JPH04103187A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH04103187A
JPH04103187A JP22369290A JP22369290A JPH04103187A JP H04103187 A JPH04103187 A JP H04103187A JP 22369290 A JP22369290 A JP 22369290A JP 22369290 A JP22369290 A JP 22369290A JP H04103187 A JPH04103187 A JP H04103187A
Authority
JP
Japan
Prior art keywords
active layer
disordered
diffused
quantum well
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22369290A
Other languages
Japanese (ja)
Inventor
Takashi Murakami
隆志 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22369290A priority Critical patent/JPH04103187A/en
Publication of JPH04103187A publication Critical patent/JPH04103187A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3413Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising partially disordered wells or barriers

Abstract

PURPOSE:To form a window structure which is restrained from increasing in threshold value and deteriorating in efficiency so as to enable a semiconductor laser to output a high power by a method wherein an SiO2 film is formed on the etched surface of a wafer close to the end of a resonator, Ga holes are diffused into the wafer through thermal annealing, and a multi-quantum well active layer is disordered to form a window structure. CONSTITUTION:An SiO2 film 9 is formed on the etched surface of a wafer near to the end face of a resonator, Ga holes are diffused into the wafer through thermal annealing to form a Ga hole diffusion section 13. The Ga holes are diffused into a multi-quantum well active layer 4 to induce a disordered part, and the band gap of the disordered Ga hole diffusion section 13 is larger than that of a non-disordered active layer 4. The Ga hole diffused part of the active layer 4 becomes larger than the Ga hole non-diffused part of the active layer in band gap, whereby a window structure is formed. As a disordered part is induced in an active layer, the active layer is hardly changed in impurity concentration before and after the diffusion of Ga holes, so that the active layer is prevented from increasing in loss due to the absorption of free carriers caused by an increase in impurity concentration when Zn is diffused.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は半導体レーザ及びその製造方法に関し、特に
高出力動作が可能な半導体レーザ及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser and a method for manufacturing the same, and more particularly to a semiconductor laser capable of high output operation and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第2図は従来の半導体レーザを示す図であり、レーザの
端面と内部とがそれぞれわかるように一部を切り取って
示している。第3図は従来の半導体レーザの共振器内部
を示す断面図であり、第4図は従来の半導体レーザの端
面を示す図である。
FIG. 2 is a diagram showing a conventional semiconductor laser, with a portion cut away so that the end face and interior of the laser can be seen. FIG. 3 is a sectional view showing the inside of a resonator of a conventional semiconductor laser, and FIG. 4 is a view showing an end face of the conventional semiconductor laser.

図において、1はp−GaAs基板、2はp−Alo、
z Gao、r As上クラッド層、3はp−A1、、
、sGa、、フsAs光ガイド層である。4は多重量子
井戸活性層であり、図示しない層厚80人のGaAs井
戸層を5層と層厚120人のAj!o、tGa、、、A
s1li壁層を6層を交互に積層した構造を有する。5
はn  Alo、tsGao、rsAS光ガイド層、6
はn−Alo、3Cae、As上クラッド層、7はn−
GaAsコンタクト層、8は亜鉛(Zn)拡散部、9は
S i O*膜、10はn側電極、11はp側電極、1
2は発光部である。
In the figure, 1 is a p-GaAs substrate, 2 is a p-Alo,
z Gao, r As upper cladding layer, 3 is p-A1,,
, sGa, and sAs light guide layer. 4 is a multiple quantum well active layer, which has five GaAs well layers (not shown) with a thickness of 80 people and Aj! with a thickness of 120 people. o,tGa,,,A
It has a structure in which six s1li wall layers are alternately laminated. 5
is n Alo, tsGao, rsAS light guide layer, 6
is n-Alo, 3Cae, As upper cladding layer, 7 is n-
GaAs contact layer, 8 zinc (Zn) diffusion part, 9 SiO* film, 10 n-side electrode, 11 p-side electrode, 1
2 is a light emitting part.

