JPS61227945A - Electroconductive glass - Google Patents

Electroconductive glass

Info

Publication number
JPS61227945A
JPS61227945A JP6507385A JP6507385A JPS61227945A JP S61227945 A JPS61227945 A JP S61227945A JP 6507385 A JP6507385 A JP 6507385A JP 6507385 A JP6507385 A JP 6507385A JP S61227945 A JPS61227945 A JP S61227945A
Authority
JP
Japan
Prior art keywords
film
base treatment
tin oxide
glass
sno2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6507385A
Other languages
Japanese (ja)
Inventor
Yoshio Goto
後藤 芳夫
Koichi Suzuki
巧一 鈴木
Masashi Tada
昌史 多田
Satoru Takagi
悟 高木
Mamoru Mizuhashi
衛 水橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6507385A priority Critical patent/JPS61227945A/en
Publication of JPS61227945A publication Critical patent/JPS61227945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve orientation of <200> crystal face of SnO2 film reducing the resistance of the film and to provide suitable glass for several display electrodes and electrode for solar cell by interposing an undercoating film consisting essentially of ZrO2 between a glass substrate and transparent electroconductive SnO2 film. CONSTITUTION:An electroconductive glass consists by interposing an undercoating film consisting essentially of ZrO2 (contg. >=60mol% ZrO2 and capable of contg. TiO2, CeO2, Al2O3, etc., in not exceeding 40mol% proportion) between a glass substrate (e.g. sodalime.silicate glass) and transparent electroconductive SnO2 film (pref. such SnO2 film contg. 0.3-2wt% F as dopant basing on SnO2). Said undercoating film is easy to cause crystal orientation, and crystallite of SnO2 growing thereon is oriented also depending upon the orientation of the undercoating film, improving the orientation of <200> crystal face and permitting reduction of resistance of the film.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は電気伝導性ガラス、特に各種表示電極、太陽電
池用電極として鰻適な電気伝導性ガラスに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to electrically conductive glass, particularly electrically conductive glass suitable for various display electrodes and solar cell electrodes.

「従来技術」 ガラス板等の透明基板面に透明電導膜を形成した電気伝
導性ガラスは、可視光領域において透明で、かつ電気伝
導性を有し、液晶表示素子、エレクトロクロミック表示
素子などの透明電極として、さらに太陽電池用の透明電
極として近年増々需要が伸びている。これら透明伝導膜
の材料としては、酸化インジウムや酸化スズを主成分と
して、酸化インジウムでは、Sn 、酸化スズではsb
、y  などを不純物として添加し、低抵抗化がはから
れている。
"Prior art" Electrically conductive glass, which has a transparent conductive film formed on the surface of a transparent substrate such as a glass plate, is transparent in the visible light region and has electrical conductivity, and is used in transparent devices such as liquid crystal display elements and electrochromic display elements. Demand has been increasing in recent years as an electrode and also as a transparent electrode for solar cells. The materials for these transparent conductive films are mainly composed of indium oxide and tin oxide, with indium oxide containing Sn and tin oxide containing sb.
, y, etc. are added as impurities to lower the resistance.

「発明の解決しようとする問題点」 電気伝導性ガラスの透明伝導膜を太陽電池用の透明電極
として用いる場合pn接合で生じた電位差を降下させず
外に引き出すためには、抵抗のできるだけ低い電極が必
要となる。
"Problems to be Solved by the Invention" When using a transparent conductive film of electrically conductive glass as a transparent electrode for a solar cell, an electrode with as low resistance as possible is required in order to extract the potential difference generated at the pn junction without dropping it. Is required.

透明伝導膜の抵抗を下げる手段として適当な不純物を適
量添加しキャリア濃度を上げること、薄膜を構成する結
晶粒をよシ大きく成長させ、粒界を減らし、自由電子の
移動度を大きくするなどの方法が試みられているが、一
般に、ガラス基板に薄膜を形成すると、基板温度、製膜
速度を制御してもアモルファス膜か、あるいは(100
) 、  (010) 、  (111)等の低次の面
指数に配向した多結晶膜になることが多く、その結晶粒
径、特に高次の面指数の配向を制御するには限度があシ
、変化に乏しい。
As a means of lowering the resistance of a transparent conductive film, there are various methods such as adding appropriate amounts of impurities to increase the carrier concentration, growing larger crystal grains that make up the thin film, reducing grain boundaries, and increasing the mobility of free electrons. Although various methods have been tried, generally speaking, when a thin film is formed on a glass substrate, even if the substrate temperature and film formation rate are controlled, it remains an amorphous film or (100
), (010), (111), etc., and there are limits to controlling the crystal grain size, especially the orientation of high-order plane indices. , lack of change.

