JPH04130689A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04130689A
JPH04130689A JP25074390A JP25074390A JPH04130689A JP H04130689 A JPH04130689 A JP H04130689A JP 25074390 A JP25074390 A JP 25074390A JP 25074390 A JP25074390 A JP 25074390A JP H04130689 A JPH04130689 A JP H04130689A
Authority
JP
Japan
Prior art keywords
layer
active layer
algainp
semiconductor laser
well structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25074390A
Other languages
Japanese (ja)
Other versions
JP2636071B2 (en
Inventor
Ichiro Yoshida
吉田 伊知朗
Tsukuru Katsuyama
造 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2250743A priority Critical patent/JP2636071B2/en
Priority to US07/761,069 priority patent/US5276698A/en
Priority to DE69132860T priority patent/DE69132860T2/en
Priority to EP91116038A priority patent/EP0476689B1/en
Publication of JPH04130689A publication Critical patent/JPH04130689A/en
Priority to US08/233,437 priority patent/US5496767A/en
Application granted granted Critical
Publication of JP2636071B2 publication Critical patent/JP2636071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce an oscillation threshold value and to perform a continuous oscillation by forming a well structure of an energy band due to a difference of composition ratios of an active layer doped with Al of a photoconductive layer and a light confining layer and applying a compression stress to the active layer. CONSTITUTION:An n-type AlGaInP clad layer 5, an AlGaInP photoconductive layer 6 and a p-type AlGaInP clad layer 7 are provided, and a well structure of an energy band is formed in the layer 6. Electrons and holes injected from an n-type electrode 3 and a p-type electrode 11 are confined in an AlGaInP strain active layer 62 to irradiate a light. Here, the lattice constant (a) of the layer 62 becomes larger by predetermined a than that (a) of an n-type GaAs substrate 2 and a compression stress is always applied, thereby reducing an oscillation threshold value. Accordingly, an oscillation threshold value is enhanced by Al doping to perform a continuous oscillation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザに関するものであり、特に可視
光の発光に適した半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser, and particularly to a semiconductor laser suitable for emitting visible light.

〔従来の技術〕[Conventional technology]

数年前まで、明るい赤色レーザ光を得る場合のほとんど
は、HeNeガスレーザを利用していた。
Until a few years ago, most cases of obtaining bright red laser light utilized HeNe gas lasers.

最近になって、Ga I nPを活性層とする可視光半
導体レーザの実用化が進み、0.67μmの波長の光で
あれば、半導体レーザで得られるようになった。
Recently, visible light semiconductor lasers with Ga I nP as an active layer have been put into practical use, and it has become possible to obtain light with a wavelength of 0.67 μm using semiconductor lasers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、波長0.67μmというのは、HeNeガスレ
ーザの波長0.6328μmよりも長いため、その視感
度はHeNeガスレーザよりも低い。このため、半導体
レーザの分野では、さらに波長を短くしてHeNeガス
レーザの波長0.6328μmに近付けたいという要求
がある。
However, since the wavelength of 0.67 μm is longer than the wavelength of 0.6328 μm of the HeNe gas laser, its visibility is lower than that of the HeNe gas laser. Therefore, in the field of semiconductor lasers, there is a demand to further shorten the wavelength to approach the wavelength of HeNe gas laser, 0.6328 μm.

一方、活性層にAlを加えると、発光波長を短くできる
ことがわかってきた。しがし、活性層にAftを加える
と、AIに関連した非発光再結合中心が増加することや
、活性層のバンドギャップが大きいためにキャリアの閉
じ込めが悪くなること等のためにレーザ発振が起こり難
くなり、室温で連続発振することが困難になる。たとえ
連続発振ができてもその寿命は短い。
On the other hand, it has been found that adding Al to the active layer can shorten the emission wavelength. However, when Aft is added to the active layer, the number of non-radiative recombination centers related to AI increases, and the carrier confinement deteriorates due to the large bandgap of the active layer, resulting in a decrease in laser oscillation. This makes it difficult for continuous oscillation to occur at room temperature. Even if continuous oscillation is possible, its lifetime is short.