次に動作について説明する。Next, the operation will be explained.

電極10.11間に電圧をかけると、電流はnCaAs
コンタクト層7を通って流れる0本レーザはp型下クラ
ッド層2.多重量子井戸活性層4、n型上クラッド層6
からなる、いわゆるダブルへテロ構造(DH構造)にp
型光ガイド層3とn型光ガイドN5を付は加えた構造で
あり、注入された電流によって上記多重量子井戸活性層
4で発光が生じレーザ発振にいたる。
When a voltage is applied between the electrodes 10.11, the current flows through nCaAs
Zero laser beams flowing through the contact layer 7 are connected to the p-type lower cladding layer 2. Multi-quantum well active layer 4, n-type upper cladding layer 6
p in the so-called double heterostructure (DH structure) consisting of
It has a structure in which a type light guide layer 3 and an n type light guide N5 are added, and the injected current causes light emission in the multi-quantum well active layer 4, leading to laser oscillation.

また、この半導体レーザは、Znの拡散によって生じる
多重量子井戸の無秩序化現象を利用して、横モードの制
御と端面破壊レベルの向上を行っている。
Furthermore, this semiconductor laser utilizes the disordering phenomenon of multiple quantum wells caused by Zn diffusion to control the transverse mode and improve the level of end face destruction.

まず、横モードの制御について述べる。First, we will discuss transverse mode control.

上記多重量子井戸活性層4が無秩序化されると無秩序化
される前の多重量子井戸活性層4よりも屈折率が小さく
なる。従って、第3図に示すように、発光部120両側
をZn拡散を用いて無秩序化した上記多重量子井戸活性
層4ではさみこむと、光は無秩序化されていない上記発
光部12に閉じ込められる。無秩序化されていない部分
の幅を3μm以下程度にすることにより基本横モードで
発振させることができる。
When the multi-quantum well active layer 4 is disordered, its refractive index becomes smaller than that of the multi-quantum well active layer 4 before being disordered. Therefore, as shown in FIG. 3, when both sides of the light emitting section 120 are sandwiched between the multi-quantum well active layers 4 which are disordered using Zn diffusion, light is confined in the light emitting section 12 which is not disordered. By setting the width of the non-disordered portion to about 3 μm or less, it is possible to oscillate in the fundamental transverse mode.

次に、端面破壊レベルの向上について述べる。Next, we will discuss the improvement in the level of edge fracture.

半導体レーザを高出力動作させると、レーザ出射端面が
破壊されるという問題が生じる。この理由は次の通りで
ある。AfGaAs系レーザの端面は表面準位が多く、
これを介した非発光再結合が多い。端面近傍の多重量子
井戸活性層4に注入されたキャリアはこの非発光再結合
により失われるから、端面近傍の上記多重量子井戸活性
層4の注入キャリア密度は、チップ内部に比べて少ない
When a semiconductor laser is operated at high output, a problem arises in that the laser emitting end facet is destroyed. The reason for this is as follows. The end facet of an AfGaAs laser has many surface states.
There are many non-radiative recombinations via this. Since the carriers injected into the multi-quantum well active layer 4 near the end face are lost by this non-radiative recombination, the density of injected carriers in the multi-quantum well active layer 4 near the end face is lower than that inside the chip.

