JPH0482074B2 - - Google Patents

Info

Publication number
JPH0482074B2
JPH0482074B2 JP60115819A JP11581985A JPH0482074B2 JP H0482074 B2 JPH0482074 B2 JP H0482074B2 JP 60115819 A JP60115819 A JP 60115819A JP 11581985 A JP11581985 A JP 11581985A JP H0482074 B2 JPH0482074 B2 JP H0482074B2
Authority
JP
Japan
Prior art keywords
conductivity type
type semiconductor
layer
semiconductor layer
current blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60115819A
Other languages
Japanese (ja)
Other versions
JPS61274385A (en
Inventor
Hiroshi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11581985A priority Critical patent/JPS61274385A/en
Publication of JPS61274385A publication Critical patent/JPS61274385A/en
Publication of JPH0482074B2 publication Critical patent/JPH0482074B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔概要〕 ダブルヘテロ構造の発光部を含む帯状メサの両
側が埋込領域となる埋込型半導体レーザにおい
て、 埋込領域の構成体である基板側の電流阻止層を
基板側から不純物濃度の高い領域と低い領域の二
層構造にすることにより。
[Detailed Description of the Invention] [Summary] In a buried semiconductor laser in which both sides of a band-shaped mesa including a light-emitting portion of a double heterostructure are buried regions, a current blocking layer on the substrate side that constitutes the buried region is By creating a two-layer structure from the substrate side, consisting of a region with high impurity concentration and a region with low impurity concentration.

埋込領域の電流阻止性能を向上させて高いレー
ザ光出力を得られるようにしたものである。
The current blocking performance of the buried region is improved to obtain high laser light output.

〔産業上の利用分野〕[Industrial application field]

本発明は、埋込型半導体レーザに係り、特に、
その埋込領域の構成に関す。
The present invention relates to a buried semiconductor laser, and in particular,
Regarding the configuration of the embedded area.

半導体レーザは、光を媒体にして多量の情報を
扱う光通信や情報処理の光信号源として多用され
るようになつてきた。
Semiconductor lasers have come to be frequently used as optical signal sources in optical communications and information processing that use light as a medium to handle large amounts of information.

このように使用される半導体レーザには、発光
部が帯状メサにより形成され、その両側が電流を
阻止するように半導体で埋められた埋込型半導体
レーザ、例えばBHレーザ(Buried
Heterostructure Laser)などがあるが、光出力
を増大させるなど一層の特性向上が望まれてい
る。
Semiconductor lasers used in this way include buried semiconductor lasers, such as BH lasers (Buried
Heterostructure Laser), but further improvements in characteristics such as increased optical output are desired.

〔従来の技術〕[Conventional technology]

第3図は従来の埋込型半導体レーザの代表例で
あるBHレーザの側断面図である。
FIG. 3 is a side sectional view of a BH laser which is a typical example of a conventional buried semiconductor laser.

同図において、1はn型インジウム燐(InP)
の基板、2はn型InPのクラツド層、3はインジ
ウムガリウム砒素燐(InGaAsP)の活性層、4
はp型InPのクラツド層、5はp型InGaAsPのコ
ンタクト層、6は2〜5で形成される帯状メサ
で、ここの活性層3部分がダブルヘテロ構造をな
す発光部となる。
In the same figure, 1 is n-type indium phosphide (InP)
2 is an n-type InP cladding layer, 3 is an indium gallium arsenide phosphide (InGaAsP) active layer, and 4 is an n-type InP cladding layer.
5 is a p-type InP cladding layer, 5 is a p-type InGaAsP contact layer, 6 is a band-shaped mesa formed by 2 to 5, and the active layer 3 portion here serves as a light emitting portion having a double heterostructure.

メサ6の両側は埋込領域7となり、p型InPの
電流阻止層8とn型InPの電流阻止層9とp型
InGaAsPの埋込層10によつて構成されている。
Both sides of the mesa 6 become buried regions 7, and a current blocking layer 8 of p-type InP, a current blocking layer 9 of n-type InP, and a p-type
It is composed of a buried layer 10 of InGaAsP.

また、11と12は金属の電極である。 Moreover, 11 and 12 are metal electrodes.