本発明の課題は、このような問題点を解消することにあ
る。
An object of the present invention is to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の半導体レーザは、
光導波層がAlGaInP活性層とこれを上下から挾む
AlGaInP光閉じ込め層とで構成され、活性層と光
閉じ込め層の組成比の違いによって、エネルギバンドの
井戸構造が形成されていると共に活性層に圧縮応力が掛
けられているものである。
In order to solve the above problems, the semiconductor laser of the present invention includes:
The optical waveguide layer is composed of an AlGaInP active layer and an AlGaInP optical confinement layer sandwiching it from above and below, and due to the difference in composition ratio between the active layer and the optical confinement layer, an energy band well structure is formed and the active layer Compressive stress is applied.

〔作用〕[Effect]

活性層に圧縮応力が加わっているので、加わらない場合
に比べて発振しきい値が低い。したがって、AN添加に
よる発振しきい値の増大化に抗することができ、室温で
の連続発振が可能となる。
Since compressive stress is applied to the active layer, the oscillation threshold is lower than when no compressive stress is applied. Therefore, it is possible to resist an increase in the oscillation threshold due to the addition of AN, and continuous oscillation at room temperature is possible.

また、この圧縮応力はGaAs基板に対する活性層の格
子定数の差に基づく歪みで与えられるものであり、その
ために転位が入らない程度に薄くする必要があるが、活
性層の上下に光閉じ込め層が設けられているため光導波
層全体としての厚みは十分に確保できる。したがって、
光導波層の層厚に起因するもの、たとえば放射される光
の上下方向の拡がり等は従来と同様に抑えることができ
る。
In addition, this compressive stress is given by strain based on the difference in lattice constant of the active layer with respect to the GaAs substrate, so it needs to be thin enough to prevent dislocations. Since the optical waveguide layer is provided, a sufficient thickness can be ensured for the entire optical waveguide layer. therefore,
Problems caused by the thickness of the optical waveguide layer, such as the vertical spread of emitted light, can be suppressed in the same manner as in the past.

なお、波長が0.64μm以下で室温連続発振するレー
ザを従来の技術で得るのは困難であり、このようなとき
本発明は特に有用である。
Note that it is difficult to obtain a laser that continuously oscillates at room temperature with a wavelength of 0.64 μm or less using conventional techniques, and the present invention is particularly useful in such cases.

[実施例〕 第1図は本発明の一実施例を示す断面構造図である。こ
の半導体レーザ1は基板にn−GaAs基板2が用いら
れている。n−GaAs基板2の裏面にはn型電極3が
形成されており、上面にはn−GaAsバッファ層4を
介してn−A470aInPクラッド層5、A#Ga1
nP光導波層6、p−AllGa1nPクラッド層7お
よびp−GaInP層9がエピタキシャル成長により順
次積層されている。AJGalnP光導波層6は、3層
構造になっておりAJGalnP光閉じ込め層61、A
IGaJnPひずみ活性層62およびAjGalnP光
閉じ込め層63により構成されている。光導波層6の屈
折率はn−AlGaInPクラッド層5およびp−Al
GaInPクラッド層7よりも高いためs A I G
 a I n Pひずみ活性層62で発生したレーザ光
は光導波層6内に閉じこめられる。p−AlGaInP
クラッド層7は、図示のように両肩部がエツチング除去
されて紙面垂直方向に延びるメサ部が形成されている。
[Embodiment] FIG. 1 is a cross-sectional structural diagram showing an embodiment of the present invention. This semiconductor laser 1 uses an n-GaAs substrate 2 as a substrate. An n-type electrode 3 is formed on the back surface of the n-GaAs substrate 2, and an n-A470aInP cladding layer 5, A#Ga1 is formed on the top surface via an n-GaAs buffer layer 4.
An nP optical waveguide layer 6, a p-AllGa1nP cladding layer 7, and a p-GaInP layer 9 are sequentially laminated by epitaxial growth. The AJGalnP optical waveguide layer 6 has a three-layer structure, with the AJGalnP optical confinement layer 61, A
It is composed of an IGaJnP strained active layer 62 and an AjGalnP optical confinement layer 63. The refractive index of the optical waveguide layer 6 is that of the n-AlGaInP cladding layer 5 and the p-Al
Since it is higher than the GaInP cladding layer 7, s A I G
The laser light generated in the a I n P strained active layer 62 is confined within the optical waveguide layer 6 . p-AlGaInP
As shown in the figure, both shoulder portions of the cladding layer 7 are etched away to form a mesa portion extending in a direction perpendicular to the plane of the paper.

