JPS6237900B2 - - Google Patents

Info

Publication number
JPS6237900B2
JPS6237900B2 JP14015980A JP14015980A JPS6237900B2 JP S6237900 B2 JPS6237900 B2 JP S6237900B2 JP 14015980 A JP14015980 A JP 14015980A JP 14015980 A JP14015980 A JP 14015980A JP S6237900 B2 JPS6237900 B2 JP S6237900B2
Authority
JP
Japan
Prior art keywords
semiconductor
inp
layer
region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14015980A
Other languages
Japanese (ja)
Other versions
JPS5763884A (en
Inventor
Toshio Murotani
Hirobumi Namisaki
Wataru Suzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14015980A priority Critical patent/JPS5763884A/en
Publication of JPS5763884A publication Critical patent/JPS5763884A/en
Publication of JPS6237900B2 publication Critical patent/JPS6237900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、低しきい値で動作し横モードが安
定化され、温度特性が良好である半導体発光装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device that operates at a low threshold, has a stabilized transverse mode, and has good temperature characteristics.

周知のようにレーザ活性領域の全側面をこれよ
りバンドギヤツプが広く、屈折率が低い物質で囲
んだ構造を有する、いわゆる埋め込みヘテロ構造
を有するレーザは低しきい値で動作し横モードも
安定化した優れた特性を有するレーザの一つであ
る。
As is well known, lasers with a so-called buried heterostructure, in which all sides of the laser active region are surrounded by a material with a wider bandgap and lower refractive index, operate at a low threshold and stabilize the transverse mode. It is one of the lasers with excellent characteristics.

第1図は埋め込みヘテロ構造の半導体レーザの
断面図であり、便宜上、InGaAsP/InP半導体レ
ーザについて説明する。
FIG. 1 is a cross-sectional view of a buried heterostructure semiconductor laser, and for convenience, an InGaAsP/InP semiconductor laser will be described.

第1図において、1はn―InP基板であり、こ
のn―InP基板1にレーザ光の伝播方向に沿う方
向に溝を形成し、この溝を有するn―InP基板1
上に液相エピタキシヤル法等でn―InGaAsP層
2、p―InP層4を順次成長させる。n―
InGaAsP層2の成長において第1図に示したよ
うに溝の肩の部分での成長はなく、溝の底部分で
厚い三ケ月状のn―InGaAsP活性領域(レーザ
活性領域)3が形成される。p―InP層4の表面
にSiO2膜等の絶縁膜5を被覆させ、n―
InGaAsP活性領域3と対向する部分に窓を開け
p側電極6を形成し、反対側のn―InP基板1の
面にn側電極7を形成する。溝断面の形状として
上記の場合、滑らかにカーブしたものについて説
明したが、断面が矩形状または台形状の溝の場合
にはn―InGaAsP層2の成長の前にメルトバツ
クするかあるいはn―InP緩衝層を成長させるこ
とでもよい。
In FIG. 1, 1 is an n-InP substrate, and a groove is formed in the n-InP substrate 1 in the direction along the propagation direction of the laser beam.
An n-InGaAsP layer 2 and a p-InP layer 4 are sequentially grown thereon by liquid phase epitaxial method or the like. n-
In the growth of the InGaAsP layer 2, as shown in FIG. 1, there is no growth at the shoulder portion of the groove, and a thick crescent-shaped n-InGaAsP active region (laser active region) 3 is formed at the bottom portion of the groove. The surface of the p-InP layer 4 is coated with an insulating film 5 such as a SiO 2 film, and the n-
A window is opened in a portion facing the InGaAsP active region 3 to form a p-side electrode 6, and an n-side electrode 7 is formed on the opposite surface of the n-InP substrate 1. In the above case, the shape of the groove cross section is smoothly curved, but in the case of a groove with a rectangular or trapezoidal cross section, meltback or n-InP buffering occurs before the growth of the n-InGaAsP layer 2. It is also possible to grow layers.