この半導体レーザは、電極11と12との間に
電極11を正側にした印加電流を通ずると、電流
阻止層8と9が形成する逆方向のP−N接合と、
電流阻止層8とクラツド層2との間の立ち上がり
電圧がクラツド層4と2との間より高いこととの
作用により、電流が活性層3に集中して発振しレ
ーザ光を発する。
In this semiconductor laser, when an applied current is passed between electrodes 11 and 12 with electrode 11 on the positive side, current blocking layers 8 and 9 form a P-N junction in the opposite direction.
Due to the fact that the rising voltage between the current blocking layer 8 and the cladding layer 2 is higher than that between the cladding layers 4 and 2, current is concentrated in the active layer 3 and oscillates to emit laser light.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

電流阻止層8とクラツド層2との間の上記立ち
上がり電圧は、クラツド層4と電流阻止層8との
接合部を通り発振に対して無効となる漏洩電流a
を抑える作用をなしており高い方が望ましい。
The rising voltage between the current blocking layer 8 and the cladding layer 2 is due to the leakage current a that passes through the junction between the cladding layer 4 and the current blocking layer 8 and becomes ineffective against oscillation.
The higher the value, the better.

この立ち上がり電圧を高めるのに、電流阻止層
8の不純物濃度を高めることが有効である。
In order to increase this rising voltage, it is effective to increase the impurity concentration of the current blocking layer 8.

ではあるが、その不純物濃度が高すぎると電流
阻止層8の抵抗が下がつて逆に漏洩電流aが増大
するので、漏洩電流aに着目した場合、不純物濃
度の高さには制限があつて、立ち上がり電圧を十
分に高くすることが出来ない。
However, if the impurity concentration is too high, the resistance of the current blocking layer 8 will decrease and the leakage current a will increase, so when focusing on the leakage current a, there is a limit to the height of the impurity concentration. , the rise voltage cannot be made high enough.

一方、電流阻止層8の抵抗を上げるため不純物
濃度を下げると、上記立ち上がり電圧が下がると
同時に、クラツド層4または埋込層10、電流阻
止層9、電流阻止層8、クラツド層2が形成する
P−N−P−N構造がサイリスタとして動作し極
端に大きな漏洩電流bが発生してレーザとしての
機能を失う。
On the other hand, when the impurity concentration is lowered to increase the resistance of the current blocking layer 8, the rising voltage is reduced and at the same time, the cladding layer 4 or the buried layer 10, the current blocking layer 9, the current blocking layer 8, and the cladding layer 2 are formed. The P-N-P-N structure operates as a thyristor, generates an extremely large leakage current b, and loses its function as a laser.

これらの制約のもとに形成された上記半導体レ
ーザは、光出力を上げるよう印加電流を増大させ
ると、それに伴うクラツド層4の電位の上昇によ
り、漏洩電流aが印加電流の上昇率より増加し
て、第2図の光出力−印加電流特性図のAに示す
如く、印加電流の大きなところで光出力の増加率
が低下し大きな光出力を得ることが困難である問
題がある。
In the semiconductor laser formed under these constraints, when the applied current is increased to increase the optical output, the leakage current a increases more than the rate of increase of the applied current due to the accompanying increase in the potential of the cladding layer 4. However, as shown in A of the optical output-applied current characteristic diagram in FIG. 2, there is a problem in that the rate of increase in optical output decreases when the applied current is large, making it difficult to obtain a large optical output.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による埋込型半導体レーザの実
施例の側断面図である。
FIG. 1 is a side sectional view of an embodiment of a buried semiconductor laser according to the present invention.

上記問題点は、第1図に示す如く、ダブルヘテ
ロ構造の発光部を含んで一導電型半導体基板1上
に形成された帯状メサ6の両側に配置された埋込
領域7が、該基板1上にあつて該基板1に対し
pn接合を形成する第一の逆導電型半導体層8a
と、該第一の逆導電型半導体層8a上にあつて該
第一の逆導電型半導体層8aより不純物濃度の低
い第二の逆導電型半導体層8bと、該第二の逆導
電型半導体層8b上にあつて該第二の逆導電型半
導体層8bに対しpn接合を形成する一導電型半
導体層9とを含んで構成されると共に、該帯状メ
サ6と該埋込領域7の界面に於いて、該第二の逆
導電型半導体層8bの上面は該発光部の活性層3
の上面より上方に位置し、且つ該第二の逆導電型
半導体層8bの下面は該活性層3の下面より下方
に位置するように、該第二の逆導電型半導体層8
bが配設されて成る埋込型半導体レーザによつて
解決される。
The above problem is that, as shown in FIG. 1, the buried regions 7 disposed on both sides of the strip-shaped mesa 6 including the double heterostructure light emitting portion and formed on the semiconductor substrate 1 of one conductivity type are on the substrate 1
First reverse conductivity type semiconductor layer 8a forming a pn junction
, a second reverse conductivity type semiconductor layer 8b which is on the first reverse conductivity type semiconductor layer 8a and has a lower impurity concentration than the first reverse conductivity type semiconductor layer 8a; and the second reverse conductivity type semiconductor layer 8a. A semiconductor layer 9 of one conductivity type is formed on the layer 8b and forms a pn junction with the second opposite conductivity type semiconductor layer 8b, and an interface between the strip mesa 6 and the buried region 7 is formed. In this case, the upper surface of the second opposite conductivity type semiconductor layer 8b is the active layer 3 of the light emitting section.
The second reverse conductivity type semiconductor layer 8b is located above the upper surface and the lower surface of the second reverse conductivity type semiconductor layer 8b is located below the lower surface of the active layer 3.
The problem is solved by a buried semiconductor laser in which b is disposed.

