TW200840061A - Transparent electrode for solar cell and manufacturing method thereof - Google Patents

Transparent electrode for solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW200840061A
TW200840061A TW097106817A TW97106817A TW200840061A TW 200840061 A TW200840061 A TW 200840061A TW 097106817 A TW097106817 A TW 097106817A TW 97106817 A TW97106817 A TW 97106817A TW 200840061 A TW200840061 A TW 200840061A
Authority
TW
Taiwan
Prior art keywords
transparent
layer
metal oxide
metal
transparent electrode
Prior art date
Application number
TW097106817A
Other languages
Chinese (zh)
Other versions
TWI456772B (en
Inventor
Chong-Chan Lee
Jong-Bok Kim
Ho-Gi Bae
Original Assignee
Dongjin Semichem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongjin Semichem Co Ltd filed Critical Dongjin Semichem Co Ltd
Publication of TW200840061A publication Critical patent/TW200840061A/en
Application granted granted Critical
Publication of TWI456772B publication Critical patent/TWI456772B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a transparent electrode for a solar cell and a manufacturing method thereof, and more particularly to a transparent electrode which is transparent and conductive to be employed in a solar cell, the transparent electrode comprising a transparent base layer; a first polycrystalline transparent metal oxide layer which is formed on the transparent base layer; a metal layer which is formed on the first polycrystalline transparent metal oxide layer; and a second polycrystalline transparent metal oxide layer formed on the metal layer, and a manufacturing method thereof. Thus, the transparent electrode according to the present invention minimizes a lowering of light transmittance, sharply reduces specific resistance and improves a surface roughness to thereby enhance efficiency of a solar cell and provide a high-efficiency solar cell.