そのエツチング除去された部分にはp−GalnP層の
表面とほぼ同じ高さまでn−GaAsブロック層8が埋
め込まれており、さらに、この表面にはp−GaAsコ
ンタクト層10およびp電極11が形成されている。な
お、各層のキャリア濃度は、n−GaAs基板2および
n−GaAsバッファ層4でn=2X10  c+o 
  n−AIGaInPクラッド層5でn−2Xn−2
X1017 −ANGalnPクラッド層7でp−5X
1017an   p −G a I n P層9およ
びp−GaAsコンタクト層10でp = 2 X 1
018cm−3テある。また、各層の厚さは、n−Ga
As基板2で80u m s n  G a A Sバ
ッファ層4で0.5μm。
An n-GaAs block layer 8 is buried in the etched portion to almost the same height as the surface of the p-GalnP layer, and a p-GaAs contact layer 10 and a p-electrode 11 are further formed on this surface. ing. Note that the carrier concentration of each layer is n=2×10 c+o for the n-GaAs substrate 2 and the n-GaAs buffer layer 4.
n-2Xn-2 in n-AIGaInP cladding layer 5
p-5X in X1017-ANGalnP cladding layer 7
1017an p-G a I n P layer 9 and p-GaAs contact layer 10 with p = 2 x 1
There are 018cm-3te. Also, the thickness of each layer is n-Ga
The As substrate 2 has a thickness of 80 μm, and the GaAs buffer layer 4 has a thickness of 0.5 μm.

n−AlGaInPクラッド層5で1.czm、光導波
層6で0.21 pm、p−A(l Ga I nPク
ラッド層7で1μm(ただし、両肩部では0.5μm)
% n−GaAsブロック層8で0.2μm。
1 with n-AlGaInP cladding layer 5. czm, 0.21 pm for the optical waveguide layer 6, 1 μm for the Ga I nP cladding layer 7 (however, 0.5 μm for both shoulders)
% n-GaAs block layer 8 with a thickness of 0.2 μm.

p−GaAsコンタクト層10でO=  3amである
O=3 am in the p-GaAs contact layer 10.

第2図はn−Aj)GalnPクラッド層5、AllG
a1nP光導波層6、p−/1j7GalnPクラッド
層7におけるエネルギバンド図である。
Figure 2 shows n-Aj) GalnP cladding layer 5, AllG
It is an energy band diagram in the a1nP optical waveguide layer 6 and the p-/1j7GalnP cladding layer 7.

このように、光導波層6内にエネルギバンドの井戸構造
が作られている。したがって、n電極3およびp[極1
1から注入された電子とホールはこの井戸、すなわちA
lGaInPひずみ活性層62内に閉じこめられ、ここ
で発光が行われる。
In this way, an energy band well structure is created within the optical waveguide layer 6. Therefore, n electrode 3 and p[pole 1
The electrons and holes injected from 1 are in this well, that is, A
It is confined within the lGaInP strained active layer 62, where light emission occurs.

この実施例の特徴的なことは、AI?Ga1nPひずみ
活性層62の格子定数が、n−GaAs基板2の格子定
数aに対してΔaだけ大きい点にある。具体的にはΔa
/a−0,3%〜1%程度のずれがある。これに対して
、AlGaInP光閉じ込め層61および63を含む、
Aj)GalnPひずみ活性層62以外のエピタキシャ
ル層はその格子定数がn−GaAs基板2のそれとほぼ
一致している。そのため、A、pGalnPひずみ活性
層62には常に圧縮応力が掛かった状態になっている。
What is unique about this example is the AI? The lattice constant of the Ga1nP strained active layer 62 is larger than the lattice constant a of the n-GaAs substrate 2 by Δa. Specifically, Δa
/a- There is a deviation of about 0.3% to 1%. On the other hand, including AlGaInP optical confinement layers 61 and 63,
Aj) The lattice constants of the epitaxial layers other than the GalnP strained active layer 62 substantially match that of the n-GaAs substrate 2. Therefore, compressive stress is always applied to the A,pGalnP strained active layer 62.

したがって、圧縮応力が掛かっていない場合に比べて発
振しきい値を低くすることができる。
Therefore, the oscillation threshold can be lowered than when no compressive stress is applied.

このことは、Al添加によって発振しきい値が高くなり
連続発振が困難であった可視光半導体レーザ、すなわち
ANGalnPを活性層とする可視光半導体レーザにと
っては極めて有効である。
This is extremely effective for visible light semiconductor lasers in which the oscillation threshold increases due to Al addition and continuous oscillation is difficult, that is, visible light semiconductor lasers having ANGalnP as an active layer.