〔作用〕[Effect]

上記構成は第3図に示す電流阻止層8を電流阻
止層8aと8bの二層構造にしたものである。
In the above structure, the current blocking layer 8 shown in FIG. 3 has a two-layer structure of current blocking layers 8a and 8b.

電流阻止層8bは不純物濃度を低くすることに
より、メサ6から流入する電流(第3図図示漏洩
電流a)に対して抵抗を十分に高くすることが出
来る。
By lowering the impurity concentration of the current blocking layer 8b, it is possible to make the resistance sufficiently high against the current flowing in from the mesa 6 (leakage current a shown in FIG. 3).

これに伴い、電流阻止層8aは抵抗の低さを懸
念することなく不純物濃度を高めて、基板1側と
の間の立ち上がり電圧を十分に高めることが出来
る。
Accordingly, the impurity concentration of the current blocking layer 8a can be increased without worrying about low resistance, and the rising voltage between the current blocking layer 8a and the substrate 1 side can be sufficiently increased.

また、電流阻止層8bの不純物濃度が低くと
も、電流阻止層8aの不純物濃度が高いため基板
1側から入るキヤリアの拡散長が短くなり、先に
述べたサイリスタ動作の発生は抑制される。
Further, even if the impurity concentration of the current blocking layer 8b is low, the impurity concentration of the current blocking layer 8a is high, so that the diffusion length of carriers entering from the substrate 1 side is shortened, and the occurrence of the above-mentioned thyristor operation is suppressed.

これらのことから本半導体レーザは、埋込領域
の電流阻止性能が向上して印加電流を増大させて
も光出力の増加率の低下が起こらず、高い光出力
を得ることが可能になる。
For these reasons, in the present semiconductor laser, the current blocking performance of the buried region is improved, and even if the applied current is increased, the rate of increase in optical output does not decrease, making it possible to obtain high optical output.

〔実施例〕〔Example〕

以下第1図を用い実施例について説明する。 An example will be described below with reference to FIG.

同図に示す半導体レーザは、第3図図示の半導
体レーザにおける電流阻止層8を電流阻止層8a
と8bの二層構造に置換したもので、その他は変
わらない。
The semiconductor laser shown in FIG.
and 8b have been replaced with a two-layer structure, and the rest remains unchanged.

即ち、電流阻止層8aは不純物濃度を4×
1018/cm3にしたp型InPであり、電流阻止層8b
は不純物濃度を2×1015/cm3にしたp型InPであ
る。ちなみに従来の電流阻止層8の不純物濃度は
5×1017/cm3である。不純物には何れもカドミウ
ム(Cd)または亜鉛(Zn)を用いている。
That is, the current blocking layer 8a has an impurity concentration of 4×
10 18 /cm 3 p-type InP, and the current blocking layer 8b
is p-type InP with an impurity concentration of 2×10 15 /cm 3 . Incidentally, the impurity concentration of the conventional current blocking layer 8 is 5×10 17 /cm 3 . Cadmium (Cd) or zinc (Zn) is used as an impurity in each case.

また、n型InPの電流阻止層9の不純物濃度は
5×1017/cm3であり、不純物には錫(Sn)を用い
ている。
Further, the impurity concentration of the n-type InP current blocking layer 9 is 5×10 17 /cm 3 , and tin (Sn) is used as the impurity.

第3図図示の従来例に相当させて上記の如く形
成した半導体レーザの光出力−印加電流特性は、
第2図のBに示す如くである。
The optical output-applied current characteristics of the semiconductor laser formed as described above corresponding to the conventional example shown in FIG. 3 are as follows:
As shown in B of FIG.