この半導体レーザの両電極6,7の間に順方向
に電圧を印加すると、p―InP層4からn―
InGaAsP活性領域3へヘテロ界面のpn接合を通
してキヤリヤが注入される。n―InGaAsP活性
領域3は、より広いバンドギヤツプとより低い屈
折率を有するn―InP基板1およびp―InP層4
によつて囲まれているため、注入されたキヤリヤ
と再結合によつて生じた光はn―InGaAsP活性
領域3内に閉じ込められる結果、この半導体レー
ザは低い電流値で発振する。また、レーザ活性領
域の寸法を横零次モードのみが励振されるように
狭めれば、光強度―電流曲線に“キンク”のない
光学的特性の優れた半導体レーザができる。
When a voltage is applied in the forward direction between the electrodes 6 and 7 of this semiconductor laser, the p-InP layer 4 changes to the n-
A carrier is injected into the InGaAsP active region 3 through the pn junction at the heterointerface. The n-InGaAsP active region 3 is composed of an n-InP substrate 1 and a p-InP layer 4 with a wider bandgap and lower refractive index.
As a result, the injected carriers and the light generated by recombination are confined within the n-InGaAsP active region 3, and as a result, this semiconductor laser oscillates at a low current value. Furthermore, if the dimensions of the laser active region are narrowed so that only the transverse zero-order mode is excited, a semiconductor laser with excellent optical characteristics without a "kink" in the light intensity-current curve can be obtained.

しかしこの半導体レーザにおいては、n―
InGaAsP活性領域3を通つて流れる電流の他に
レーザ発振に関与しない“もれ電流”が存在す
る。第1図の矢印はこのレーザダイオードの電流
経路を示すもので、n―InGaAsP活性領域3を
通つて流れる電流経路の他にp―InP層4からn
―InP基板へと流れる電流と、p―InP層4から
InGaAsP層2を通つてn―InP基板1に流れる
“もれ電流”の経路がある。前者の“もれ電流”
はInPのpnホモ接合を通して流れる。このpnホモ
接合の拡散電位はInP―InGaAsPのpnヘテロ接合
のそれより高いため、n―InGaAsP活性領域3
を通して流れる電流より少ない。また、後者の
“もれ電流”は電流経路が長いためやはり少な
い。
However, in this semiconductor laser, n-
In addition to the current flowing through the InGaAsP active region 3, there is a "leakage current" that is not involved in laser oscillation. The arrows in FIG. 1 indicate the current path of this laser diode. In addition to the current path flowing through the n-InGaAsP active region 3, the
- Current flowing to the InP substrate and from the p-InP layer 4
There is a path for "leakage current" flowing through the InGaAsP layer 2 and into the n-InP substrate 1. The former “leakage current”
flows through the pn homojunction of InP. Since the diffusion potential of this pn homojunction is higher than that of the pn heterojunction of InP-InGaAsP, the n-InGaAsP active region 3
Less than the current flowing through. Furthermore, the latter "leakage current" is still small because the current path is long.

これらの“もれ電流”は少ないながら存在する
ことによつて、効率が低いことや電流レベルの増
加で光出力が飽和する欠点がある。また、発振し
きい値の温度依存性が強くなり50゜〜70℃の温度
で発振しなくなる欠点を有しており、実用上非常
な問題であつた。
The presence of these "leakage currents", although small, has the drawback of low efficiency and optical output saturation as the current level increases. Furthermore, the oscillation threshold has a strong temperature dependence, and oscillation does not occur at temperatures of 50° to 70° C., which is a serious problem in practical use.

この発明はこの“もれ電流”を極力減らす目的
で、活性領域の両サイドにInPの逆バイアスのpn
接合面を設けて、上記従来のものの欠点を除去し
ようとするものである。以下、図面を用いてこの
発明を詳しく説明する。
This invention aims to reduce this "leakage current" as much as possible by applying reverse-biased InP pn to both sides of the active region.
By providing a joint surface, the above-mentioned drawbacks of the conventional ones are attempted to be eliminated. Hereinafter, this invention will be explained in detail using the drawings.

第2図はこの発明の一実施例を示す断面図であ
る。第2図において、8,11,12はそれぞれ
n―InP基板1上に設けられたp―InP層、n―
InP層、p―InP層である。これらの層は液相エ
ピタキシヤル法等によつてn―InP基板1上に順
次成長させて形成される。次に通常の写真製版法
と化学エツチングにより、n―InP基板1の到達
する深さの溝13を形成した後、再び液相エピタ
キシヤル法等によりn―InP緩衝層9、n―
InGaAsP層2、p―InP層4を順次成長させる。
この時、溝13中にはn―InP領域10、n―
InGaAsP活性領域3が形成される。この後、第
1図の従来例と同様にして絶縁膜5、p側電極
6、n側電極7が形成される。
FIG. 2 is a sectional view showing an embodiment of the present invention. In FIG. 2, 8, 11, 12 are p-InP layers provided on the n-InP substrate 1, and n-
They are an InP layer and a p-InP layer. These layers are sequentially grown on the n-InP substrate 1 by liquid phase epitaxial method or the like. Next, a groove 13 having a depth that reaches the n-InP substrate 1 is formed by ordinary photolithography and chemical etching, and then the n-InP buffer layer 9, n-InP buffer layer 9, n-
InGaAsP layer 2 and p-InP layer 4 are grown in sequence.
At this time, in the groove 13 there is an n-InP region 10, an n-
An InGaAsP active region 3 is formed. Thereafter, an insulating film 5, a p-side electrode 6, and an n-side electrode 7 are formed in the same manner as in the conventional example shown in FIG.