Description

200840061 九、發明說明: 【發明所屬之技術領域3 發明領域 本申請案主張申請於2007年2月28日之韓國專利申請 5 案第2007-0020487號之優先權。該優先權案之全部内容併 入此處作為參考。 本發明關於一種用於太陽能電池之透明電極及其製造 方法’更特定地,關於高品質之用於太陽能電池的透明電 極及其製造方法,其可將光透射的下降減到最小、大幅減 1〇少比電阻且改善表面粗链度以增進太陽能電池的效率及提 供一種高效率的太陽能電池。 【先前技術:J 發明背景 一種導電透明之電極廣被用於各種技術應用中,但於 15各個領域中,特別是太陽能電池及顯示元件的領域,需要 進一步改良。如韓國專利申請案第2〇〇6_〇〇53541號所揭示 者,提供高導電性與高光透射速率的透明電極被主要用於 以1%光產生電力的太陽能電池以及將由基板產生的光訊號 顯示至外界的顯示元件中。為此等目的,透明電極係藉著 20濺鍍在絕緣基底層諸如玻璃上沉積導電材料諸如ITO(銦錫 氧化物)而製造。特別地,因為OLED的特性,用於〇LED(有 機發光二極體)之透明電極需要導電材料層以具有較低比 電阻及較高平面化。此處,因為0LED層很薄,所以高平面 化比較低比電阻更為必要。至於用於太陽能電池之透明電 5 200840061 極’光電轉換效率卻是更為關鍵。因為應用領域的特性, 所以低比電阻及高光透射性的導電材料是必須的。 為發展高效能之太陽能電池,沉積在透明基底層上之 導電材料層應具有低比電阻及低表面粗韃性但卻提供古透 5射性。然而,習知的非定型ITO同時具有高比電阻及高平面 化。雖然,多晶ITO具有比非定型ITO更低的比電阻,但依 然較高。而且多晶ιτο的表面也非常粗糙。 所以亟需發展一種透明電極之製造方法,其維持類似 於習知透明電極之透射性,但大幅降低比電阻且改善表面 10粗糙度,同時使用揭示於私國專利申請案第2006-0053541 说之新發展的金屬乳化物或現存的金屬氧化物且使用現存 的沉積設備。 【發明内容】 發明概要 15 依此,本發明之一面向為備置一種高品質之用於太陽 能電池的透明電極及其製造方法,其可將光透射的下降減 到最小、大幅減少比電阻且改善表面粗糙度以增進太陽能 電池的效率及提供一種高效率的太陽能電池。 本發明之其他面向及/或優點部份於以下描述中說 20明,部伤攸描述中明顯彳于知,或可以經由實施本發明而了 解。 本發明之前述及/或其他面向也可經由備置一種用於 太陽能電池之透明電極而達到,該透明電極為透明導電且 包括:一透明基底層;形成在該透明基底層上之一第一多 6 200840061 晶透明金屬氧化層·’形成在該第一多晶透明金屬氧化物層 上之一金屬層;及形成在該金屬層上之一第二多晶透明金 屬氧化層。 本發明之前述及/或其他面向也可經由備置一種太陽 5 能電池而達到,其包括一用於太陽能電池的透明電極,以 及面對該透明電極的一輔助電極。 本發明之前述及/或其他面向也可經由提供一種用於 太陽能電池之透明電極的製造方法而達到。該製造方法包 括:備置一透明基底層;在該透明基底層上形成一第一多 10晶透明金屬氧化層;在該第一多晶透明金屬氧化物層上形 成一金屬層;及在該金屬層上形成一弟一多晶透明金屬氧 化層。 圖式簡單說明 本發明之上述或其他面向從下面實施例的描述加上圖 15式的參照將變得更為明顯且更容易了解,本發明之圖式係: 第1圖為依據本發明一實施例之透明電極的截面圖; 第2圖為使用依據本發明之透明電極之色料敏感化太 陽能電池的截面圖; 第3圖為依據本發明之用於太陽能電池之透明電極的 20 一表面,該表面由掃描式顯微鏡獲取;及 第4圖為依據比較例之透明電極的一表面,該表面由掃 描式顯微鏡獲取。 t 】 較佳實施例之詳細說明 7 2〇〇S4〇〇61 本發明之實施例將參考圖式描述於下,其中相似的編 货指稱相似的元件且重複的描述必要時將予省略。 >乂下詳細描述本發明。 本發明關於用於太陽能電池之透明電極,其透明且導 電。透明電極包括一透明基底層ίο、形成在透明基底層 方〆第一多晶透明金屬氧化層20,形成在第〆多晶透明 金屬氧化層20上之一金屬層30及形成在金屬層3〇上之一第 〆多晶透明金屬氧化層40 〇 通常太陽能電池包括陽光透過其而入射之/透明電極。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The entire content of this priority is incorporated herein by reference. The present invention relates to a transparent electrode for a solar cell and a method of manufacturing the same, and more particularly to a high-quality transparent electrode for a solar cell and a method of manufacturing the same, which can minimize the decrease in light transmission and substantially reduce it by one The specific resistance is reduced and the surface thick chain is improved to improve the efficiency of the solar cell and to provide a highly efficient solar cell. [Prior Art: J Background of the Invention A conductive and transparent electrode is widely used in various technical applications, but in the field of various fields, particularly solar cells and display elements, further improvement is required. A transparent electrode that provides high conductivity and high light transmission rate is mainly used for a solar cell that generates electric power with 1% of light and an optical signal to be generated by the substrate, as disclosed in Korean Patent Application No. 2, No. 5,535,041. Displayed to the display elements of the outside world. For this purpose, the transparent electrode is fabricated by depositing a conductive material such as ITO (Indium Tin Oxide) on an insulating substrate layer such as glass by sputtering. In particular, because of the characteristics of OLEDs, transparent electrodes for germanium LEDs (organic light-emitting diodes) require a layer of conductive material to have a lower specific resistance and a higher planarization. Here, since the OLED layer is thin, high planarization is more necessary than low resistance. As for the transparent electricity used in solar cells 5 200840061 Extreme 'photoelectric conversion efficiency is more critical. Due to the characteristics of the application field, low specific resistance and high light transmittance conductive materials are necessary. In order to develop high-performance solar cells, the layer of conductive material deposited on the transparent substrate layer should have low specific resistance and low surface roughness but provide ancient transparency. However, conventional amorphous ITOs have both high specific resistance and high planarization. Although polycrystalline ITO has a lower specific resistance than amorphous ITO, it is still relatively high. Moreover, the surface of polycrystalline ιτο is also very rough. Therefore, there is a need to develop a method for manufacturing a transparent electrode which maintains the transmittance similar to that of a conventional transparent electrode, but which greatly reduces the specific resistance and improves the surface 10 roughness, and is disclosed in Japanese Patent Application No. 2006-0053541. Newly developed metal emulsions or existing metal oxides and using existing deposition equipment. SUMMARY OF THE INVENTION Accordingly, one aspect of the present invention is directed to providing a high quality transparent electrode for a solar cell and a method of fabricating the same, which minimizes a decrease in light transmission, greatly reduces specific resistance, and improves Surface roughness enhances the efficiency of solar cells and provides a highly efficient solar cell. Other aspects and/or advantages of the invention will be apparent from the description of the appended claims. The foregoing and/or other aspects of the present invention can also be achieved by providing a transparent electrode for a solar cell, the transparent electrode being transparent and comprising: a transparent substrate layer; one of the first layers formed on the transparent substrate layer 6 200840061 crystalline transparent metal oxide layer - 'a metal layer formed on the first polycrystalline transparent metal oxide layer; and a second polycrystalline transparent metal oxide layer formed on the metal layer. The foregoing and/or other aspects of the present invention can also be achieved by the provision of a solar cell comprising a transparent electrode for a solar cell and an auxiliary electrode facing the transparent electrode. The foregoing and/or other aspects of the present invention can also be achieved by providing a method of manufacturing a transparent electrode for a solar cell. The manufacturing method includes: preparing a transparent base layer; forming a first multi-10 transparent metal oxide layer on the transparent base layer; forming a metal layer on the first polycrystalline transparent metal oxide layer; and the metal A polycrystalline transparent metal oxide layer is formed on the layer. BRIEF DESCRIPTION OF THE DRAWINGS The above or other aspects of the present invention will become more apparent and more readily understood from the following description of the embodiments and the accompanying drawings. FIG. 1 is a diagram of the present invention. A cross-sectional view of a transparent electrode of the embodiment; FIG. 2 is a cross-sectional view of a color sensitized solar cell using the transparent electrode according to the present invention; and FIG. 3 is a view of a surface of a transparent electrode for a solar cell according to the present invention. The surface was obtained by a scanning microscope; and Fig. 4 is a surface of a transparent electrode according to a comparative example obtained by a scanning microscope. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 7 2 〇〇 S4 〇〇 61 Embodiments of the present invention will be described below with reference to the drawings, in which similar descriptions refer to like elements and the repeated description will be omitted as necessary. The present invention is described in detail below. The present invention relates to a transparent electrode for a solar cell which is transparent and electrically conductive. The transparent electrode comprises a transparent substrate layer, a first polycrystalline transparent metal oxide layer 20 formed on the transparent substrate layer, a metal layer 30 formed on the second polycrystalline transparent metal oxide layer 20, and a metal layer 3 Upper one of the first polycrystalline transparent metal oxide layer 40 〇 usually a solar cell including sunlight through which the incident/transparent electrode