同図に示された従来例の特性Aと比較すると、
特性Aでは光出力が10mWを越えると光出力の増
加率が低下し印加電流が増加するに従いその低下
が大きくなつているのに対し、特性Bでは光出力
が40mWに至るも増加率が略一定であり、本半導
体レーザの光出力が従来のものより遥かに高いこ
とを示している。
When compared with characteristic A of the conventional example shown in the same figure,
In characteristic A, the rate of increase in optical output decreases when the optical output exceeds 10 mW, and the decrease becomes larger as the applied current increases, whereas in characteristic B, the rate of increase remains almost constant even when the optical output reaches 40 mW. This shows that the optical output of this semiconductor laser is much higher than that of the conventional one.

なお、本実施例では電流阻止層8a,8bなど
の形成に液相成長法を用いたため、電流阻止層8
bの不純物濃度を下げるのが前記2×1015/cm3
留まつたが、例えば気相成長法などにより更に下
げる(例えば、1011/cm3程度に)ことが出来れ
ば、本発明の構成は一層有効になる。
Note that in this example, since the liquid phase growth method was used to form the current blocking layers 8a, 8b, etc., the current blocking layers 8a, 8b, etc.
The impurity concentration of b can be reduced to 2×10 15 /cm 3 as described above, but if it can be further reduced (e.g., to about 10 11 /cm 3 ) by, for example, vapor phase growth, the present invention can be applied. The configuration becomes more effective.

また本発明の構成は、その作用からして実施例
と異なる他の埋込型半導体レーザ例えばPBHレ
ーザなどに適用しても有効である。
Furthermore, the configuration of the present invention is also effective when applied to other buried semiconductor lasers, such as PBH lasers, which differ from the embodiments in terms of their operation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、
ダブルヘテロ構造の発光部を含む帯状メサの両側
が埋込領域となる埋込型半導体レーザにおいて、
埋込領域の電流阻止性能が向上して高いレーザ光
出力が得られるようになり、光信号源として優れ
た半導体レーザの提供を可能にさせる効果があ
る。
As explained above, according to the configuration of the present invention,
In a buried semiconductor laser where both sides of a band-shaped mesa including a double heterostructure light emitting part are buried regions,
The current blocking performance of the buried region is improved and a high laser light output can be obtained, which has the effect of making it possible to provide a semiconductor laser that is excellent as an optical signal source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による埋込型半導体レーザの実
施例の側断面図、第2図は本発明実施例と従来例
の光出力−印加電流特性図、第3図は従来の埋込
型半導体レーザの代表例の側断面図、である。 図において、1は基板(一導電型半導体基板)、
2,4はクラツド層、3は活性層、5はコンタク
ト層、6はメサ、7は埋込領域、8は電流阻止
層、8aは電流阻止層(第一の逆導電型半導体
層)、8bは電流阻止層(第二の逆導電型半導体
層)、9は電流阻止層(一導電型半導体層)、10
は埋込層、11,12は電極、a,bは漏洩電
流、Aは従来例の特性、Bは実施例の特性、であ
る。
FIG. 1 is a side cross-sectional view of an embodiment of a buried semiconductor laser according to the present invention, FIG. 2 is an optical output-applied current characteristic diagram of an embodiment of the present invention and a conventional example, and FIG. 3 is a diagram of a conventional buried semiconductor laser. FIG. 2 is a side sectional view of a typical example of a laser. In the figure, 1 is a substrate (one conductivity type semiconductor substrate);
2 and 4 are cladding layers, 3 is an active layer, 5 is a contact layer, 6 is a mesa, 7 is a buried region, 8 is a current blocking layer, 8a is a current blocking layer (first reverse conductivity type semiconductor layer), 8b 9 is a current blocking layer (second opposite conductivity type semiconductor layer); 9 is a current blocking layer (one conductivity type semiconductor layer); 10 is a current blocking layer (second opposite conductivity type semiconductor layer);
is a buried layer, 11 and 12 are electrodes, a and b are leakage currents, A is a characteristic of the conventional example, and B is a characteristic of the embodiment.