ところで、このように格子定数の違いによりひずみを与
えた場合、ひずみを受けている層の膜厚を十分に薄くし
ないと転位が入ってしまう。ひずみ量と転位が入らない
最大膜厚(臨界膜厚)との関係は、Ga1nPに関して
は、例えば、「第5回、OMVPE  国際会議(19
90年)」テ既に報告されており、A、90alnPに
関してもほぼ同じと考えられる。
By the way, when strain is applied due to differences in lattice constants, dislocations will occur unless the thickness of the layer undergoing strain is made sufficiently thin. Regarding Ga1nP, the relationship between the amount of strain and the maximum film thickness (critical film thickness) at which dislocations do not occur can be found at the 5th OMVPE International Conference (19
1990) has already been reported, and it is thought that it is almost the same for A and 90alnP.

本実施例では、CARGa   )  Inx   l
−x  y   1−y PとしたときのAl)GalnPひずみ活性層62の組
成比がx−0,26、y−0,43、AlGaInP光
閉じ込め層61および63の組成比がx−0,45、y
s++Q、5、並びにn−AlGa I nPクラッド
層5およびp−ANGalnPクラッド層7の組成比が
x−0,7、y−0,5である。こAjJGalnP混
晶半導体のGaAs半導体に対する格子定数のずれは、
yの値によって決まり、AlGaInPひずみ活性層6
2のみがn−GaAs基板2に対して格子定数がずれて
いる。本実施例のような構成では、AlGa I nP
ひずみ活性層62の膜厚を0.01μm(100A)と
すれば転位は生じない。なお、井戸が薄いと量子井戸に
なるが、本発明では量子効果はあまり重要ではなく、ひ
ずみが掛かつていることが重要である。また、一般に、
活性層が薄過ぎると、回折作用によって出射した光が上
下方向に拡がってしまうが、この構造では、光閉じ込め
層61.62が設けられ光導波層6としての厚さが十分
に確保されているので、出射する光の拡がりは抑えられ
る。
In this example, CARGa ) Inx l
-x y 1-y P, the composition ratio of the Al)GalnP strained active layer 62 is x-0,26, y-0,43, and the composition ratio of the AlGaInP optical confinement layers 61 and 63 is x-0,45 ,y
s++Q, 5, and the composition ratios of the n-AlGa I nP cladding layer 5 and the p-ANGalnP cladding layer 7 are x-0.7, y-0.5. The deviation of the lattice constant of this AjJGalnP mixed crystal semiconductor with respect to the GaAs semiconductor is
Determined by the value of y, the AlGaInP strained active layer 6
Only No. 2 has a lattice constant shifted from that of the n-GaAs substrate 2. In the configuration of this example, AlGaInP
If the thickness of the strained active layer 62 is 0.01 μm (100 A), no dislocation will occur. Note that if the well is thin, it becomes a quantum well, but in the present invention, the quantum effect is not so important, and it is important that strain is applied. Also, in general,
If the active layer is too thin, the emitted light will spread in the vertical direction due to diffraction, but in this structure, the optical confinement layers 61 and 62 are provided to ensure a sufficient thickness for the optical waveguide layer 6. Therefore, the spread of the emitted light can be suppressed.

ところで、本実施例の半導体レーザを実験的に駆動した
ところ、単に連続発振が達成できるだけでなく、極めて
特異な特性を示すことが確認された。すなわち、本実施
例の半導体レーザを一6℃の温度において駆動したとこ
ろ、その電流−光出力特性が第3図(a)に示すような
逆S字型となった。このような報告はこれまでにはなく
、ひずみ活性層62内で通常の活性層とは異なる発光プ
ロセスが起こっていることを示していると思われる。な
お、この実験に用いた半導体レーザのストライブ幅は5
μmであり、放射されるレーザ光の波長は約0.62μ
mである。この現象は、単に新しいだけでなく、産業上
も有用である。たとえば、第3図(b)のような特性の
通常のレーザと対にして用いれば、トータルの電流−光
出力特性は第3図(c)のようになり、同図中に示した
区間Aにおいては電流変化に対して安定した光出力が得
られる。
By the way, when the semiconductor laser of this example was experimentally driven, it was confirmed that it not only achieved continuous oscillation, but also exhibited extremely unique characteristics. That is, when the semiconductor laser of this example was driven at a temperature of -6 DEG C., its current-light output characteristics had an inverted S-shape as shown in FIG. 3(a). There has been no such report so far, and this seems to indicate that a light emitting process different from that in a normal active layer occurs within the strained active layer 62. The stripe width of the semiconductor laser used in this experiment was 5
μm, and the wavelength of the emitted laser light is approximately 0.62 μm.
It is m. This phenomenon is not only new, but also industrially useful. For example, if used in combination with a normal laser with characteristics as shown in Figure 3(b), the total current-light output characteristics will be as shown in Figure 3(c), and the area A shown in the figure will be In this case, stable optical output can be obtained against current changes.