1〇 與面對透明電極之一輔助電極。透明電極應透明且導電以 浪動其中之電力,所以透明電極由導電材料製造,如果透 明電極材料包括絕緣材料,則導電材料係塗覆在絕緣材料 上。依據本發明,如第1圖所示,透明電極包括透明基底層 iO,形成在透明基底層10上之第一多晶透明金屬氧化層20, 15 形成在第一多晶透明金屬氧化層20之金屬層30及形成在金 屬層3〇上之第二多晶透明金屬氧化層40 °依據本發明,導 I · 電材料層之導電性藉著使用低比電阻之金屬而最大化。因 為氧化層20及40係形成在金屬層30上及形成在金屬層30下 方以再反射金屬反射光,即金屬層30被夾氧化層2〇及40之 20 間以最小化由於金屬層30之引入造成之透射的降低。如此 可能製造高導電性之多層結構。 透明基底層10可包括被使用在太陽能電池中之各種已 知的透明材料如絕緣體或導電體。較佳地,透明基底層10 包括具有結構與化學穩定性之玻璃。 8 200840061 氧化層20形成在透明基底層1〇上以施加高導電性至透 明基底層10,提供一表面於其上形成金屬層30且防止金屬 層30被引入至其中。氧化層20形成包括結晶而不是非定型 物的第一多晶透明金屬氧化層20。透明金屬氧化物可包括 5透明且導電之各種已知的金屬氧化物。更特定地,透明金 屬氧化物可包括如具有銻或氟參雜物之錫氧化物,具有隹呂 或卸參雜物之辞氧化物’具有錫參雜物之ITO,或日本專利 首先公開弟2004-43851就之結晶In-W-0。較佳地,透明金 屬氧化物可包括廣為使用方便且高導電之ITQ或FT〇。更佳 10地,IT〇。即是,由於引入金屬層30而作為抗反射層之透明 金屬氧化層(膜)包括廣為現存之透明導電層所用之ΙΤΟ。 ΙΤΟ層提供在可見光區域之高透射性且同時具有低比電 阻。藉著控制沉積狀況,ΙΤΟ層也有好的表面平面性與高折 射率。所以即使它很薄,當金屬層30稍後形成時,它不會 15破裂反而是連續的。更且,比電阻降低。所以ΙΤΟ層適於作 為金屬層30之抗反射層。 更且,第一多晶透明金屬氧化層2〇影響光學活性以增 進透射速率,防止基材材料之擴散且作為影響金屬最初之 核心生成的核心修飾層,以及在決定整個夾層構形之平面 20 化中扮演決定性的角色。 ΙΤΟ透明金屬氧化層可由各種已知之沉積方法形成,如 真空沉積、離子燒結、濺鍍施加液體形成透明導電層之方 去專專。1丁〇透明金屬氧化層較佳地由賤鍵形成以控制厚度 而且便利。於此案例中,ΓΓΟ透明金屬氧化層應包括多晶 9 200840061 體以降低比電阻與金屬層3〇與氧化層2〇及40的擴散及結 合。通常,退火非疋型ITO成為多晶。較佳地,第一多晶透 明金屬氧化層20之厚度在250至800A的範圍以確保充分的 透射且於不損害透射的範圍内藉著形成金屬層3〇來改善導 5電性。於此案例中,表面粗糙不會惡化。因為多晶ΠΌ具有 在(400)方向具有快速結晶生長速率之各向異性,表面粗糙 度會惡化且透射會降低或若多晶長得太多的話金屬層3〇會 變厚。所以,第一多晶透明金屬氧化層2〇之厚度較佳地係 在前述的範圍内。 10 如第1圖所示,金屬層30形成在第一多晶透明金屬氧化 層20上。因為透明基底層1〇之導電材料的比電阻被金屬層 30大幅地降低,所以較厚的金屬層在導電性方面較好。然 而,若金屬層30太厚,透明電極之透射會降低。所以較佳 地,金屬層30之厚度最大為500A,更佳地為5〇至15〇人,最 15佳地為約100入以確保充分之導電性與透射性。畢竟,大部 份之導電性係由金屬層30實行,所以金屬層3〇應平坦完整 且連續。 金屬層30可包括各種已知之高導電性金屬。較佳地, 金屬層30的材料包括選自由高導電性且易於沉積的銀 20 (八8)、銀合金、麵(Pt)、翻合金、金(Au)、金合金、銅(Cu)、 銅合金及其等混合物(合金)組成的群組中之至少一者。更佳 地’金屬層30的材料包括選自由銀(Ag)、鉑(pt)、金(Au)、 銅(Cu)及其等混合物(合金)組成的群組中之至少一者。最佳 地是高導電性的銀(Ag)。若金屬層30包括高導電性且吸收 200840061 較少可見光的銀,則太陽能電池之透明電極具有充分的透 射速率的多層。 金屬層30可由各種已知的沉積方法形成。較佳地,藉 著賤錢可無困難地製造且可調整厚度。較佳地,金屬層30 5由室溫沉積方法形成而不必加熱基底層來限制第一多晶金 屬氧化層20的粗粒化及金屬與金屬氧化物的交互作用以及 降低比電阻。 因為金屬層30薄且可能作為一種化學雜質,第二多晶 透明金屬氧化層40可藉著相同於第一多晶透明金屬氧化層 10 20之方法更形成在金屬層30上,藉此保護及含有金屬層 30。第二多晶透明金屬氧化層4〇光學上作為一種抗反射層 且增進透射速率以及保護金屬層30。 第二多晶透明金屬氧化層4〇可包括多晶以改善導電 性。第二多晶透明金屬氧化層40必須具有平坦表面以後續 15無困難地形成其他層且確保透射性。較佳地,第二多晶透 明金屬氧化層40厚度範圍係250至800A以降低表面粗糙度 及確保透射性。 本發明也提供一種太陽能電池,其包括依據本發明之 透明電極。該太陽能電池包括用於太陽能電池之透明電極 及面對透明電極之辅助電極。該太陽能電池包括種已知的 太陽月b電池’该等太陽能電池具有陽光所入射之透明電 極。例如,太陽能電池包括石夕型太陽能電池、色料敏感型 太陽月b包池及類似物。前述太陽能電池之構型為習於此藝 者所熟知,因此不再贅述。 11 200840061 第一圖顯示色料敏感化太陽能電池,其包括依據本發 月之透明屯極。如其中所示,該太陽能電池包括透明電極 具有1)透明基底層10,ΰ)包含第一多晶透明金屬氧化層 20金屬層30及第二多晶透明金屬氧化層4〇之導電層 5 (20+3(Η40)與輔助電極(7〇+8〇+9〇)(包括翻的催化劑金屬層 7〇、^包塗覆層80及作為輔助電極基底的玻璃層90)。此 日守’色料敏感化之太陽能電池可更包括含有色料之一多孔 層50與形成在多孔層5〇上的電解質層6〇。 更且’本發明提供一種用於太陽能電池之透明電極的 1〇衣這方法。依據本發明之用於太陽能電池之透明電極的製 造方法包括備置一透明基底層之操作 ,於透明基底層上形 成第一多晶透明金屬氧化層之操作,在第一多晶透明金屬 氧化層上形成金屬層之操作及在金屬層上形成第二多晶透 明金屬氧化層之操作。 15 透明基底層10、透明金屬氧化層20及40與the金屬層 30之材料如上所述。較佳地,透明金屬氧化層2〇及4〇包括 IT〇且金屬層30包括銀(Ag)。當基底層1〇於室溫時形成金屬 層30 ’藉此降低比電阻及製造高效率之太陽能電池。藉由 退火非定型ITO成多晶形成ITO層。更佳地,當基底層10加 20熱至200 ± 5〇°c時形成ιτο層。於此種情況下,ιτο層毫無 困難地製造、合適地生長且確保適當的粗糙度。 形成透明金屬氧化層20及40與金屬層30之方法包括 各種已知的方法,較佳地,上述的濺鍍真空沉積法。 較佳地,金屬層30之厚度最高為5〇〇A,更佳地50至 12 200840061 15〇A ’第一多晶透明金屬氧化層20之厚度為250至800A, 第二多晶透明金屬氧化層4〇之厚度為250至800A。1〇 with an auxiliary electrode facing one of the transparent electrodes. The transparent electrode should be transparent and electrically conductive to ignite the power therein, so the transparent electrode is made of a conductive material, and if the transparent electrode material includes an insulating material, the conductive material is coated on the insulating material. According to the present invention, as shown in FIG. 1, the transparent electrode includes a transparent base layer iO, and the first polycrystalline transparent metal oxide layer 20, 15 formed on the transparent base layer 10 is formed on the first polycrystalline transparent metal oxide layer 20. The metal layer 30 and the second polycrystalline transparent metal oxide layer formed on the metal layer 3 are 40 ° in accordance with the present invention, and the conductivity of the conductive material layer is maximized by using a metal having a low specific resistance. Because the oxide layers 20 and 40 are formed on the metal layer 30 and formed under the metal layer 30 to reflect the metal reflected light, that is, the metal layer 30 is sandwiched between the layers 2 and 40 to minimize the metal layer 30. The introduction causes a decrease in transmission. It is thus possible to manufacture a highly conductive multilayer structure. The transparent substrate layer 10 may include various known transparent materials such as insulators or electrical conductors used in solar cells. Preferably, the transparent substrate layer 10 comprises a glass having structural and chemical stability. 