「問題点を解決するための手段」 本発i者は、上記点に着目して研究の結果、ガラス基板
上においても結晶配向の容易な薄膜材料を下地処理膜と
すると、その上に成長する酸化スズの微結晶は、下地処
理膜の粒径、結晶配向に大きく依存することを見出した
``Means for solving the problem'' The inventor has focused on the above points and as a result of research, it has been found that if a thin film material that is easily crystallized even on a glass substrate is used as a base treatment film, growth will occur on it. It was found that tin oxide microcrystals largely depend on the grain size and crystal orientation of the underlying treatment film.

本発明はかかる点に基づき発明されたものであシーガラ
ス基板上に酸化スズを主成分とする透明電導性酸化スズ
膜を形成した電気伝導性ガラスにおいて、ガラス基板と
透明電導性酸化スズ膜との間に酸化ジルコニウムを主成
分とする下地処理膜を介在させ酸化スズ膜の(200)
面の結晶配向を高めたことを特徴とする電気伝導性ガラ
スを提供するものである。
The present invention was invented based on this point, and provides an electrically conductive glass in which a transparent conductive tin oxide film containing tin oxide as a main component is formed on a sea glass substrate. (200) of the tin oxide film with a base treatment film mainly composed of zirconium oxide interposed between the layers.
The present invention provides an electrically conductive glass characterized by enhanced plane crystal orientation.

本発明によれば、酸化スズ膜の(200)面の結晶配向
性を高めることにより低抵抗化をはかることができる。
According to the present invention, it is possible to reduce the resistance by increasing the crystal orientation of the (200) plane of the tin oxide film.

ま九、太陽電池用透明電極の場合には、選択配向させる
ことによシ、膜表面に適度の凹凸構造を設けることが可
能となり、その光閉じ込め効果によシ、アモルファスシ
リコン太陽電池の発電効率の向上を計ることができると
考えられる。
(9) In the case of transparent electrodes for solar cells, selective orientation makes it possible to provide an appropriate uneven structure on the surface of the film, and its light trapping effect improves the power generation efficiency of amorphous silicon solar cells. It is thought that it is possible to measure the improvement of

又、結晶性を良好にすることにょシ透明電導膜の結晶粒
界密度が減少する結果、そこでの自由電子の散乱が減少
し、低抵抗化することができる。
In addition, as a result of improving the crystallinity, the grain boundary density of the transparent conductive film is reduced, and as a result, scattering of free electrons there is reduced and resistance can be lowered.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

第1図は本発明に係る電気伝導性ガラスの断面図を示し
たものであり、1はソーダライム・シリケートガラス、
アルミノシリケートガラス硼珪酸塩ガラス、リチウムア
ルミノシリケートガラス、石英ガラス、その他各種のガ
ラスからなるガラス板を示し、2は酸化スズを主成分と
する透明電導性の酸化スズ膜、3は酸化ジルコニウムを
主成分とする下地処理膜を示す。
FIG. 1 shows a cross-sectional view of the electrically conductive glass according to the present invention, where 1 is soda lime silicate glass;
Aluminosilicate glass Indicates a glass plate made of borosilicate glass, lithium aluminosilicate glass, quartz glass, and other various glasses, 2 is a transparent conductive tin oxide film whose main component is tin oxide, and 3 is a glass plate whose main component is zirconium oxide. The base treatment film as a component is shown.

本発明において、酸化スズ膜としては、ドーパントとし
てフッ素を酸化スズに対して(L1〜3重量係含むもの
、特に好ましくはドーパントとしてフッ素を酸化スズに
対してα3〜2重量%含有する酸化スズ(sno2)膜
が使用され、又下地処理膜としては酸化ジルコニウム(
Zr02)を!S Omol 96以上含むものが使用
される。なお、かかる下地処理膜には、その他の添加成
分、例えば酸化チタン(T102) 、酸化セリウム(
ceol)、酸化アルミニウム(Auton )等を4
0 mol %を越えない範囲で加えることができる。
In the present invention, the tin oxide film contains fluorine as a dopant in an amount of α3 to 3% by weight relative to tin oxide, particularly preferably a tin oxide film containing fluorine as a dopant in an amount of α3 to 2% by weight relative to tin oxide. sno2) film is used, and zirconium oxide (zirconium oxide) is used as the base treatment film.
Zr02)! Those containing S Omol 96 or more are used. In addition, other additive components such as titanium oxide (T102) and cerium oxide (
ceol), aluminum oxide (Auton), etc.
It can be added in an amount not exceeding 0 mol %.