第4図は本発明の他の実施例のエネルギバンド図を示す
ものである。この実施例ではレーザから高出力を得るた
めに、光導波層6のAIGaInPひずみ活性層62が
多層井戸構造になっている。
FIG. 4 shows an energy band diagram of another embodiment of the present invention. In this embodiment, in order to obtain high output from the laser, the AIGaInP strained active layer 62 of the optical waveguide layer 6 has a multilayer well structure.

井戸層65およびバリア層66の組成を(AIxGa 
  )  In   Pで表すと、井戸層65は1−x
  y   1−y x−0,2、y−0,43であり、バリア層66はx−
0,2、ymQ、36である。なお、AlGaInP光
閉じ込め層61、AjJGalnP光閉じ込め層63、
n−AllGa1nPクラッド層5およびp−Al1 
Ga I nPクラッド層7の組成は、上述した第1の
実施例と同じである。また、光導波層6の層厚は、0.
3μm1井戸層65およびバリア層66の層厚はそれぞ
れ100Aおよび50Aである。
The composition of the well layer 65 and barrier layer 66 is (AIxGa
) In P, the well layer 65 is 1-x
y 1-y x-0,2, y-0,43, and the barrier layer 66 is x-
0,2, ymQ, 36. Note that the AlGaInP optical confinement layer 61, the AjJGalnP optical confinement layer 63,
n-AllGa1nP cladding layer 5 and p-Al1
The composition of the Ga I nP cladding layer 7 is the same as in the first embodiment described above. Moreover, the layer thickness of the optical waveguide layer 6 is 0.
The layer thicknesses of the 3 μm one-well layer 65 and the barrier layer 66 are 100 A and 50 A, respectively.

一般に、多層井戸構造において井戸の厚み合計が大きく
なると、1つ1つの井戸の厚みが臨界膜厚以下でも転位
が入り易くなる。これに対して、この実施例ではバリア
層66に井戸層65とは逆向きの応力すなわち引っ張り
応力が加わるように格子定数が選ばれている。これによ
って、八Iにa InPひずみ活性層62全体の応力が
抑えられ、転位が生じない。
Generally, in a multilayer well structure, as the total thickness of the wells increases, dislocations tend to enter even if the thickness of each well is less than the critical film thickness. On the other hand, in this embodiment, the lattice constant is selected so that stress in the opposite direction to that of the well layer 65, that is, tensile stress, is applied to the barrier layer 66. As a result, the stress in the entire InP strained active layer 62 is suppressed, and dislocations do not occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体レーザによれば、
AlGaInP活性層に圧縮応力が加わっているので、
加わらない場合に比べて発振しきい値が低くなる。その
ために、連続発振が可能となり、従来は困難であった波
長0.67μm以下の可視光が得られる。
As explained above, according to the semiconductor laser of the present invention,
Since compressive stress is applied to the AlGaInP active layer,
The oscillation threshold becomes lower than when no addition is made. Therefore, continuous oscillation becomes possible, and visible light with a wavelength of 0.67 μm or less, which was difficult to obtain in the past, can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面構造図、第2図は
そのエネルギバンド図、第3図は電流−光出力特性を示
す図、第4図は他の実施例のエネルギバンド図である。 2−n −G a A s基板、5−n−Al Ga 
I nPクラッド層、6・・・光導波層、7・・・p−
A11GaInPクラッド層、61.63−ApGal
nP光閉じ込め層、62・・・Al)GalnPひずみ
活性層。
Fig. 1 is a cross-sectional structural diagram showing one embodiment of the present invention, Fig. 2 is an energy band diagram thereof, Fig. 3 is a diagram showing current-light output characteristics, and Fig. 4 is an energy band diagram of another embodiment. It is. 2-n-GaAs substrate, 5-n-AlGa
InP cladding layer, 6... optical waveguide layer, 7... p-
A11GaInP cladding layer, 61.63-ApGal
nP optical confinement layer, 62...Al)GalnP strained active layer.