8 200840061 An oxide layer 20 is formed on the transparent substrate layer 1 to apply high conductivity to the transparent substrate layer 10, providing a surface on which the metal layer 30 is formed and preventing the metal layer 30 from being introduced therein. The oxide layer 20 forms a first polycrystalline transparent metal oxide layer 20 comprising crystals instead of amorphous. The transparent metal oxide may comprise 5 various known metal oxides which are transparent and electrically conductive. More specifically, the transparent metal oxide may include, for example, a tin oxide having a ruthenium or a fluorine-doped oxide, an ITO having a ruthenium or a ruthenium-doped impurity, or a tin-doped ITO, or a Japanese patent first disclosed 2004-43851 crystallized In-W-0. Preferably, the transparent metal oxide can comprise ITQ or FT(R) which are widely used and highly conductive. Better 10 places, IT〇. That is, the transparent metal oxide layer (film) which serves as the antireflection layer due to the introduction of the metal layer 30 includes the crucible used for the widely existing transparent conductive layer. The tantalum layer provides high transmission in the visible light region while having a low specific resistance. By controlling the deposition, the enamel layer also has good surface planarity and high refractive index. Therefore, even if it is thin, when the metal layer 30 is formed later, it does not rupture but is continuous. Moreover, the specific resistance is lowered. Therefore, the tantalum layer is suitable as the antireflection layer of the metal layer 30. Moreover, the first polycrystalline transparent metal oxide layer 2〇 affects optical activity to enhance the transmission rate, prevents diffusion of the substrate material and acts as a core modification layer that affects the initial core formation of the metal, and in determining the plane of the entire interlayer configuration 20 Play a decisive role. The transparent metal oxide layer can be formed by various known deposition methods such as vacuum deposition, ion sintering, sputtering, and application of a liquid to form a transparent conductive layer. The 1 butyl transparent metal oxide layer is preferably formed of a ruthenium bond to control the thickness and is convenient. In this case, the tantalum transparent metal oxide layer should include polycrystalline 9 200840061 to reduce the specific resistance and diffusion and bonding of the metal layer 3 and the oxide layers 2 and 40. Generally, the annealed non-rhenium type ITO becomes polycrystalline. Preferably, the thickness of the first polycrystalline transparent metal oxide layer 20 is in the range of 250 to 800 A to ensure sufficient transmission and to improve the electrical conductivity by forming the metal layer 3 范围 in a range not impairing transmission. In this case, the surface roughness will not deteriorate. Since the polycrystalline silicon has an anisotropy with a rapid crystal growth rate in the (400) direction, the surface roughness is deteriorated and the transmission is lowered or the metal layer 3 becomes thick if the polycrystal grows too much. Therefore, the thickness of the first poly transparent metal oxide layer 2 is preferably within the aforementioned range. 10 As shown in Fig. 1, a metal layer 30 is formed on the first poly transparent metal oxide layer 20. Since the specific resistance of the conductive material of the transparent underlayer 1 is greatly reduced by the metal layer 30, the thicker metal layer is superior in electrical conductivity. However, if the metal layer 30 is too thick, the transmission of the transparent electrode is lowered. Therefore, preferably, the thickness of the metal layer 30 is at most 500 A, more preferably 5 Å to 15 Å, and most preferably about 100 Å to ensure sufficient conductivity and transparency. After all, most of the conductivity is carried out by the metal layer 30, so the metal layer 3 should be flat, complete and continuous. Metal layer 30 can include a variety of known highly conductive metals. Preferably, the material of the metal layer 30 comprises silver 20 (eight 8), silver alloy, surface (Pt), alloy, gold (Au), gold alloy, copper (Cu) selected from the group consisting of high conductivity and easy deposition. At least one of the group consisting of a copper alloy and a mixture thereof (alloy). More preferably, the material of the metal layer 30 includes at least one selected from the group consisting of silver (Ag), platinum (pt), gold (Au), copper (Cu), and the like (alloy). Most preferably, it is highly conductive silver (Ag). If the metal layer 30 includes silver which is highly conductive and absorbs 200840061 less visible light, the transparent electrode of the solar cell has a plurality of layers having a sufficient transmittance. Metal layer 30 can be formed by a variety of known deposition methods. Preferably, the thickness can be manufactured without difficulty and can be adjusted by the money. Preferably, the metal layer 30 5 is formed by a room temperature deposition method without heating the base layer to limit coarse graining of the first polycrystalline metal oxide layer 20 and metal to metal oxide interaction and lower specific resistance. Since the metal layer 30 is thin and may act as a chemical impurity, the second poly transparent metal oxide layer 40 may be formed on the metal layer 30 by the same method as the first poly transparent metal oxide layer 10 20, thereby protecting and Contains a metal layer 30. The second poly transparent metal oxide layer 4 is optically used as an antireflection layer and enhances the transmission rate and protects the metal layer 30. The second poly transparent metal oxide layer 4 can include polycrystals to improve conductivity. The second poly transparent metal oxide layer 40 must have a flat surface to subsequently form other layers without difficulty and ensure transparency. Preferably, the second polycrystalline transparent metal oxide layer 40 has a thickness ranging from 250 to 800 A to reduce surface roughness and ensure transparency. The invention also provides a solar cell comprising a transparent electrode in accordance with the invention. The solar cell includes a transparent electrode for a solar cell and an auxiliary electrode facing the transparent electrode. The solar cell includes a known solar moon b battery. The solar cells have transparent electrodes incident on sunlight. For example, solar cells include Shi Xi solar cells, color-sensitive solar moon b pools, and the like. The configuration of the aforementioned solar cell is well known to those skilled in the art and therefore will not be described again. 11 200840061 The first image shows a color-sensitized solar cell that includes a transparent bungee in accordance with this month. As shown therein, the solar cell comprises a transparent electrode having 1) a transparent substrate layer 10, a conductive layer 5 comprising a first polycrystalline transparent metal oxide layer 20 metal layer 30 and a second polycrystalline transparent metal oxide layer 4 ( 20+3 (Η40) and auxiliary electrode (7〇+8〇+9〇) (including the turned-over catalyst metal layer 7〇, the coating layer 80 and the glass layer 90 as the auxiliary electrode substrate). The colorant-sensitized solar cell may further include a porous layer 50 containing a colorant and an electrolyte layer 6〇 formed on the porous layer 5〇. Further, the present invention provides a transparent electrode for a solar cell. The method for manufacturing a transparent electrode for a solar cell according to the present invention comprises the operation of preparing a transparent substrate layer, the operation of forming a first polycrystalline transparent metal oxide layer on the transparent substrate layer, and the first polycrystalline transparent layer The operation of forming a metal layer on the metal oxide layer and the operation of forming a second polycrystalline transparent metal oxide layer on the metal layer. 15 The material of the transparent substrate layer 10, the transparent metal oxide layers 20 and 40 and the metal layer 30 are as described above. Preferably, transparent gold The oxide layers 2〇 and 4〇 include IT〇 and the metal layer 30 includes silver (Ag). When the base layer 1 is at room temperature, the metal layer 30' is formed to thereby reduce the specific resistance and manufacture a highly efficient solar cell. The amorphous ITO is polycrystalline to form an ITO layer. More preferably, the base layer 10 is formed by adding 20 heat to 200 ± 5 ° C to form an ιτο layer. In this case, the ιτο layer is manufactured without difficulty and grows suitably. And ensuring proper roughness. The method of forming the transparent metal oxide layers 20 and 40 and the metal layer 30 includes various known methods, preferably the above-described sputtering vacuum deposition method. Preferably, the metal layer 30 has the highest thickness. 5 〇〇 A, more preferably 50 to 12 200840061 15 〇 A 'the first polycrystalline transparent metal oxide layer 20 has a thickness of 250 to 800 A, and the second polycrystalline transparent metal oxide layer 4 厚度 has a thickness of 250 to 800 Å.