その結果、内部の高いキャリア密度によって作られる最
大利得波長(レーザの波長)に対して端面近傍の上記多
重量子井戸活性層4は吸収領域になる。光出力密度が高
くなると吸収領域での局所的発熱が大きくなり、温度が
上がってバンドギャップが縮小する。その結果、更に吸
収係数が大きくなって温度が上昇するという正帰還がか
かり、端面の結晶が熔融して端面破壊が生じる。第2図
に示した半導体レーザでは、この現象を防ぐために端面
付近の上記多重量子井戸活性層4をZn拡散によって無
秩序化させている。無秩序化させると上記多重量子井戸
活性層4のバンドギャップが大きくなるので、内部で生
じたレーザ光を吸収しなくなる。すなわち、窓構造が形
成される。そして端面破壊が生じに((なる。
As a result, the multi-quantum well active layer 4 near the end face becomes an absorption region for the maximum gain wavelength (laser wavelength) created by the high internal carrier density. As the optical power density increases, local heat generation in the absorption region increases, the temperature rises, and the bandgap decreases. As a result, the absorption coefficient further increases and the temperature rises, causing positive feedback, which melts the crystal at the end face and causes breakage of the end face. In the semiconductor laser shown in FIG. 2, in order to prevent this phenomenon, the multi-quantum well active layer 4 near the end face is disordered by Zn diffusion. When disordered, the band gap of the multi-quantum well active layer 4 increases, so that it no longer absorbs the laser light generated inside. That is, a window structure is formed. Then, end face destruction occurs.

また、共振器長は300〜400μmであり、窓部の長
さ(共振器方向)は通常15〜20μmである。これは
レーザ端面をへき開で形成する際のへき開位置精度から
決まる。ところで、上記多重量子井戸層4をZnの拡散
により無秩序化させるには、1〜5 X l O”cm
−”程度のZn濃度が必要である。Znの濃度が高くな
ると、フリーキャリア吸収によって光の損失が増える。
Further, the resonator length is 300 to 400 μm, and the window length (in the resonator direction) is usually 15 to 20 μm. This is determined by the cleavage position accuracy when forming the laser end face by cleavage. By the way, in order to disorder the multi-quantum well layer 4 by diffusion of Zn,
A Zn concentration on the order of 1.-" is required. As the Zn concentration increases, light loss increases due to free carrier absorption.

共振器内部の拡散していない領域では、損失αはl0C
II−’〜20cm−’程度であるのに対し、拡散を行
った窓部では損失αは225 cra−’〜450 C
11−’と大きくなる。レーザ発振を生じさせるために
は、電流を注入することによって得た利得を、損失より
も太きくしなければならないため、損失が増えればしき
い値電流が上昇することとなる。
In the undiffused region inside the resonator, the loss α is l0C
II-' ~ 20 cm-', whereas the loss α in the window section where diffusion is performed is 225 cra-' ~ 450 C
It becomes large as 11-'. In order to cause laser oscillation, the gain obtained by injecting current must be greater than the loss, so as the loss increases, the threshold current increases.

〔発明が解決しようとする課題] 従来の半導体レーザは以上のように構成されているので
、共振器端面付近での損失が大きく、しきい値電流が高
い、効率が悪いという問題点があった。
[Problems to be solved by the invention] Conventional semiconductor lasers are configured as described above, and therefore have problems such as large loss near the cavity end face, high threshold current, and poor efficiency. .

この発明は上記のような問題点を解消するためになされ
たもので、低しきい値でかつ効率のよい高出力動作の可
能な半導体レーザ及びその製造方法を得ることを目的と
する。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a semiconductor laser that has a low threshold value and is capable of efficient high-output operation, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザ及びその製造方法は、5i
ozlllを共振器端面近傍のみにてウェハ表面に形成
し、熱アニールを行い上記Si0g膜下の多重量子井戸
活性層を無秩序化したものである。
A semiconductor laser and a method for manufacturing the same according to the present invention are 5i
ozllll is formed on the wafer surface only in the vicinity of the resonator end face, and thermal annealing is performed to disorder the multi-quantum well active layer under the Si0g film.