次に、この半導体レーザの動作原理について説
明する。この半導体レーザの両電極6,7の間に
順方向に電圧を印加すると、p―InP層4からn
―InGaAsP活性領域3はpnヘテロ接合を通して
キヤリヤが注入され、まわりがInPで囲まれてい
るためキヤリヤと光の閉じ込めが有効に行われ
て、従来例で説明したように光学的特性がよく低
しきい値のレーザが実現できる。さらに、レーザ
発振に関与しない“もれ電流”については、その
電流経路はp―InP層4からp―InP層12を経
てn―InP領域10に流れ込む電流と、p―InP
層4からp―InP層12、n―InP層11を経て
n―InP領域10に流れ込む電流だけで、n―
InGaAsP層2を経て流れる電流はp―InP層12
との間のpn接合が逆方向バイアスであるため無
視できる。したがつて、“もれ電流”の経路で順
方向バイアスのpn接合面は第2図の×印で示し
た極く限られた部分のみとなる。n―InP層11
の厚みを薄くかつキヤリヤ濃度を減らしてこの層
を抵抗を増すことで、さらに“もれ電流”の低減
を図ることができる。
Next, the operating principle of this semiconductor laser will be explained. When a voltage is applied in the forward direction between the electrodes 6 and 7 of this semiconductor laser, the p-InP layer 4 to n
- InGaAsP active region 3 is injected with carriers through the pn heterojunction and is surrounded by InP, so the carriers and light are effectively confined, and as explained in the conventional example, the optical characteristics are good and low. A threshold laser can be realized. Furthermore, regarding "leakage current" that is not involved in laser oscillation, the current path is a current flowing from the p-InP layer 4 to the n-InP region 10 via the p-InP layer 12, and a current flowing from the p-InP layer 4 to the n-InP region 10, and
Only the current flowing from layer 4 through p-InP layer 12 and n-InP layer 11 to n-InP region 10 causes n-
The current flowing through the InGaAsP layer 2 is the p-InP layer 12.
It can be ignored because the pn junction between is reverse biased. Therefore, in the path of the "leakage current", the forward biased pn junction surface is only in the extremely limited area indicated by the x mark in FIG. 2. n-InP layer 11
The "leakage current" can be further reduced by making the layer thinner and reducing the carrier concentration to increase the resistance of this layer.

次に溝13の両サイドの層の数が2層の場合、
および1層の場合と上記実施例(第2図)とを比
較する。
Next, when the number of layers on both sides of the groove 13 is two,
The case of one layer and the above embodiment (FIG. 2) will be compared.

第3図は溝13の両サイドの層の数がp―InP
層8とn―InP層11の2層ある場合で、第2図
とはp―InP層12がないことだけが異なつてい
る。この場合“もれ電流”の流れる順方向バイア
スのpn接合面は×印で示したように広範囲にわ
たつている。
In Figure 3, the number of layers on both sides of the groove 13 is p-InP.
This is the case where there are two layers, layer 8 and n-InP layer 11, and the only difference from FIG. 2 is that there is no p-InP layer 12. In this case, the forward-biased pn junction surface where the "leakage current" flows spreads over a wide range as shown by the x mark.

第4図は溝13の両サイドの層の数がp―InP
層8のみの場合で、“もれ電流”の流れる順方向
バイアスのpn接合面は×印で示したように広範
囲にわたつている。
Figure 4 shows that the number of layers on both sides of the groove 13 is p-InP.
In the case of only layer 8, the forward-biased pn junction surface where the "leakage current" flows spreads over a wide range as indicated by the x mark.

以上説明したように“もれ電流”を低減するた
めには、溝13の両サイドに少なくとも3層の
pn―p接合が必要である。
As explained above, in order to reduce "leakage current", at least three layers must be formed on both sides of the groove 13.
A pn-p junction is required.