かかる下地処理膜の膜厚は、透明性の電導性酸化スズ膜
の下地処理膜として、例えばガラス板表面のアルカリバ
リヤーコートとしての機能を有し、かつ電導−酸化スズ
膜の結晶の配向性、即ち(200)面の結晶配向性を高
めることができる様に、501〜zoooXの範囲が適
当である。特に、この膜を2OOU〜1aooXとする
と、電導性酸化スズ膜の(200)面の結晶配向を高め
るのく特に効果的である。特に、下地処理膜としてはZ
rO2を70 mob Toと、TlO2を30 mo
b%の組成をもつものが最適である。
The film thickness of such a base treatment film is such that it functions as a base treatment film for a transparent conductive tin oxide film, for example, as an alkali barrier coat on the surface of a glass plate, and also has the function of controlling the crystal orientation of the conductive tin oxide film. That is, the range of 501 to zooooX is suitable so that the crystal orientation of the (200) plane can be improved. In particular, it is particularly effective to increase the crystal orientation of the (200) plane of the conductive tin oxide film when the film has a thickness of 2OOU to 1aooX. In particular, as a base treatment film, Z
rO2 to 70 mo and TlO2 to 30 mo
A composition having a composition of b% is optimal.

又電導性酸化スズ膜の膜厚は、特に規定されるものでは
ない。
Further, the thickness of the conductive tin oxide film is not particularly defined.

なお、膜が厚くなるほどR=p−τの関係に従って低抵
抗化する(Rは面積抵抗、Pは比抵抗、dは膜厚である
。)。
Note that the thicker the film, the lower the resistance according to the relationship R=p-τ (R is the area resistance, P is the specific resistance, and d is the film thickness).

本発明の電気伝導性ガラスにおいては、下地処理膜の下
層にガラス基板のアルカリ土類金属コートとして酸化ケ
イ素(Si02)膜等を形成してもよいし、又電導性酸
化スズ膜の上層に保閤層や反射防止層を形成してもよい
In the electrically conductive glass of the present invention, a silicon oxide (Si02) film or the like may be formed as an alkaline earth metal coating on the glass substrate under the base treatment film, or a silicon oxide (Si02) film or the like may be formed on the upper layer of the conductive tin oxide film. A coating layer or an antireflection layer may also be formed.

本発明の電気伝導性ガラスを製造するに当づては、ガラ
ス基板上に真空蒸着法、スパッター法1イオンブレーテ
ィング法、CVD法等で酸化ジルコニウムを主体とする
下地処理膜を形成し、次いで、該下地処理膜上に真空蒸
着法、スパッター法、イオンブレーティング法、OVD
法等罠よりフッ素のドーピングされた電導性酸化スズ膜
を形成する。
In manufacturing the electrically conductive glass of the present invention, a base treatment film mainly composed of zirconium oxide is formed on a glass substrate by a vacuum evaporation method, a sputtering method, an ion blasting method, a CVD method, etc., and then , vacuum evaporation method, sputtering method, ion blating method, OVD method on the base treatment film.
A conductive tin oxide film doped with fluorine is formed using a method.

特に、好ましい結晶粒径、結晶配向を持った酸化スズ膜
を製膜するためには、上記の結晶成長を促すような結晶
配向をした下地膜を適当な材料、111!膜方法、基板
温度、製膜速度、あるいは斜め蒸着(よって形成すれば
よい。
In particular, in order to form a tin oxide film with a preferable crystal grain size and crystal orientation, a suitable material, 111! The film method, substrate temperature, film forming speed, or oblique evaporation (it may be formed accordingly).

特に、下地処理膜を形成する方法としては、基板温度を
sunで程度に加熱し、ZrO2あるいはその他派加物
の含有量を制限し九mB真空蒸着法、あるいはエトキシ
ジルコニウÅ、メトキシジルコニウÅ、フロキシジルコ
ニウム等のアルコキシジルコニウムを原料としたCVD
法が好ましい。又、透明電導性酸化スズ膜はこの下地処
理膜の上に引続きcvD法によシ形成され、この下地処
理により、通常の(110)、 (101)の配向性の
強い膜と異なり% (200)配向の強い膜が形成され
る。
In particular, as a method for forming the base treatment film, the substrate temperature is heated to a certain degree with a sun ray, the content of ZrO2 or other derivatives is limited, and 9mB vacuum evaporation method, or ethoxyzirconium Å, methoxyzirconium Å , CVD using alkoxyzirconium such as floxyzirconium as raw material
law is preferred. In addition, a transparent conductive tin oxide film is subsequently formed on this base treatment film by the CVD method, and due to this base treatment, it has a % (200) ) A highly oriented film is formed.