〔作用〕[Effect]

この発明においては、340w膜を共振器端面近傍のみ
にてウェハ表面に形成し、熱アニールを行い上記SiO
2膜下の多重量子井戸活性層を無秩序化して窓構造を形
成するようにしたから、フリーキャリア吸収による損失
を低減でき、これにより、しきい値上界や効率劣化を防
止できる。
In this invention, a 340W film is formed on the wafer surface only near the resonator end face, and thermal annealing is performed to
Since the multi-quantum well active layer under the two films is disordered to form a window structure, loss due to absorption of free carriers can be reduced, thereby preventing the upper threshold limit and efficiency deterioration.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による半導体レーザ及びそ
の製造方法を示し、説明を簡単にするために、横モード
を制御していない構造例を示している。図において、第
2図、第3図と同一符号は同−又は相当部分を示し、ま
た6aは共振器端面付近のn  Aj!o、s Gao
、q As上クラッド層、6bは共振器内部のn  A
/!o、s Gao、7As上クラツド層、13はGa
空孔拡散部である。
FIG. 1 shows a semiconductor laser and a method for manufacturing the same according to an embodiment of the present invention, and for the sake of simplicity, shows an example of a structure in which the transverse mode is not controlled. In the figure, the same reference numerals as in FIGS. 2 and 3 indicate the same or corresponding parts, and 6a indicates n Aj! near the resonator end face. o,s Gao
, q As upper cladding layer, 6b is n A inside the resonator
/! o, s Gao, 7As upper cladding layer, 13 is Ga
This is a hole diffusion part.

次に製造工程について説明する。Next, the manufacturing process will be explained.

p−GaAs基板1上へP  Aj!o、s Gao、
wAs下クラりド層2.多重量子井戸活性層4.  n
Aj!6.30ao、t As上クりンドJii6a、
6b。
P Aj! onto the p-GaAs substrate 1! o,s Gao,
wAs lower cladding layer 2. Multi-quantum well active layer 4. n
Aj! 6.30ao, t As Kurind Jii6a,
6b.

n−CyaAsコンタクト層7を連続して成長させる。An n-CyaAs contact layer 7 is continuously grown.

次に共振器端面付近を上クラッド層6aの厚みが0.5
μm程度になるように表面からエツチングして、コンタ
クト層7と上クラッド層6bの一部を除去する。次いで
、共振器端面付近のエツチングしたウェハ表面上にS 
i Oz膜9を形成する。Sio2にはGaを吸い取る
性質があり、上記Sin、膜9直下のCaAs 6 a
中に1017Crl’程度のGa空孔が生じる。次いで
、950°C15秒間程度のアニールによりGa空孔の
拡散を行う。該アニールでは上記Si0g膜9と/lG
aAs結晶間で生じる熱膨張係数の違いによるストレス
が上記Ga空孔の拡散を加速し、上記Ga空孔がウェハ
中に950℃15秒で約0.5μm拡散し、Ga空孔拡
散部13を形成する。最後に、電極10.11を形成し
てウェハプロセスが終了する。
Next, the thickness of the upper cladding layer 6a near the resonator end face is 0.5
The contact layer 7 and a part of the upper cladding layer 6b are removed by etching from the surface to a thickness of about .mu.m. Next, S is deposited on the etched wafer surface near the cavity end face.
An iOz film 9 is formed. Sio2 has the property of absorbing Ga, and the above-mentioned Sin and CaAs 6 a directly under the film 9
Ga vacancies of about 1017 Crl' are generated therein. Next, Ga vacancies are diffused by annealing at 950° C. for about 15 seconds. In this annealing, the Si0g film 9 and /lG
The stress caused by the difference in thermal expansion coefficient between the aAs crystals accelerates the diffusion of the Ga vacancies, and the Ga vacancies diffuse into the wafer by approximately 0.5 μm in 15 seconds at 950°C, causing the Ga vacancy diffusion part 13 to Form. Finally, electrodes 10.11 are formed to complete the wafer process.