第5図は埋め込みヘテロ構造の半導体レーザに
ついてしきい値電流Ithと温度Tとの関係を示し
たもので、この発明の実施例を実線で、従来例を
点線で示す。実線の場合で約100℃の温度まで、 Ith∝exp(T/T) (T0:特性温度) で表わせるのに対して、点線の場合、30〜40℃で
thは急激に増加し発振を停止する。この発明の
実施例では温度特性は、従来例より優れている。
FIG. 5 shows the relationship between threshold current I th and temperature T for a buried heterostructure semiconductor laser, with the embodiment of the present invention shown by a solid line and the conventional example shown by a dotted line. In the case of the solid line, it can be expressed as I th ∝exp(T/T 0 ) (T 0 :characteristic temperature) up to a temperature of about 100℃, whereas in the case of the dotted line, I th suddenly increases at 30 to 40℃. increase and stop oscillation. The temperature characteristics of the embodiment of the present invention are superior to those of the conventional example.

なお、上記実施例では、溝13の両サイドに3
層からなるp―n―p接合を設けたものを示した
が、3層以上の複数の層であつても上記実施例と
同様の効果を奏する。
In the above embodiment, three grooves are formed on both sides of the groove 13.
Although the embodiment is shown in which a pnp junction consisting of layers is provided, the same effects as in the above embodiments can be obtained even if there are three or more layers.

また上記実施例では、InGaAsP/InP系半導体
レーザについて示したが、AlGaAs系やその他の
化合物半導体材料を用いた同様の原理に基づく構
成についても適用できる。
Further, in the above embodiment, an InGaAsP/InP semiconductor laser is shown, but the present invention can also be applied to a structure based on a similar principle using AlGaAs or other compound semiconductor materials.

以上詳細に説明したように、この発明によれば
第1導電形の半導体基板の一方の主面上に、第2
導電形の半導体層、その上に第1導電形の半導体
層、さらにその上に第2導電形の半導体層の少な
くとも3層から成る半導体層が設けられた半導体
結晶を有し、この半導体結晶中に前記半導体基板
に達する深さの溝と、この溝中および前記半導体
結晶上に互いに不連続に設けられた第1導電形の
第1半導体領域と、この第1半導体領域上にそれ
ぞれ設けられ、前記溝中においてレーザ活性領域
となる第2半導体領域と、このレーザ活性領域の
上に設けられた第2導電形の第3半導体領域とを
有し、前記レーザ活性領域を構成する物質は前記
第1半導体領域および前記第3半導体領域の半導
体のバンドギヤツプより狭いものとしたので、第
一段階目と第二段階目の2つの工程に分けて製造
するとき第一段階の工程で3層からなる半導体層
が形成されるためリークの少ないp―n接合が得
られ、かつ100℃以上の高温でも問題なく動作す
ることができ、システム設計上も容易になる。か
ようにこの発明によれば、低しきい値、高効率、
基本横モードで発振し、温度特性が良好な半導体
発光装置が得られる利点がある。
As explained in detail above, according to the present invention, a second
It has a semiconductor crystal provided with a semiconductor layer consisting of at least three layers: a semiconductor layer of a conductivity type, a semiconductor layer of a first conductivity type thereon, and a semiconductor layer of a second conductivity type further thereon; a groove with a depth reaching the semiconductor substrate; a first semiconductor region of a first conductivity type discontinuously provided in the groove and on the semiconductor crystal; and a first semiconductor region provided on the first semiconductor region, The groove includes a second semiconductor region that becomes a laser active region, and a third semiconductor region of a second conductivity type provided above the laser active region, and the material constituting the laser active region is the same as the third semiconductor region. Since the bandgap of the semiconductor in the first semiconductor region and the third semiconductor region is narrower than that of the semiconductor in the first semiconductor region and the third semiconductor region, when the semiconductor is manufactured in two steps, the first step and the second step, the semiconductor consisting of three layers is formed in the first step. Because layers are formed, a pn junction with low leakage can be obtained, and it can operate without problems even at high temperatures of 100°C or higher, making system design easier. According to this invention, low threshold, high efficiency,
There is an advantage that a semiconductor light emitting device that oscillates in the fundamental transverse mode and has good temperature characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザの構造を示す模式
断面図、第2図はこの発明の一実施例を示す模式
断面図、第3図、第4図はこの発明の実施例の動
作を比較説明するための半導体レーザの模式断面
図、第5図はしきい値電流と温度との関係を示す
図である。 図中、1はn―InP基板、2はn―InGaAsP
層、3はn―InGaAsP活性領域、4はp―InP
層、5は絶縁膜、6,7は電極、8はp―InP
層、9はn―InP緩衝層、10はn―InP領域、
11はn―InP層、12はp―InP層、13は溝
である。
Fig. 1 is a schematic cross-sectional view showing the structure of a conventional semiconductor laser, Fig. 2 is a schematic cross-sectional view showing an embodiment of the present invention, and Figs. 3 and 4 are comparative explanations of the operation of the embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a semiconductor laser for the purpose of the present invention, and is a diagram showing the relationship between threshold current and temperature. In the figure, 1 is n-InP substrate, 2 is n-InGaAsP
layer, 3 is n-InGaAsP active region, 4 is p-InP
layer, 5 is an insulating film, 6 and 7 are electrodes, 8 is p-InP
9 is an n-InP buffer layer, 10 is an n-InP region,
11 is an n-InP layer, 12 is a p-InP layer, and 13 is a groove.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電形の半導体基板の一方の主面上に、
第2導電形の半導体層、その上に第1導電形の半
導体層、さらにその上に第2導電形の半導体層の
少なくとも3層から成る半導体層が設けられた半
導体結晶を有し、この半導体結晶中に前記半導体
基板に達する深さの溝と、この溝中および前記半
導体結晶上に互いに不連続に設けられた第1導電
形の第1半導体領域と、この第1半導体領域上に
それぞれ設けられ、前記溝中においてレーザ活性
領域となる第2半導体領域と、このレーザ活性領
域の上に設けられた第2導電形の第3半導体領域
とを有し、前記レーザ活性領域を構成する物質は
前記第1半導体領域および前記第3半導体領域の
半導体のバンドギヤツプより狭いものであること
を特徴とする半導体発光装置。
1 On one main surface of the first conductivity type semiconductor substrate,
It has a semiconductor crystal provided with a semiconductor layer consisting of at least three layers: a semiconductor layer of a second conductivity type, a semiconductor layer of a first conductivity type thereon, and a semiconductor layer of a second conductivity type further thereon; a groove deep enough to reach the semiconductor substrate in the crystal; a first semiconductor region of a first conductivity type discontinuously provided in the groove and on the semiconductor crystal; and a first semiconductor region provided respectively on the first semiconductor region. a second semiconductor region which serves as a laser active region in the groove, and a third semiconductor region of a second conductivity type provided on the laser active region, wherein the material constituting the laser active region is A semiconductor light emitting device characterized in that the bandgap is narrower than the semiconductor bandgap of the first semiconductor region and the third semiconductor region.
JP14015980A 1980-10-06 1980-10-06 Semiconductor light-emitting device Granted JPS5763884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14015980A JPS5763884A (en) 1980-10-06 1980-10-06 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14015980A JPS5763884A (en) 1980-10-06 1980-10-06 Semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JPS5763884A JPS5763884A (en) 1982-04-17
JPS6237900B2 true JPS6237900B2 (en) 1987-08-14