為進一步降低對應多晶金屬氧化層20及40之比電阻, 整個透明電極較佳地在前述的製造過程後退火。所以,在 5顆粒邊緣之電阻會降低且比電阻也會下降。退火條件包括 已知之退火條件,ITO金屬氧化物加熱處理至220 ± 50°C 達30分鐘至2小時以限制顆粒尺寸的粗粒化與表面反應且 降低比電阻。 以下描述本發明實施例及比較例。實施例例示本發明 10 但不限制本發明的範圍。 [實施例] 實施例1及2與比較例1。 於玻璃基底上準備一樣品(p-ITO表示多晶ITO),層構 型、厚度條件條件、沉積溫度條件與退火處理條件如第1表 15 所示。如第1表所示,一銀(Ag)層於室溫沉積,在備置樣品 後,測定表面電阻、比電阻、(光)透射性及表面粗糙度且顯 示於第2表。 〔第1表〕 實施例 層構型 層厚度 溫度 附註 銀 沉 積 退火 條件 實施例1 基底/ p-ITO/Ag/p-ITO 500/100/500 200 於室溫沉 積Ag層 實施例2 基底/ p-ITO/Ag/p-ITO 500/100/500 200 220 1小時 比較例1 基底/p-ITO 1500 200 13 200840061 如第2表所示,實施例1及2之透明電極較比較例之透明 電極具有更低的表面電阻及比電阻且改善導電性。實施例1 及2之透明電極也很少會透射性而且會改善表面粗糙性。如 第3表所示,實施例1之透明電極1具有微小的構型,其中晶 5 粒不會粗大化,但比較例之透明電極具有較大的晶粒及較 高的粗糙值。 〔第2表〕 實施例 表面電阻 (Ω/) 比電阻 (uQ · cm) 透射性 (%) 表面粗缝 度 (nm,Rp-v) 實施例1 4.69 70.35 85.5 21.74 〜 實施例2 4.38 65.7 86.2 34.58 比較例1 15.24 228.6 88.5 41.64 〜 -----—^ 如上所述,本發明提供一種用於太陽能電池之透明電 10 極’一種包括該透明電極之太陽能電池及一種該太陽能電 池之製造方法,本發明可將光透射的下降減到最小、大鴨 減少比電阻且改善表面粗糙度以增進太陽能電池的效率及 提供一種高效率的太陽能電池。 雖然本發明之一些實施例被描述,習於此藝者應明瞭 15 這些實施例的改變並未超出本發明之原則與精神,本發曰月 之範圍係界定於以下的申請專利範圍及其等之均等請來 中。 【固式簡單說明】 第1圖為依據本發明一實施例之透明電極的截面圖; 14 200840061 第2圖為使用依據本發明之透明電極之色料敏感化太 陽能電池的截面圖; 第3圖為依據本發明之用於太陽能電池之透明電極的 一表面,該表面由掃描式顯微鏡獲取;及 5 第4圖為依據比較例之透明電極的一表面,該表面由掃 描式顯微鏡獲取。 【主要元件符號說明】 60.. .電解質層 70.. .催化劑金屬層 80…導電塗覆層 90…玻璃層 10…透明基底層 20…第一多晶透明金屬氧化層 30…金屬層 40…第二多晶透明金屬氧化層 50···多孔層 15To further reduce the specific resistance of the corresponding polycrystalline metal oxide layers 20 and 40, the entire transparent electrode is preferably annealed after the aforementioned fabrication process. Therefore, the resistance at the edge of the 5 particles will decrease and the specific resistance will also decrease. The annealing conditions include known annealing conditions, and the ITO metal oxide is heat treated to 220 ± 50 ° C for 30 minutes to 2 hours to limit the coarse graining of the particle size to the surface reaction and reduce the specific resistance. The embodiments and comparative examples of the present invention are described below. The examples illustrate the invention 10 but do not limit the scope of the invention. [Examples] Examples 1 and 2 and Comparative Example 1. A sample (p-ITO indicates polycrystalline ITO) was prepared on a glass substrate, and the layer configuration, thickness condition, deposition temperature conditions, and annealing treatment conditions are shown in Table 1. As shown in the first table, a silver (Ag) layer was deposited at room temperature, and after the sample was prepared, surface resistance, specific resistance, (light) transmittance, and surface roughness were measured and shown in Table 2. [Table 1] Example Layer Configuration Layer Thickness Temperature Note Silver Deposition Annealing Condition Example 1 Substrate / p-ITO/Ag/p-ITO 500/100/500 200 Ag layer deposited at room temperature Example 2 Substrate / p -ITO/Ag/p-ITO 500/100/500 200 220 1 hour Comparative Example 1 Substrate/p-ITO 1500 200 13 200840061 As shown in Table 2, the transparent electrodes of Examples 1 and 2 were compared with the transparent electrodes of Comparative Examples. It has lower surface resistance and specific resistance and improves electrical conductivity. The transparent electrodes of Examples 1 and 2 also seldom transmit and improve surface roughness. As shown in Table 3, the transparent electrode 1 of Example 1 had a minute configuration in which crystal grains were not coarsened, but the transparent electrode of the comparative example had larger crystal grains and higher roughness. [Table 2] Example surface resistance (Ω/) Specific resistance (uQ · cm) Transmittance (%) Surface roughness (nm, Rp-v) Example 1 4.69 70.35 85.5 21.74 ~ Example 2 4.38 65.7 86.2 34.58 Comparative Example 1 15.24 228.6 88.5 41.64 ~ -----^ As described above, the present invention provides a transparent electric 10 pole for a solar cell, a solar cell including the transparent electrode, and a method of manufacturing the same The present invention minimizes the decrease in light transmission, reduces the specific resistance of the duck and improves the surface roughness to enhance the efficiency of the solar cell and provide a highly efficient solar cell. Although some embodiments of the present invention have been described, it should be understood by those skilled in the art that the changes of these embodiments are not beyond the spirit and spirit of the present invention. The scope of the present invention is defined in the following claims and the like. Please wait for the equal. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a transparent electrode according to an embodiment of the present invention; 14 200840061 FIG. 2 is a cross-sectional view of a color sensitized solar cell using a transparent electrode according to the present invention; A surface of a transparent electrode for a solar cell according to the present invention, which surface is obtained by a scanning microscope; and 5 Fig. 4 is a surface of a transparent electrode according to a comparative example obtained by a scanning microscope. [Main component symbol description] 60.. Electrolyte layer 70.. Catalyst metal layer 80... Conductive coating layer 90... Glass layer 10... Transparent base layer 20... First polycrystalline transparent metal oxide layer 30... Metal layer 40... Second polycrystalline transparent metal oxide layer 50···porous layer 15