Claims (1)

【特許請求の範囲】 1、GaAs基板を用いた半導体レーザにおいて、 光導波層がAlGaInP活性層とこれを上下から挾む
AlGaInP光閉じ込め層とで構成され、 前記活性層と光閉じ込め層の組成比の違いによって、エ
ネルギバンドの井戸構造が形成されていると共に前記活
性層に圧縮応力が掛けられていることを特徴とする半導
体レーザ。 2、井戸構造が多重井戸構造であり、各井戸間を隔てる
バリア層が引っ張り応力を受けている請求項1に記載の
半導体レーザ。
[Claims] 1. In a semiconductor laser using a GaAs substrate, an optical waveguide layer is composed of an AlGaInP active layer and an AlGaInP optical confinement layer sandwiching this from above and below, and the composition ratio of the active layer and the optical confinement layer is 1. A semiconductor laser characterized in that a well structure of energy bands is formed and compressive stress is applied to the active layer due to the difference in energy band. 2. The semiconductor laser according to claim 1, wherein the well structure is a multi-well structure, and a barrier layer separating each well is subjected to tensile stress.
JP2250743A 1990-09-20 1990-09-20 Semiconductor laser Expired - Lifetime JP2636071B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2250743A JP2636071B2 (en) 1990-09-20 1990-09-20 Semiconductor laser
US07/761,069 US5276698A (en) 1990-09-20 1991-09-18 Semiconductor laser having an optical waveguide layer including an AlGaInP active layer
DE69132860T DE69132860T2 (en) 1990-09-20 1991-09-20 Semiconductor laser and method for its manufacture
EP91116038A EP0476689B1 (en) 1990-09-20 1991-09-20 Semiconductor laser and manufacturing method of the same
US08/233,437 US5496767A (en) 1990-09-20 1994-04-28 Semiconductor laser and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2250743A JP2636071B2 (en) 1990-09-20 1990-09-20 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04130689A true JPH04130689A (en) 1992-05-01
JP2636071B2 JP2636071B2 (en) 1997-07-30

Family

ID=17212381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2250743A Expired - Lifetime JP2636071B2 (en) 1990-09-20 1990-09-20 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2636071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473173A (en) * 1993-05-21 1995-12-05 Sharp Kabushiki Kaisha Quantum well structure having differentially strained quantum well layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130988A (en) * 1988-11-11 1990-05-18 Furukawa Electric Co Ltd:The Quantum well semiconductor laser element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130988A (en) * 1988-11-11 1990-05-18 Furukawa Electric Co Ltd:The Quantum well semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473173A (en) * 1993-05-21 1995-12-05 Sharp Kabushiki Kaisha Quantum well structure having differentially strained quantum well layers

Also Published As

Publication number Publication date
JP2636071B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US4757510A (en) Semiconductor laser device
EP0476689A2 (en) Semiconductor laser and manufacturing method of the same
JPS6288389A (en) Semiconductor light emitting element
US20180261981A1 (en) Semiconductor laser
JPH06302908A (en) Semiconductor laser
JPH0856045A (en) Semiconductor laser device
EP1211766B1 (en) InGaAsP semiconductor laser device
KR20060112257A (en) Semiconductor laser device
JP2636071B2 (en) Semiconductor laser
US20030039289A1 (en) Semiconductor laser device
JPH04103187A (en) Semiconductor laser and manufacture thereof
JP3572157B2 (en) Semiconductor laser device
US6661821B2 (en) Semiconductor laser element having great bandgap difference between active layer and optical waveguide layers, and including arrow structure formed without P-As interdiffusion
JP2860217B2 (en) Semiconductor laser device and method of manufacturing the same
JP2757578B2 (en) Semiconductor laser and method of manufacturing the same
JPS6367350B2 (en)
JPH0278290A (en) Semiconductor laser device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JP3820826B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor device
JPH0799363A (en) Semiconductor light-emitting device
JPS62296582A (en) Semiconductor laser device
JPH06237041A (en) High-output semiconductor laser
JPH0728094B2 (en) Semiconductor laser device
JP2001053382A (en) Semiconductor laser
JPH104239A (en) Semiconductor light emitting diode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14