Claims (1)

【特許請求の範囲】 1 ダブルヘテロ構造の発光部を含んで一導電型
半導体基板1上に形成された帯状メサ6の両側に
配置された埋込領域7が、 該基板1上にあつて該基板1に対しpn接合を
形成する第一の逆導電型半導体層8aと、 該第一の逆導電型半導体層8a上にあつて該第
一の逆導電型半導体層8aより不純物濃度の低い
第二の逆導電型半導体層8bと 該第二の逆導電型半導体層8b上にあつて該第
二の逆導電型半導体層8bに対しpn接合を形成
する一導電型半導体層9とを含んで構成されると
共に、 該帯状メサ6と該埋込領域7の界面に於いて、
該第二の逆導電型半導体層8bの上面は該発光部
の活性層3の上面より上方に位置し、且つ該第二
の逆導電型半導体層8bの下面は該活性層3の下
面より下方に位置するように、該第二の逆導電型
半導体層8bが配設されて成ることを特徴とする
埋込型半導体レーザ。
[Scope of Claims] 1. A buried region 7, which includes a double heterostructure light emitting portion and is disposed on both sides of a strip-shaped mesa 6 formed on a semiconductor substrate 1 of one conductivity type, is located on the substrate 1 and A first opposite conductivity type semiconductor layer 8a forming a pn junction with the substrate 1, and a second opposite conductivity type semiconductor layer 8a which is on the first opposite conductivity type semiconductor layer 8a and has a lower impurity concentration than the first opposite conductivity type semiconductor layer 8a. a second opposite conductivity type semiconductor layer 8b and one conductivity type semiconductor layer 9 which is on the second opposite conductivity type semiconductor layer 8b and forms a pn junction with the second opposite conductivity type semiconductor layer 8b. At the interface between the band-shaped mesa 6 and the buried region 7,
The upper surface of the second reverse conductivity type semiconductor layer 8b is located above the upper surface of the active layer 3 of the light emitting section, and the lower surface of the second reverse conductivity type semiconductor layer 8b is located below the lower surface of the active layer 3. A buried semiconductor laser characterized in that the second opposite conductivity type semiconductor layer 8b is disposed so as to be located at .
JP11581985A 1985-05-29 1985-05-29 Buried type semiconductor laser Granted JPS61274385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11581985A JPS61274385A (en) 1985-05-29 1985-05-29 Buried type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11581985A JPS61274385A (en) 1985-05-29 1985-05-29 Buried type semiconductor laser

Publications (2)

Publication Number Publication Date
JPS61274385A JPS61274385A (en) 1986-12-04
JPH0482074B2 true JPH0482074B2 (en) 1992-12-25

Family

ID=14671886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11581985A Granted JPS61274385A (en) 1985-05-29 1985-05-29 Buried type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61274385A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648743B2 (en) * 1987-02-18 1994-06-22 三菱電機株式会社 Method for manufacturing semiconductor laser device
JP2663118B2 (en) * 1987-03-12 1997-10-15 富士通株式会社 Semiconductor light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223395A (en) * 1982-06-21 1983-12-24 Mitsubishi Electric Corp Semiconductor laser device
JPS5957486A (en) * 1982-09-27 1984-04-03 Nec Corp Buried type semiconductor laser
JPS59175783A (en) * 1983-03-25 1984-10-04 Fujitsu Ltd Semiconductor light emitting device
JPS6077486A (en) * 1983-10-05 1985-05-02 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser element

Also Published As

Publication number Publication date
JPS61274385A (en) 1986-12-04

Similar Documents

Publication Publication Date Title
JPH0482074B2 (en)
US5218614A (en) Semiconductor laser device
JPS60169184A (en) Semiconductor laser
JPS61230388A (en) Buried type semiconductor laser
JP2738040B2 (en) Semiconductor light emitting device
JPH05299771A (en) Semiconductor laser diode
JPS5967684A (en) Laser diode
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPH0513872A (en) Hetero junction type semiconductor laser
JP2663118B2 (en) Semiconductor light emitting device
JPH0436598B2 (en)
JPS61214591A (en) Semiconductor laser element
JP3028760B2 (en) Semiconductor light emitting device
JPS61194886A (en) Semiconductor laser element
JPS63142883A (en) Semiconductor laser device
JPS6237900B2 (en)
JPS5884485A (en) Buried hetero-structure semiconductor laser
JPS60130876A (en) Semiconductor laser
JPS6132485A (en) Semiconductor light emitting element
JPS60217686A (en) Semiconductor laser element
JPH027488A (en) Buried heterostructure semiconductor laser
JPH0531836B2 (en)
JPS61214494A (en) Semiconductor laser and manufacture thereof
JPS5923575A (en) Semiconductor light emtting device
JPS62115794A (en) Inp semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term