Claims (1)

200840061 十、申請專利範圍: 1· 一種用於太陽能電池之透明電極,該透明電極為透明導 電且包括·· 一透明基底層; 形成在该透明基底層上之一第一多晶透明金屬乳化層, 形成在該第一多晶透明金屬氧化物層上之一金屬層;及 形成在該金屬層上之一第二多晶透明金屬氧化層。 2·如申請專利範圍第1項之透明電極,其中該金屬層選自 由銀(Ag)、鉑(Pt)、金(Au)、銅(Cu)及其等混合物(合金) 組成的群組中之至少一者,且該透明金屬氧化層包括銦 錫氧化物(ITO)或氟錫氧化物(FTO)。 3·如申請專利範圍第1項之透明電極,其中該金屬層之厚 度最大為500A. 4.如申請專利範圍第3項之透明電極,其中該第一多晶透 明金屬氧化層之厚度範圍為250至800人,該金屬層之厚声 範圍為50至150A,且該第二多晶透明金屬氧化層之厚声 範圍為250至800A。 X 5·如申請專利範圍第1項之透明電極,其中該金屬居係由 室溫沉積方法製造。 20 6· —種太陽能電池,其包括一如申請專利範圍第1至$項中 任一項之用於太%能電池的透明電極,以及面對今透 電極的一輔助電極。 7·如申請專利範圍第6項之太陽能電池,更包括具有色料 的一多孔層及置於該透明電極與該輔助電極之間带 、J 一電 16 200840061 f 解質層。 8· —種用於太陽能電池之透明電極的製造方法,該製造方 法包括: 備置一透明基底層; 5 在該透明基底層上形成一第一多晶透明金屬氧化層; 在該第一多晶透明金屬氧化物層上形成一金屬層;及 在該金屬層上形成一第二多晶透明金屬氧化層。 ' 9.如申請專利範圍第8項之製造方法,更包括在前述的操 f 作後,退火該用於太陽能電池之透明電極。 10 1〇·如申請專利範圍第9項之製造方法,其中該透明金屬氧 化物包括銦錫氧化物(ITO),且退火該透明電極包括於 220 ± 50°C熱處理該透明電極達3〇分鐘至2小時。 11·如申請專利範圍第8或9項之製造方法,其中該透明金屬 氧化層及該金屬層係藉著濺鍍真空沉積法形成。 15 I2·如申請專利範圍第8或9項之製造方法,其中該透明金 屬氧化物包括ITO,且該金屬層包括銀(Ag)且當該基底層 ί - 在室溫時形成。 13.如申請專利範圍第12項之製造方法,其中該ΙΤ〇層係當 該基底層加熱至200 ± 5〇。〇時形成。 20 Μ·如申請專利範圍第8或9項之製造方法,其中該第一多 晶透明金屬氧化層之厚度範圍為25〇至8〇〇入,該金屬層厚 度範圍為50至150人且該第二多晶透明金屬氧化層厚度範 圍為250至800Α。 17200840061 X. Patent application scope: 1. A transparent electrode for a solar cell, the transparent electrode is transparent and comprises: a transparent substrate layer; a first polycrystalline transparent metal emulsion layer formed on the transparent substrate layer And forming a metal layer on the first polycrystalline transparent metal oxide layer; and forming a second polycrystalline transparent metal oxide layer on the metal layer. 2. The transparent electrode according to claim 1, wherein the metal layer is selected from the group consisting of silver (Ag), platinum (Pt), gold (Au), copper (Cu), and the like (alloy). At least one of the transparent metal oxide layers comprises indium tin oxide (ITO) or fluorine tin oxide (FTO). 3. The transparent electrode of claim 1, wherein the thickness of the metal layer is at most 500 A. 4. The transparent electrode of claim 3, wherein the thickness of the first polycrystalline transparent metal oxide layer is For 250 to 800 people, the metal layer has a thick sound range of 50 to 150 A, and the second polycrystalline transparent metal oxide layer has a thick sound range of 250 to 800 A. X. The transparent electrode of claim 1, wherein the metal is produced by a room temperature deposition method. A solar cell comprising a transparent electrode for a solar cell as described in any one of claims 1 to 10, and an auxiliary electrode facing the present electrode. 7. The solar cell of claim 6, further comprising a porous layer having a colorant and a strip disposed between the transparent electrode and the auxiliary electrode. 8. A method of manufacturing a transparent electrode for a solar cell, the method comprising: preparing a transparent substrate layer; 5 forming a first polycrystalline transparent metal oxide layer on the transparent substrate layer; Forming a metal layer on the transparent metal oxide layer; and forming a second polycrystalline transparent metal oxide layer on the metal layer. 9. The manufacturing method of claim 8, further comprising annealing the transparent electrode for the solar cell after the foregoing operation. The manufacturing method of claim 9, wherein the transparent metal oxide comprises indium tin oxide (ITO), and annealing the transparent electrode comprises heat treating the transparent electrode at 220 ± 50 ° C for 3 minutes. Up to 2 hours. The manufacturing method of claim 8 or 9, wherein the transparent metal oxide layer and the metal layer are formed by sputtering vacuum deposition. The manufacturing method of claim 8 or 9, wherein the transparent metal oxide comprises ITO, and the metal layer comprises silver (Ag) and is formed when the substrate layer is at room temperature. 13. The method of manufacture of claim 12, wherein the enamel layer is heated to 200 ± 5 Å when the substrate layer is heated. Formed when you are. The manufacturing method of claim 8 or 9, wherein the first polycrystalline transparent metal oxide layer has a thickness ranging from 25 Å to 8 Å, and the metal layer has a thickness ranging from 50 to 150 Å and the The second polycrystalline transparent metal oxide layer has a thickness ranging from 250 to 800 Å. 17
TW097106817A 2007-02-28 2008-02-27 Transparent electrode for solar cell and manufacturing method thereof TWI456772B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070020487A KR101352779B1 (en) 2007-02-28 2007-02-28 Transparent electrode for solar cell and method for preparing the same