Family

ID=15262235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14015980A Granted JPS5763884A (en) 1980-10-06 1980-10-06 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS5763884A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121693A (en) * 1979-03-15 1980-09-18 Tokyo Inst Of Technol Manufacture of band-like semiconductor laser by selective melt-back process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121693A (en) * 1979-03-15 1980-09-18 Tokyo Inst Of Technol Manufacture of band-like semiconductor laser by selective melt-back process

Also Published As

Publication number Publication date
JPS5763884A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US4597085A (en) Double-channel planar heterostructure semiconductor laser
US4815083A (en) Buried heterostructure semiconductor laser with high-resistivity semiconductor layer for current confinement
US5228048A (en) Semiconductor laser device
JPS6243357B2 (en)
JPS61164287A (en) Semiconductor laser
JP2812273B2 (en) Semiconductor laser
JPS6237900B2 (en)
JPS61102086A (en) Semiconductor laser
JPH0254591A (en) Semiconductor laser
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS6218782A (en) Semiconductor laser of buried structure
JPS6243356B2 (en)
JPH05226774A (en) Semiconductor laser element and its production
JPS61187287A (en) Semiconductor light-emitting device
JPS6018988A (en) Semiconductor laser
JP2740165B2 (en) Semiconductor laser
JPS61204993A (en) Semiconductor light emitting device
JPH07120836B2 (en) Semiconductor laser
JPS6148277B2 (en)
JPH0325037B2 (en)
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPS61150293A (en) Bi-stable semiconductor laser
JPH0482074B2 (en)
JPS6320397B2 (en)
JPH05175596A (en) Semiconductor laser device