「作用」 本発明の電気電導性ガラスは、透明電導性酸化スズ膜を
ガラス基板上に直接製膜する場合に比較して本発明の場
合は、下地処理膜の結晶粒径、結晶配向によって、透明
電導性酸化スズ膜の結晶粒径、結晶配向の制御の多様性
が広がシ、しいては、太陽電池用透明電導性酸化スズ膜
として要請される低抵抗、表面形状を持った薄膜が製作
できる。
"Function" Compared to the case where a transparent conductive tin oxide film is directly formed on a glass substrate, the electrically conductive glass of the present invention has the following characteristics: The variety of control of crystal grain size and crystal orientation of transparent conductive tin oxide films is expanding, and thin films with the low resistance and surface topography required as transparent conductive tin oxide films for solar cells are becoming available. Can be manufactured.

「実施例」 実施例1 79 力(810*)[(800K )(Dフルカ9バ
リヤコートを施こしたソーダライムシリク−トガラス基
板をよく洗浄し、zrO!焼結体を原料として、ICB
真空蒸着法によシ、基板温度350℃、Jll!膜速度
j、 2 X / secで、上記シリカ膜上にZr0
4膜を1500A製膜したのち、540℃で10分間加
熱したものを下地処理膜とした。
"Example" Example 1 79 Force (810*) [(800K) (D Fluka 9 A soda lime silicate glass substrate coated with a barrier coating was thoroughly washed, and an ICB was produced using the zrO! sintered body as a raw material.
By vacuum evaporation method, substrate temperature 350℃, Jll! Zr0 on the above silica film at film speed j, 2X/sec
After forming 4 films at 1500A, the film was heated at 540° C. for 10 minutes and was used as a base treatment film.

さらにこの下地処理膜上に透明伝導膜として、ドーパン
トとしてフッ素を1重量囁含む酸化スズ膜をCVD法に
よシ2000X!!!膜した。
Furthermore, a tin oxide film containing 1 weight of fluorine as a dopant was formed on this base treatment film as a transparent conductive film using the CVD method. ! ! It was filmed.

この試料と下地処理膜を介さず直接ガラス基板に製膜し
たものとをX線回折によって比較すると、ZrO2下地
処理膜に製膜した酸化スズ膜など(200)面配向の傾
向が強いことが認められた。
When this sample was compared with a film formed directly on a glass substrate without using a base treatment film by X-ray diffraction, it was found that the tin oxide film formed on the ZrO2 base treatment film had a strong tendency to be oriented in the (200) plane. It was done.

又抵抗率は下地処理膜のないものは、(5〜y ) x
 i o−4Ω・倒であるのに対し、実施例10屯のは
2.5 X 10−4Ω−倒と低抵抗値を示した。
Also, the resistivity is (5~y) x for those without a base treatment film.
The resistance value of Example 10 was as low as 2.5×10 −4 Ω− compared to io−4 Ω−2.

実施例2 クリ力(slo、 )膜(aooX)のアルカリバリヤ
コート ガラス基板をよく洗浄し、30mol%のTie。
Example 2 A glass substrate coated with an alkali barrier coating (slo, ) film (aooX) was thoroughly washed and treated with 30 mol% Tie.

を含むZr0g焼結体を原料として、EB真空蒸着法に
よシ、基板温度350℃、製膜速度1.2X / se
cで、上記シリカ膜上にZrO2とTlO2〉 の複合
膜を1oooX製膜したのち、540℃で10分間加熱
したものを下地処理膜とした。
Using Zr0g sintered body containing as a raw material, by EB vacuum evaporation method, substrate temperature 350°C, film forming rate 1.2X / se
In c, a composite film of ZrO2 and TlO2> was formed on the silica film in a 10ooX film, and then heated at 540°C for 10 minutes, which was used as a base treatment film.

さらにこの下地処理膜上に透明伝導膜として、ドーパン
トとしてフッ素を1重量俤含む酸化スズ膜をCVD法に
より2000ム製膜した。
Furthermore, a 2000 μm tin oxide film containing 1 weight of fluorine as a dopant was formed as a transparent conductive film on this base treatment film by CVD method.

この試料と下地処理膜を介さず直接ガラス基板に製膜し
たものとをX線回折によって比較すると、ZrO2とT
10!の複合膜からなる下地処理膜に製膜した酸化スズ
膜#1ど(200)面配向の傾向が強いことが認められ
た。
Comparing this sample with a film formed directly on a glass substrate without using a base treatment film by X-ray diffraction, it was found that ZrO2 and T
10! It was observed that the tin oxide film #1 formed on the base treatment film consisting of the composite film had a strong tendency to be oriented in the (200) plane.

又、抵抗率は下地処理膜のないものは5〜7X 10−
40・画であるのに対し、実施例2のものは′LOX1
G”’4Ω・側と低抵抗値を示した。
In addition, the resistivity is 5 to 7X 10- for those without a base treatment film.
40・picture, whereas that of Example 2 is 'LOX1
It showed a low resistance value of 4Ω.