なお、共振器端面付近のみエツチングにより上記コンタ
クト層7及び上記上クラッド層6bの一部を除去する理
由は、S i Og膜9から活性層4までの距離を小さ
くするためである。アニールによる拡散時間を長くする
とGa空孔は深くまで拡散するが、共振器内部活性層4
付近のドーピングプロファイルも変化して、リモートジ
ャンクションが生じて特性を劣化させる恐れがあるので
、5in2膜9と多重量子井戸活性層4の距離を0゜5
μm程度に薄くしている。
The reason why the contact layer 7 and part of the upper cladding layer 6b are removed by etching only near the cavity end face is to reduce the distance from the SiOg film 9 to the active layer 4. If the diffusion time due to annealing is increased, the Ga vacancies will diffuse deeper, but
Since there is a possibility that the doping profile in the vicinity may change and remote junctions may occur, degrading the characteristics, the distance between the 5in2 film 9 and the multi-quantum well active layer 4 is set to 0°5
The thickness is about μm.

次に動作について説明する。上記Ga空孔が多重量子井
戸活性層4内に拡散することにより無秩序化が生じ、該
無秩序化したGa空孔拡散部13のバンドギャップは無
秩序化されていない活性層4のバンドギャップよりも大
きくなる。また、共振器端面付近にのみ上記SiO□膜
9を形成したので、共振器端面付近の上記Ga空孔が拡
散した多重量子井戸活性層4のバンドギャップが上記G
a空孔がない多重量子井戸活性層4のバンドギャップよ
りも大きくなり窓構造が形成される。本実施例では、G
a空孔によって無秩序化が生じるので、不純物濃度は拡
散前後で変化せず、Zn拡散時のような上記不純物濃度
の増大によって引き起こされるフリーキャリア吸収によ
る損失の増大はなくなる。
Next, the operation will be explained. When the Ga vacancies diffuse into the multi-quantum well active layer 4, disordering occurs, and the bandgap of the disordered Ga vacancy diffusion region 13 is larger than the bandgap of the active layer 4 which is not disordered. Become. Moreover, since the SiO□ film 9 is formed only near the cavity end face, the band gap of the multi-quantum well active layer 4 in which the Ga vacancies are diffused near the cavity end face is
The bandgap becomes larger than that of the multi-quantum well active layer 4 without a-vacancies, and a window structure is formed. In this example, G
Since disorder is caused by the a-vacancies, the impurity concentration does not change before and after diffusion, and there is no increase in loss due to free carrier absorption caused by an increase in the impurity concentration as in the case of Zn diffusion.

このように本実施例によれば、共振器端面付近のエツチ
ングしたウェハ表面上にSiO□膜9を形成し、熱アニ
ールによりGa空孔がウェハ中に拡散し、該Ga空孔の
拡散で多重量子井戸活性層4を無秩序化して窓構造を形
成するようにしたので、しきい値の上昇や効率の劣化の
ない窓構造を形成でき、高出力動作を可能にできる。
As described above, according to this embodiment, the SiO□ film 9 is formed on the etched wafer surface near the resonator end face, and Ga vacancies are diffused into the wafer by thermal annealing, and the diffusion of the Ga vacancies causes multiplexing. Since the quantum well active layer 4 is disordered to form a window structure, it is possible to form a window structure without raising the threshold value or deteriorating efficiency, and enables high output operation.

なお、上記実施例では横モード制御機構のない半導体レ
ーザを例に挙げて説明したが、横モード制御機構をもっ
た半導体レーザであってもよく、上記実施例と同様の効
果を奏する。
In the above embodiment, a semiconductor laser without a transverse mode control mechanism has been described as an example, but a semiconductor laser with a transverse mode control mechanism may also be used, and the same effects as in the above embodiment can be obtained.