Publications (2)

Publication Number Publication Date
TW200840061A true TW200840061A (en) 2008-10-01
TWI456772B TWI456772B (en) 2014-10-11

Family

ID=39721409

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097106817A TWI456772B (en) 2007-02-28 2008-02-27 Transparent electrode for solar cell and manufacturing method thereof

Country Status (4)

Country Link
KR (1) KR101352779B1 (en)
CN (1) CN101622721B (en)
TW (1) TWI456772B (en)
WO (1) WO2008105597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398008B (en) * 2009-06-24 2013-06-01 Univ Nat Chunghsing Solar cell and its production method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051662B1 (en) * 2009-03-27 2011-07-26 한국과학기술원 Transparent conductive film with excellent bending characteristics, transparent electrode and organic electronic device using same
CN101908582A (en) * 2010-06-29 2010-12-08 通用光伏能源(烟台)有限公司 Method for manufacturing transparent thin-film solar cell component
CN102479844A (en) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 Thin-film solar cell composition structure for blocking infrared light
JP5913809B2 (en) * 2011-01-05 2016-04-27 リンテック株式会社 Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell
US9257579B2 (en) 2012-07-30 2016-02-09 Electronics And Telecommunications Research Institute Electronic devices and method of fabricating the same
KR101541517B1 (en) 2014-03-26 2015-08-03 부산대학교 산학협력단 Transparent electrode using single crystal copper with nano-netted multi-layer and fabricating method thereof
KR102032011B1 (en) * 2015-05-15 2019-10-14 주식회사 엘지화학 Conductive laminate and transparent electrode comprising thereof
CN104916709B (en) * 2015-05-29 2017-08-08 中山大学 A kind of structure is metal oxide multilayer film/silica-based solar cell
CN105449106B (en) * 2015-12-28 2018-10-23 中国科学院重庆绿色智能技术研究院 A kind of transparent electrode and preparation method thereof based on super thin metal
CN106847940A (en) * 2017-02-04 2017-06-13 江苏神科新能源有限公司 A kind of electrically conducting transparent lamination and silicon based hetero-junction solar cell
CN112234106A (en) * 2019-06-28 2021-01-15 成都珠峰永明科技有限公司 Metal TCO laminated film, preparation method thereof and HIT solar cell
CN113421822B (en) * 2021-06-16 2024-05-07 华能新能源股份有限公司 Transparent conductive electrode and low-temperature preparation method and application thereof
KR102625556B1 (en) * 2021-10-27 2024-01-15 인천대학교 산학협력단 Transparent solar cells with multilayer front electrodes and their manufacturing methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840002185B1 (en) * 1981-01-19 1984-11-26 가부시기 가이샤 히다찌 세이샤꾸쇼 Photo device
US5264286A (en) * 1988-03-03 1993-11-23 Asahi Glass Company Ltd. Laminated glass structure
US5356656A (en) * 1993-03-26 1994-10-18 Industrial Technology Research Institute Method for manufacturing flexible amorphous silicon solar cell
US6811815B2 (en) * 2002-06-14 2004-11-02 Avery Dennison Corporation Method for roll-to-roll deposition of optically transparent and high conductivity metallic thin films
KR100689229B1 (en) * 2002-10-03 2007-03-02 가부시키가이샤후지쿠라 Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
JP2004241618A (en) * 2003-02-06 2004-08-26 Canon Inc Manufacturing method of photovoltaic element
US6936761B2 (en) * 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
CN100481521C (en) * 2004-07-08 2009-04-22 住友化学株式会社 Porous electrode, and apparatus containing the same and manufacturing method of the electrode
JP4760154B2 (en) * 2005-06-15 2011-08-31 住友金属鉱山株式会社 Oxide sintered body, oxide transparent conductive film, and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398008B (en) * 2009-06-24 2013-06-01 Univ Nat Chunghsing Solar cell and its production method

Also Published As

Publication number Publication date
TWI456772B (en) 2014-10-11
CN101622721A (en) 2010-01-06
KR101352779B1 (en) 2014-01-16
WO2008105597A1 (en) 2008-09-04
CN101622721B (en) 2011-06-01
KR20080079891A (en) 2008-09-02

Similar Documents

Publication Publication Date Title
TW200840061A (en) Transparent electrode for solar cell and manufacturing method thereof
JP4888119B2 (en) Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device
JP3275335B2 (en) Ferroelectric capacitor in IC and method of manufacturing the same
JP4170454B2 (en) Article having transparent conductive oxide thin film and method for producing the same
JP5330400B2 (en) Glass substrate coated with a layer having improved resistivity
JP5296691B2 (en) Manufacturing method of conductor layer
JP2005512122A5 (en)
TW201224620A (en) Pixel structure and manufactrung method thereof
JP2013522813A (en) Transparent electrodes based on a combination of transparent conductive oxides, metals, and oxides
JP2010157497A (en) Substrate with transparent conductive film and method of manufacturing the same
CN101416320A (en) TFT substrate, reflective TFT substrate, and manufacturing method thereof
WO2017054265A1 (en) Low-resistance transparent conductive thin film and preparation method therefor
WO2014115770A1 (en) Transparent electroconductive substrate and method for producing same
JP2011508946A (en) Conductive glass for dye-sensitized solar cell and method for producing the same
CN106531835B (en) A kind of silicon heterogenous solar cell and solar cell module
JP4540311B2 (en) Transparent conductive film and method for producing the same
JPH09291356A (en) Transparent conductive film-provided substrate and its production
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
JP6464042B2 (en) Substrate with transparent electrode and manufacturing method thereof
KR20150075173A (en) Transparent electrode comprising transparent conductive oxide and Ag nanowire and the fabrication method thereof
JP3318142B2 (en) Transparent conductive film
JP2849388B2 (en) Multilayer conductive film
JP2002184242A (en) Substrate with electrode and method of manufacturing the substrate
JPH09236811A (en) Transparent conductive substrate for liquid crystal display and forming method for transparent electrode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees