[実施例] 第2図は、本発明による半導体レーザの電流狭窄層を説
明するために、第1図のE部を拡大した要部断面図であ
る。
[Example] FIG. 2 is an enlarged cross-sectional view of a main part of section E in FIG. 1, in order to explain the current confinement layer of a semiconductor laser according to the present invention.

n−InP基板11の表面にバッファ層12のn −I
nP層があり、メサ形状になされた活性層13としてI
nGaAsp層が形成され、その上にクラッド層14と
してp−InP層と、その表面にコンタクト層15とし
てp−InGaAsP層が形成されている。
The n-I layer of the buffer layer 12 is formed on the surface of the n-InP substrate 11.
There is an nP layer, and I is used as the mesa-shaped active layer 13.
An nGaAsp layer is formed, on which a p-InP layer is formed as a cladding layer 14, and a p-InGaAsP layer is formed as a contact layer 15 on the surface thereof.

本発明の、埋め込み型構造としての活性層を含むメサ形
状の側面と、バッファ層12上に形成される電流狭窄層
16は、バッファ層の上部とメサ形状の側面に連続的な
積層を行うものであり、約150人程度の厚みのB a
x Cax−x F 2 Jll aと、約300人程
度の厚みの1nPJifbを交互に約100層程度を積
層した超格子構造であって、全体で厚みが数μ鋼になる
ようにする。
In the present invention, the mesa-shaped side surface including the active layer as a buried structure and the current confinement layer 16 formed on the buffer layer 12 are continuously laminated on the upper part of the buffer layer and the mesa-shaped side surface. , and the thickness of B a is about 150 people.
It is a superlattice structure in which about 100 layers of x Cax-x F 2 Jlla and 1nP Jifb with a thickness of about 300 people are laminated alternately, and the total thickness is several micrometers of steel.

このように成膜された電流狭窄層の外側の埋め込み層に
は、ノンドープのInP層17を形成することによって
なされる。
A non-doped InP layer 17 is formed as a buried layer outside the current confinement layer thus formed.

BaXCa1−xF2の成膜は、分子線エピタキシャル
成長方法でもよいし、又有機金属エピタキシャル成長方
法によっても形成が可能である。
The BaXCa1-xF2 film can be formed by a molecular beam epitaxial growth method or by an organometallic epitaxial growth method.

このように、BaXCahxF2とInPとの交互積層
によって構成された電流狭窄層は絶縁体であるために、
半導体レーザのストライプ電流層からの電流漏洩が著し
く減少し、従来の電流値の約1/10になる。
In this way, since the current confinement layer formed by alternating layers of BaXCahxF2 and InP is an insulator,
Current leakage from the stripe current layer of the semiconductor laser is significantly reduced to about 1/10 of the conventional current value.

この結果、従来に比較して、本発明の半導体レーザの閾
値電流は20%の減少になり、閾値電流の温度特性は絶
対温度で140度程度になって、従来に比較して50度
以上の改善を行うことができた。
As a result, the threshold current of the semiconductor laser of the present invention is reduced by 20% compared to the conventional one, and the temperature characteristic of the threshold current is about 140 degrees in absolute temperature, which is more than 50 degrees compared to the conventional one. We were able to make improvements.

[発明の効果] 以上、詳細に説明したように、本発明による半導体レー
ザの電流狭窄層は優れた絶縁性を有しており、その結果
漏洩電流の少ない高品質のレーザ特性を有し、レーザ装
置の品質向上に供し得るという効果大なるものがある。
[Effects of the Invention] As explained above in detail, the current confinement layer of the semiconductor laser according to the present invention has excellent insulating properties, and as a result, it has high quality laser characteristics with low leakage current, and the laser This has a great effect in improving the quality of the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による半導体レーザの斜視図、第2図
は、本発明による電流狭窄層の断面図、第3図は、従来
の半導体レーザの斜視図、図において、 11はn−1nP基板、 12はバフフッ層、13は活
性層、     14はクラッド層、15はコンタクト
層、  16は電流狭窄層、17はノンドープのInP
層、 をそれぞれ示している。
FIG. 1 is a perspective view of a semiconductor laser according to the present invention, FIG. 2 is a cross-sectional view of a current confinement layer according to the present invention, and FIG. 3 is a perspective view of a conventional semiconductor laser. In the figure, 11 is n-1nP Substrate, 12 is a buff layer, 13 is an active layer, 14 is a cladding layer, 15 is a contact layer, 16 is a current confinement layer, 17 is a non-doped InP
The layers and are shown respectively.

Claims (1)

【特許請求の範囲】 III−V族半導体レーザの活性層(13)を含みメサエ
ッチングがなされた電流ストライプの両側面と、埋め込
まれたノンドープ層(17)とバッファ層(12)の境
界に、 交互に積層した弗化バリウムカルシウム層とインジウム
燐層からなる超格子層を有する電流狭窄層(16)を形
成させたことを特徴とする半導体発光装置。
[Claims] On both sides of the mesa-etched current stripe including the active layer (13) of the III-V semiconductor laser, and on the boundary between the buried non-doped layer (17) and the buffer layer (12), A semiconductor light emitting device characterized in that a current confinement layer (16) is formed having a superlattice layer consisting of a barium calcium fluoride layer and an indium phosphorus layer alternately laminated.
JP7065785A 1985-04-02 1985-04-02 Semiconductor light emitting device Pending JPS61228693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7065785A JPS61228693A (en) 1985-04-02 1985-04-02 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7065785A JPS61228693A (en) 1985-04-02 1985-04-02 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS61228693A true JPS61228693A (en) 1986-10-11

Family

ID=13437943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7065785A Pending JPS61228693A (en) 1985-04-02 1985-04-02 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS61228693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302791A (en) * 1988-02-02 1989-12-06 Nec Corp Buried structure semiconductor laser
US5309467A (en) * 1991-10-08 1994-05-03 Nec Corporation Semiconductor laser with InGaAs or InGaAsP active layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302791A (en) * 1988-02-02 1989-12-06 Nec Corp Buried structure semiconductor laser
US5309467A (en) * 1991-10-08 1994-05-03 Nec Corporation Semiconductor laser with InGaAs or InGaAsP active layer

Similar Documents

Publication Publication Date Title
JPS62130581A (en) Semiconductor laser
JPS61228693A (en) Semiconductor light emitting device
JP6942261B1 (en) Manufacturing method of optical semiconductor device
JPS63144589A (en) Semiconductor laser element
JPS61230388A (en) Buried type semiconductor laser
JPS6124839B2 (en)
JPS61176181A (en) Semiconductor light emitting device
JPH0438880A (en) Semiconductor light emitting element
JPS6257271A (en) Semiconductor laser device
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPWO2020090078A1 (en) Optical semiconductor device and manufacturing method of optical semiconductor device
JPS61150294A (en) Semiconductor light emitting device
JPS6346789A (en) Buried high resistance type semiconductor laser
JPS61145885A (en) Semiconductor light emitting device
JPS6392078A (en) Semiconductor laser element
JPS62221180A (en) Distributed reflection semiconductor laser
JPS5884485A (en) Buried hetero-structure semiconductor laser
JPS62259490A (en) Buried hetero structure semiconductor laser
JPH04320083A (en) Semiconductor laser element and manufacture thereof
JPS62296582A (en) Semiconductor laser device
JPH0482074B2 (en)
JPH03174792A (en) Semiconductor laser device
JPS61194891A (en) Semiconductor laser element
JPH04130689A (en) Semiconductor laser