また、上記実施例ではAffiGaAsff−GaAs
とって説明したが、AlGa InP系レーザであって
もよく、上記実施例と同様の効果が期待できる。また、
上記実施例ではp型基板をもつ半導体レーザを例にとっ
て説明したが、n型基板をもつ半導体レーザであっても
よ(、上記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, AffiGaAsff-GaAs
However, an AlGa InP laser may be used, and the same effects as in the above embodiment can be expected. Also,
In the above embodiment, a semiconductor laser having a p-type substrate has been explained as an example, but a semiconductor laser having an n-type substrate may also be used (the same effect as in the above embodiment can be obtained).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、共振器端面付近のエ
ツチングしたウェハ表面上に5in2膜を形成し、熱ア
ニールによりGa空孔をウェハ中に拡散し、これにより
多重量子井戸活性層を無秩序化して窓構造を形成したか
ら、しきい値の上昇や効率の劣化のない窓構造を形成で
き、高出力動作が可能な半導体レーザが得られる効果が
ある。
As described above, according to the present invention, a 5in2 film is formed on the etched wafer surface near the cavity end face, Ga vacancies are diffused into the wafer by thermal annealing, and the multi-quantum well active layer is thereby disordered. Since the window structure is formed using the same method, it is possible to form a window structure without raising the threshold value or deteriorating the efficiency, and there is an effect that a semiconductor laser capable of high output operation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における半導体レーザの斜
視図、第2図は従来の半導体レーザの斜視図で、端面部
と内部とを同時に示すためにレーザの一部を切り取って
示しである。第3図は第1図の内部を示す断面構造図、
第4図は第1図の端面部を示す断面構造図である。 図において、1はp−GaAs基板、2はp−Aj!o
、s Gao、t As下クラッド層、3はp−Aj!
 6. x* G a o、 ysA s光ガイド層、
4は多重量子井戸活性層、5はn  A l o、 t
sG a O,?!、A S光ガイド層、6はn  A
j!a、s f:yao、?As上クラッド層、6aは
共振器端面付近の上クラッド層、6bは共振器内部の上
クラッド層、7はn−CaAsコンタクト層、8はZn
拡散部、9は5in2膜、10はn側電極、11はp側
t8i、12は発光部、13はGa空孔拡散部である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a perspective view of a semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a perspective view of a conventional semiconductor laser, with a portion of the laser cut away to show the end face and the inside at the same time. . Figure 3 is a cross-sectional structural diagram showing the inside of Figure 1;
FIG. 4 is a cross-sectional structural diagram showing the end face portion of FIG. 1. In the figure, 1 is a p-GaAs substrate, 2 is a p-Aj! o
, s Gao, t As lower cladding layer, 3 is p-Aj!
6. x*G ao, ysA s light guide layer,
4 is a multi-quantum well active layer, 5 is n A lo, t
sG a O,? ! , A S light guide layer, 6 is n A
j! a,s f:yao,? 6a is the upper cladding layer near the cavity end face, 6b is the upper cladding layer inside the cavity, 7 is the n-CaAs contact layer, and 8 is the Zn upper cladding layer.
9 is a 5in2 film, 10 is an n-side electrode, 11 is a p-side t8i, 12 is a light emitting portion, and 13 is a Ga vacancy diffusion portion. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)量子井戸構造の活性層を有する半導体レーザにお
いて、 共振器端面近傍のみにてウェハ表面に形成されたSiO
_2膜と、 上記SiO_2膜下の多重量子井戸活性層であってアニ
ールによって無秩序化された領域を備えたことを特徴と
する半導体レーザ。
(1) In a semiconductor laser having an active layer with a quantum well structure, SiO formed on the wafer surface only near the cavity end facets
A semiconductor laser comprising: a _2 film; and a multi-quantum well active layer under the SiO_2 film, which is disordered by annealing.
(2)窓構造を有する半導体レーザの製造方法において
、 共振器端面近傍のみにてウェハ表面にSiO_2膜を形
成する工程と、 アニールを行い上記SiO_2膜下の多重量子井戸活性
層を無秩序化する工程とを含むことを特徴とする半導体
レーザの製造方法。
(2) A method for manufacturing a semiconductor laser having a window structure, which includes a step of forming a SiO_2 film on the wafer surface only in the vicinity of the cavity end face, and a step of annealing to disorder the multi-quantum well active layer under the SiO_2 film. A method for manufacturing a semiconductor laser, comprising:
JP22369290A 1990-08-22 1990-08-22 Semiconductor laser and manufacture thereof Pending JPH04103187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22369290A JPH04103187A (en) 1990-08-22 1990-08-22 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22369290A JPH04103187A (en) 1990-08-22 1990-08-22 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04103187A true JPH04103187A (en) 1992-04-06