実施例3 シリカ(810,)膜(IIlooA)のアルカリバリ
ヤコートを施こしたソーダライムシリグートガラス基板
をよく洗浄し、30mo’L%の0e02を含むZrO
2焼結体を原料として、EB真空蒸着法によシ、基板温
度350℃製膜速度1.2X/ seaで、上記シリカ
膜上にZrO2と0e02の複合膜を1sooX製膜し
たのち、54011:で10分間加熱したものを下地処
理膜とした。さらにこの下地処理膜上に透明伝導膜とし
て、ドーパントとしてフッ素を1重量%含む酸化スズ膜
をCtVD法によりZ o o oX製膜した。
Example 3 A soda lime silicate glass substrate coated with an alkaline barrier coat of silica (810,) film (IIlooA) was thoroughly washed and coated with ZrO containing 30 mo'L% 0e02.
Using the 2 sintered body as a raw material, a 1sooX composite film of ZrO2 and 0e02 was formed on the silica film using the EB vacuum evaporation method at a substrate temperature of 350°C and a film forming rate of 1.2X/sea, and then 54011: The film heated for 10 minutes was used as a base treatment film. Furthermore, a Z o o o X film was formed as a transparent conductive film on this base treatment film by a CtVD method, as a tin oxide film containing 1% by weight of fluorine as a dopant.

この試料と下地処理膜を介さず直接ガラス基板に製膜し
たものとをX線回折によって比較すると、ZrO2とC
oo−の複合膜からなる下地処理膜に製膜した酸化スズ
膜はど(200)面配向の傾向が強いことが認められた
Comparing this sample with a film formed directly on a glass substrate without using a base treatment film by X-ray diffraction, it was found that ZrO2 and C
It was observed that the tin oxide film formed on the base treatment film consisting of the OO- composite film had a strong tendency to be oriented in the (200) plane.

又、抵抗率は、下地処理膜のないものは5〜7 X 1
0−40・国であるのに対し、実施例乙のものは2.5
 X I Q−40・備と低抵抗値を示し九。
In addition, the resistivity is 5 to 7 x 1 for those without a base treatment film.
The country is 0-40, while that of Example B is 2.5.
XI Q-40・9 exhibiting low resistance value.

実施例4 シリカ(SiOl)膜(800X)のアルカリバリヤコ
ートを施こしたソーダライムシリケートガラス基板をよ
く洗浄し、40 mol%のA 1m osを含むZr
01 焼結体を原料として、EB真空蒸着法によシ基板
温度550℃、製膜速度1.2X/seaで、上記シリ
カ膜上にZr01とA l! os の複合膜を100
0X製膜したのち、540℃で10分間加熱したものを
下地処理膜と、した。さらにこの下地処理膜上に透明伝
導膜として、ドーパントとしてフッ素を1重量%含む酸
化スズ膜をOVD法によシ200ロAl!!膜した。
Example 4 A soda lime silicate glass substrate coated with an alkaline barrier coat of silica (SiOl) film (800X) was thoroughly cleaned and treated with Zr containing 40 mol% of A 1m os.
01 Using the sintered body as a raw material, Zr01 and Al! os composite membrane 100
After forming the 0X film, the film was heated at 540° C. for 10 minutes and was used as a base treatment film. Furthermore, a tin oxide film containing 1% by weight of fluorine as a dopant was formed on this base treatment film as a transparent conductive film using an OVD method to form a 200 ml Al! ! It was filmed.

この試料と下地処理膜を介さず直接ガラス基板に製膜し
丸ものとをX線回折によって比較すると、ZrO2とム
1鵞03  の複合膜からなる下地処理膜に製膜した酸
化スズ膜はど(200)面配向の傾向が強いことが認め
られた。
Comparing this sample with a round film formed directly on a glass substrate without using a base treatment film by X-ray diffraction, it was found that the tin oxide film formed on the base treatment film, which is a composite film of ZrO2 and Mu1-03, was A strong tendency towards (200) plane orientation was observed.

又、抵抗率は下地処理膜のないものは5〜7×10−4
0・国であるのに対し、実施例4のものは!、aX10
″″4Ω・係とよ〕低抵抗値を示した。
Also, the resistivity is 5 to 7 x 10-4 for those without a base treatment film.
0.Country, whereas the one in Example 4! , aX10
It showed a low resistance value of 4Ω.

実施例5 シリカ(810,)膜(800ム)のアルカリバリヤコ
ートを施こしたソーダライムシリケートガラス、基板を
よく洗浄し、T10意 15 mob%、A12011
5 mol %を含むZrO2焼結体を原料として、I
CB真空蒸着法によシ基板温度350℃、製膜速度1.
2ム/seaで、上記シリカ膜上にZrO2とTie、
とAl、03の複合膜を1500A製膜したのち、54
0℃で10分間加熱したものを下地処理膜とした。さら
にこの下地処理膜上に透明伝導膜として、ドーパントと
してフッ素を1重量係合む酸化スズ膜をcvn法によシ
2000ム製膜した。
Example 5 Soda lime silicate glass coated with an alkaline barrier coat of silica (810,) film (800 μm), the substrate was thoroughly washed, T10 15 mob%, A12011
Using a ZrO2 sintered body containing 5 mol % as a raw material, I
By the CB vacuum evaporation method, the substrate temperature was 350°C and the film forming rate was 1.
ZrO2 and Tie on the silica film at 2 m/sea.
After forming a composite film of 03 and Al at 1500A, 54
The film heated at 0° C. for 10 minutes was used as a base treatment film. Further, on this base treatment film, a tin oxide film containing 1 weight of fluorine as a dopant was formed as a transparent conductive film in a thickness of 2000 μm by the CVN method.

この試料と下地処理膜を介さず直接ガラス基板に製膜し
たものとをX線回折によって比較すると、ZrO2とT
lO2とAl、03  の複合膜からなる下地処理膜に
製膜した酸化スズ膜はど(200)面配向の傾向が強い
ことが認められた。
Comparing this sample with a film formed directly on a glass substrate without using a base treatment film by X-ray diffraction, it was found that ZrO2 and T
It was observed that the tin oxide film formed on the base treatment film consisting of a composite film of 1O2 and Al, 03 had a strong tendency to be oriented in the (200) plane.

又、抵抗率は下地処理膜のないものは5〜7X 10−
40−mであるのに対し、実施例5のものは2.4 X
 10−4Ω・創と低抵抗値を示した。
In addition, the resistivity is 5 to 7X 10- for those without a base treatment film.
40-m, whereas that of Example 5 is 2.4
It showed a low resistance value of 10-4Ω.

実施例6 シリカ(8101)l[(800ム)のアルカリバリヤ
コートを施こしたソーダライムシリケートガラス基板を
よく洗浄し、Ti01 15 mol%、0@101 
15 mob、%を含むzrO!焼結体を原料として、
’ICB真空蒸着法によシ基板温度350℃、製膜速度
1.2 A / seaで、上記シリカ膜上にZrO2
とT10!と0eO1の複合膜を1300A製膜したの
ち、540℃で10分間加熱したものを下地処理膜とし
た。さらにこの下地処理膜上に透明伝導膜として、ドー
パントとしてフッ素を1重量%含む酸化スズ膜をOVD
法によシ2000ム製膜した。
Example 6 A soda lime silicate glass substrate coated with an alkali barrier coat of silica (8101)l [(800μ) was thoroughly washed and treated with Ti01 15 mol%, 0@101
15 mobs, zrO including %! Using sintered body as raw material,
'ZrO2 was deposited on the silica film using the ICB vacuum evaporation method at a substrate temperature of 350°C and a film formation rate of 1.2 A/sea.
And T10! A composite film of 0eO1 and 0eO1 was formed at 1300A, and then heated at 540°C for 10 minutes, which was used as a base treatment film. Furthermore, a tin oxide film containing 1% by weight of fluorine as a dopant is deposited on this base treatment film as a transparent conductive film by OVD.
A 2,000-m thick film was formed by the method.

この試料と下地処理膜を介さず直接ガラス基板に製膜し
たものとをX線回折によって比較すると、zrO!とT
10!とCeO2との複合膜からなる下地処理膜に製膜
した酸化スズ膜はど(200)面配向の傾向が強いこと
が認められた。
When this sample was compared with a film formed directly on a glass substrate without using a base treatment film by X-ray diffraction, it was found that zrO! and T
10! It was observed that the tin oxide film formed on the base treatment film consisting of a composite film of CeO2 and CeO2 had a strong tendency to be oriented in the (200) plane.

又、抵抗率は下地処理膜のないものは5〜7X 10−
’Ω・錆であるのに対して実施例6のものは2.3X1
0−4Ω・備とよシ低抵抗値を示した。
In addition, the resistivity is 5 to 7X 10- for those without a base treatment film.
'Ω・rust, whereas that of Example 6 is 2.3X1
It showed a low resistance value of 0-4Ω.

実施例7 シリカ(S10雪)膜(aooR)のアルカリ/(リヤ
コートを施こしたソーダライムシリケートガラス基板を
よく洗浄し、Co(1215mol %、A14011
5 moIToを含むZrO2焼結体を原料として、I
CB真空蒸着法によシ、基板温度350℃、製膜速度t
 2 X / secで、上記シリカ膜上にZrO2と
CoO2とム1鵞03  の複合膜を1500X製膜し
たのち、540℃で10分間加熱したものを下地処理膜
とした。さらにこの下地処理膜上に透明伝導膜として、
ドーパントとしてフッ素を1重量%含む酸化スズ膜をO
VD法により2000^製膜した。
Example 7 A soda lime silicate glass substrate coated with an alkali/(rear coat) of silica (S10 snow) film (aooR) was thoroughly washed and coated with Co (1215 mol %, A14011).
5 Using a ZrO2 sintered body containing moITo as a raw material, I
By CB vacuum evaporation method, substrate temperature 350°C, film forming speed t
A composite film of ZrO2, CoO2, and M103 was formed at 1500X on the silica film at 2X/sec, and then heated at 540°C for 10 minutes, which was used as a base treatment film. Furthermore, as a transparent conductive film on this base treatment film,
A tin oxide film containing 1% by weight of fluorine as a dopant is
A 2000^ film was formed by the VD method.

この試料と下地処理膜を介さず直接ガラス基板に製膜し
たものとをX線回折によって比較すると、Zr01と0
802とA 1g 0S  との複合膜からなる下地処
理膜に製膜した酸化スズ膜はど(200)面配向の傾向
が強いことが認められた。
Comparing this sample with a film formed directly on a glass substrate without using a base treatment film by X-ray diffraction, it was found that Zr01 and 0
It was observed that the tin oxide film formed on the base treatment film consisting of a composite film of 802 and A 1g 0S had a strong tendency to be oriented in the (200) plane.

又、抵抗率は下地処理膜のないものFis〜7X 10
””4Ω・iであるのに対して実施例7のものはAOX
lo−4Ω・nとよシ低抵抗値を示した。
Also, the resistivity is Fis ~ 7X 10 without a base treatment film.
""4Ω・i, whereas that of Example 7 is AOX
It showed a low resistance value of lo-4Ω・n.

「発明の効果」 本発明は、酸化スズを主成分とした透明電導膜を形成す
る場合、酸化ジルコニウム(Zr02)を主成分とする
薄膜を下地処理膜とすることによシ酸化スズ膜が(20
0)面に優先的に配向することに見られるように、非結
晶性の基板上においても結晶配向性の容易な下地処理膜
の結晶粒径、結晶配向によって、酸化スズ膜の結晶粒径
、結晶配向を制御し、多様化するものであシ、シいては
アモルファスシリコン太陽電池用透明伝導膜として要請
される低抵抗、表面形状をもった膜を実現するものであ
る。
"Effects of the Invention" The present invention provides that when forming a transparent conductive film mainly composed of tin oxide, the tin oxide film is 20
As seen in the preferential orientation to the 0) plane, the crystal grain size of the tin oxide film, The purpose is to control and diversify the crystal orientation, and in turn, realize a film with low resistance and surface shape required as a transparent conductive film for amorphous silicon solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気伝導性ガラスの横断面図を示す。 FIG. 1 shows a cross-sectional view of the electrically conductive glass of the invention.

Claims (1)

【特許請求の範囲】 (1)ガラス基板上に酸化スズを主成分とする透明電導
性酸化スズ膜を形成した電気伝導性ガラスにおいて、ガ
ラス基板と透明電導性酸化スズ膜との間に酸化ジルコニ
ウムを主成分とする下地処理膜を介在させ、酸化スズ膜
の (200)面の結晶配向を高めたことを特徴とする電気
伝導性ガラス。 (2)下地処理膜として、酸化ジルコニウムを60mo
l%以上含んだ複合膜を用いたことを特徴とする特許請
求の範囲第一項記載の電気伝導性ガラス。 (3)酸化ジルコニウムに対する添加物が、40mol
%を越えない範囲で酸化チタン、酸化セリウム、酸化ア
ルミニウムを単独または組合せて添加したことを特徴と
する特許請求の範囲第二項記載の電気伝導性ガラス。 (4)下地処理膜の膜厚を50Å〜2000Å、好まし
くは200Å〜1000Åとした特許請求の範囲第一項
記載の電気伝導性ガラス。
[Scope of Claims] (1) In electrically conductive glass in which a transparent conductive tin oxide film containing tin oxide as a main component is formed on a glass substrate, zirconium oxide is added between the glass substrate and the transparent conductive tin oxide film. An electrically conductive glass characterized in that the crystal orientation of the (200) plane of a tin oxide film is enhanced by interposing a base treatment film containing as a main component. (2) 60 mo of zirconium oxide as a base treatment film
The electrically conductive glass according to claim 1, characterized in that a composite film containing 1% or more is used. (3) Additive to zirconium oxide is 40 mol
The electrically conductive glass according to claim 2, wherein titanium oxide, cerium oxide, and aluminum oxide are added alone or in combination in an amount not exceeding %. (4) The electrically conductive glass according to claim 1, wherein the base treatment film has a thickness of 50 Å to 2000 Å, preferably 200 Å to 1000 Å.
JP6507385A 1985-03-30 1985-03-30 Electroconductive glass Pending JPS61227945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6507385A JPS61227945A (en) 1985-03-30 1985-03-30 Electroconductive glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6507385A JPS61227945A (en) 1985-03-30 1985-03-30 Electroconductive glass