Family

ID=16802155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22369290A Pending JPH04103187A (en) 1990-08-22 1990-08-22 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04103187A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649200A2 (en) * 1993-10-15 1995-04-19 International Business Machines Corporation Planar, topology-free, single-mode, semiconductor quantum-well window laser with current confinement
DE19615193A1 (en) * 1995-07-05 1997-01-16 Mitsubishi Electric Corp Semiconductor laser device and method of manufacturing the same
US6876002B2 (en) 2000-09-13 2005-04-05 Sharp Kabushiki Kaisha Semiconductor laser device and method for manufacturing the same
WO2009078482A1 (en) * 2007-12-19 2009-06-25 Rohm Co., Ltd. Semiconductor light-emitting device
JP2010541277A (en) * 2007-10-01 2010-12-24 コーニング インコーポレイテッド Quantum well disordering
JP2013110366A (en) * 2011-11-24 2013-06-06 Fujitsu Ltd Optical semiconductor device manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649200A2 (en) * 1993-10-15 1995-04-19 International Business Machines Corporation Planar, topology-free, single-mode, semiconductor quantum-well window laser with current confinement
EP0649200A3 (en) * 1993-10-15 1995-06-28 Ibm Planar, topology-free, single-mode, semiconductor quantum-well window laser with current confinement.
DE19615193A1 (en) * 1995-07-05 1997-01-16 Mitsubishi Electric Corp Semiconductor laser device and method of manufacturing the same
US5764669A (en) * 1995-07-05 1998-06-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser including disordered window regions
US6876002B2 (en) 2000-09-13 2005-04-05 Sharp Kabushiki Kaisha Semiconductor laser device and method for manufacturing the same
JP2010541277A (en) * 2007-10-01 2010-12-24 コーニング インコーポレイテッド Quantum well disordering
WO2009078482A1 (en) * 2007-12-19 2009-06-25 Rohm Co., Ltd. Semiconductor light-emitting device
JPWO2009078482A1 (en) * 2007-12-19 2011-05-06 ローム株式会社 Semiconductor light emitting device
US8411718B2 (en) 2007-12-19 2013-04-02 Rohm Co., Ltd. Semiconductor light-emitting device
JP2013110366A (en) * 2011-11-24 2013-06-06 Fujitsu Ltd Optical semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US6118800A (en) Semiconductor laser and cleaving method
US4329660A (en) Semiconductor light emitting device
US6654397B2 (en) Semiconductor laser device and manufacturing method thereof
JP2815769B2 (en) Manufacturing method of semiconductor laser
JPH04103187A (en) Semiconductor laser and manufacture thereof
US4759025A (en) Window structure semiconductor laser
US6778573B2 (en) Fundamental-transverse-mode index-guided semiconductor laser device having upper optical waveguide layer thinner than lower optical waveguide layer
JP3501676B2 (en) Method for manufacturing semiconductor laser device
US7173273B2 (en) Semiconductor laser device
JPH11340568A (en) Semiconductor device and its manufacture
JPH02228087A (en) Semiconductor laser element
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JPH10209553A (en) Semiconductor laser element
JPH06260715A (en) Semiconductor laser and manufacture thereof
JP2003124569A (en) Edge window semiconductor laser
JP3046454B2 (en) Quantum well semiconductor light emitting device
JPH06283801A (en) Semiconductor laser
JPH10223978A (en) Semiconductor laser and its manufacture
JP3028641B2 (en) Semiconductor laser and manufacturing method thereof
JP2938198B2 (en) Semiconductor laser device and method of manufacturing the same
JP3147399B2 (en) Semiconductor laser
JPH104239A (en) Semiconductor light emitting diode
JPH06237041A (en) High-output semiconductor laser
JPH0918082A (en) Semiconductor laser element
JP3138503B2 (en) Semiconductor laser device