Publications (1)

Publication Number Publication Date
JPS61227945A true JPS61227945A (en) 1986-10-11

Family

ID=13276409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6507385A Pending JPS61227945A (en) 1985-03-30 1985-03-30 Electroconductive glass

Country Status (1)

Country Link
JP (1) JPS61227945A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389436A (en) * 1986-09-30 1988-04-20 Nippon Soda Co Ltd Electrically conductive glass sheet
JPH11189436A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Transparent electrode substrate, its preparation and production of photoelectromotive force element
WO2003101158A1 (en) * 2002-05-29 2003-12-04 Asahi Glass Company, Limited Substrate with transparent conductive film and organic el device
JP2007242340A (en) * 2006-03-07 2007-09-20 Fujikura Ltd Transparent conductive substrate, its manufacturing method and its manufacturing apparatus
WO2011142392A1 (en) * 2010-05-12 2011-11-17 名阪真空工業株式会社 Transparent conductive substrate
WO2013141374A1 (en) * 2012-03-23 2013-09-26 積水ナノコートテクノロジー株式会社 Light-transmitting electroconductive film, method for producing same, and use therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389436A (en) * 1986-09-30 1988-04-20 Nippon Soda Co Ltd Electrically conductive glass sheet
JPH0774085B2 (en) * 1986-09-30 1995-08-09 日本曹達株式会社 Conductive glass plate
JPH11189436A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Transparent electrode substrate, its preparation and production of photoelectromotive force element
WO2003101158A1 (en) * 2002-05-29 2003-12-04 Asahi Glass Company, Limited Substrate with transparent conductive film and organic el device
JP2007242340A (en) * 2006-03-07 2007-09-20 Fujikura Ltd Transparent conductive substrate, its manufacturing method and its manufacturing apparatus
WO2011142392A1 (en) * 2010-05-12 2011-11-17 名阪真空工業株式会社 Transparent conductive substrate
US8795786B2 (en) 2010-05-12 2014-08-05 Meihan Shinku Kogyo Co., Ltd. Transparent conductive substrate
JP5777611B2 (en) * 2010-05-12 2015-09-09 名阪真空工業株式会社 Transparent conductive substrate
WO2013141374A1 (en) * 2012-03-23 2013-09-26 積水ナノコートテクノロジー株式会社 Light-transmitting electroconductive film, method for producing same, and use therefor
CN103858182A (en) * 2012-03-23 2014-06-11 积水纳米涂层科技有限公司 Light-transmitting electroconductive film, method for producing same, and use therefor

Similar Documents

Publication Publication Date Title
US9255029B2 (en) Method of making heat treated coated article using TCO and removable protective film
Chang et al. Effects of thickness and annealing on the properties of Ti-doped ZnO films by radio frequency magnetron sputtering
TW200840061A (en) Transparent electrode for solar cell and manufacturing method thereof
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
Zhang et al. Facile preparation of Zn2V2O7–VO2 composite films with enhanced thermochromic properties for smart windows
CN103619772A (en) Process for manufacturing glazing comprising porous layer
JPH06318406A (en) Conductive transparent base member and manufacture thereof
JPH03165452A (en) Lamp
JPS61227945A (en) Electroconductive glass
JP2000159538A (en) Glass for solar battery
JPH056766B2 (en)
ABD HAMED et al. Influence of hydrochloric acid volume on the growth of titanium dioxide (TiO2) nanostructures by hydrothermal method
TWI263687B (en) Sputtering target, optical information recording medium and process for producing the same
JPH08290939A (en) Glass for substrate
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
JPH01194208A (en) Transparent conductive membrane
JPH08264021A (en) Transparent conductive film
Fantini et al. Influence of the substrate on the crystalline properties of sprayed tin dioxide thin films
JP3925977B2 (en) Transparent conductive film, method for producing the same, and sputtering target
JPH0315107A (en) Conductive metal oxide sintered body and its application
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JPH04277408A (en) Transparent electrode
JPH0367247B2 (en)
CN102465272B (en) Multielement composite transparent conductive film and preparation method and application thereof
JPS63102109A (en) Transparent conducting film