JP2849388B2 - Multilayer conductive film - Google Patents

Multilayer conductive film

Info

Publication number
JP2849388B2
JP2849388B2 JP63141676A JP14167688A JP2849388B2 JP 2849388 B2 JP2849388 B2 JP 2849388B2 JP 63141676 A JP63141676 A JP 63141676A JP 14167688 A JP14167688 A JP 14167688A JP 2849388 B2 JP2849388 B2 JP 2849388B2
Authority
JP
Japan
Prior art keywords
transparent conductive
thin film
conductive film
film
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63141676A
Other languages
Japanese (ja)
Other versions
JPH01311511A (en
Inventor
浩 脇
信弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP63141676A priority Critical patent/JP2849388B2/en
Publication of JPH01311511A publication Critical patent/JPH01311511A/en
Application granted granted Critical
Publication of JP2849388B2 publication Critical patent/JP2849388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 〔技術分野〕 本発明は積層導電膜に関し、特に耐環境性に優れた積
層導電膜に関する。
Description: TECHNICAL FIELD The present invention relates to a laminated conductive film, and more particularly to a laminated conductive film having excellent environmental resistance.

〔従来技術とその課題〕[Conventional technology and its problems]

透明導電膜は各種の産業用もしくは民生用の電気製
品、電子機器等に多用されている。また、光電機能を利
用する半導体機器においては、その透明性と電気伝導性
を利用して、光透過電極として用いられている。
BACKGROUND ART Transparent conductive films are frequently used in various industrial or consumer electric products, electronic devices, and the like. Further, in semiconductor devices utilizing the photoelectric function, they are used as light transmitting electrodes by utilizing their transparency and electric conductivity.

しかして、かかる透明導電膜を有する半導体機器等を
製作するプロセスにおいては、該透明導電膜の特性を変
化させる環境状況がしばしば発生する。すなわち、透明
導電膜としては、金属の酸化物がよく知られているが、
これらは還元性の雰囲気、とくに、原子状水素が存在す
る高温やプラズマの雰囲気に曝されると、その特性が大
きく低下してしまう。その結果、これを組み込んだ半導
体機器の性能自体も大きく低下するという課題が残され
ていた。
Thus, in the process of manufacturing a semiconductor device or the like having such a transparent conductive film, environmental conditions that change the characteristics of the transparent conductive film often occur. That is, as a transparent conductive film, a metal oxide is well known,
When these are exposed to a reducing atmosphere, particularly a high-temperature or plasma atmosphere in which atomic hydrogen is present, their characteristics are greatly reduced. As a result, there remains a problem that the performance itself of a semiconductor device incorporating the same greatly decreases.

これらの課題を解決するために、従来は、透明導電膜
の上に耐酸化性や耐プラズマ性を有する薄膜、たとえ
ば、酸化チタン、炭化チタン、窒化チタン等をコーティ
ングすることが試験的に試みられていた。これらの薄膜
のコーティングにより、耐酸化性や耐プラズマ性は若干
の向上が観測されたが、問題の本質的な解決にはならな
かった。なぜなら、これらの薄膜は本質的に電気を通し
にくいものであり、そのために透明導電膜の電気抵抗が
増加し、結果として総合的な半導体装置の特性自体をか
えって低下させることになったからである。
In order to solve these problems, conventionally, it has been experimentally attempted to coat a transparent conductive film with a thin film having oxidation resistance and plasma resistance, such as titanium oxide, titanium carbide, and titanium nitride. I was Although the oxidation resistance and plasma resistance were slightly improved by coating these thin films, they did not essentially solve the problem. This is because these thin films are essentially difficult to conduct electricity, which increases the electrical resistance of the transparent conductive film, and consequently lowers the overall characteristics of the semiconductor device.

〔発明の基本的着想〕(Basic idea of the invention)

しかして、本発明者らは、かかる点に鑑み、鋭意検討
した結果、基板上に透明導電膜を積層し、次いでその上
にシリコン薄膜と透明導電薄膜とを交互に繰り返して積
層してなる積層導電膜は、導電率を低下させることなく
耐環境性を向上させることを見出した。本発明はかかる
着想に基づいてなされるに至ったものである。
In view of the above, the present inventors have conducted intensive studies, and as a result, laminated a transparent conductive film on a substrate, and then repeatedly laminated a silicon thin film and a transparent conductive thin film on the transparent conductive film. It has been found that the conductive film improves environmental resistance without lowering the conductivity. The present invention has been made based on such an idea.

〔発明の開示〕[Disclosure of the Invention]

すなわち、本発明は、基板上に透明導電膜を積層し、
次いでその上にシリコン薄膜と透明導電薄膜とを交互に
繰り返して積層してなることを特徴とする積層導電膜を
要旨とするものである。
That is, the present invention is to laminate a transparent conductive film on a substrate,
Next, there is provided a laminated conductive film, wherein a silicon thin film and a transparent conductive thin film are alternately and repeatedly laminated thereon.

以下、図面を参照しつつ、本発明の実施の態様を説明
する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の積層導電膜の層構成を示す説明図で
ある。基板1上に、透明導電膜2、シリコン薄膜3、透
明導電薄膜4、シリコン薄膜3′、透明導電薄膜4′・
・・・・の積層導電膜5が形成されている。なお、ここ
では、便宜上、基板に接して設けられたものを「透明導
電膜」、それ以外のものを「透明導電薄膜」として一応
区別した。かかる積層の回数は1.5回(すなわち透明導
電膜/シリコン薄膜/透明導電薄膜からなる積層膜を意
味する。)以上、高々10.5回以下で十分である。ここ
で、0.5回とは、シリコン薄膜のみが表面に存在する状
態をいう。透明導電膜、透明導電薄膜およびシリコン薄
膜の膜厚は、それぞれ、1原子層以上、50Å以下、好ま
しくは30Å以下である。
FIG. 1 is an explanatory diagram showing the layer structure of the laminated conductive film of the present invention. A transparent conductive film 2, a silicon thin film 3, a transparent conductive thin film 4, a silicon thin film 3 ', a transparent conductive thin film 4'
.. Are formed. Here, for convenience, the one provided in contact with the substrate is tentatively distinguished as a “transparent conductive film”, and the other is referred to as a “transparent conductive thin film”. The number of times of lamination is 1.5 times or more (that is, a laminated film composed of a transparent conductive film / silicon thin film / transparent conductive thin film) or more and at most 10.5 times or less. Here, 0.5 times means a state where only the silicon thin film exists on the surface. The thicknesses of the transparent conductive film, the transparent conductive thin film, and the silicon thin film are each at least one atomic layer and at most 50 °, preferably at most 30 °.

本発明発明における透明導電膜および透明導電薄膜用
の材料としては、In2O3、ITO、SnO2、ZnO等のごとき金
属酸化物である。また、ITO/SnO2やITO/ZnO等のように
積層されたものも該材料として有効である。
The material for the transparent conductive film and the transparent conductive thin film in the present invention is a metal oxide such as In 2 O 3 , ITO, SnO 2 , ZnO and the like. In addition, laminated materials such as ITO / SnO 2 and ITO / ZnO are also effective as the material.

本発明におけるシリコン薄膜としては、多結晶や微結
晶等の結晶性のシリコンおよび非晶質のシリコンが有効
に用いられる。また、シリコン薄膜中に、酸素、窒素、
炭素、硼素、リン、砒素等の不純物元素を混合させるこ
とができる。酸素、窒素、炭素等の混合により、光の透
過性を変更することが可能であり、硼素、リン、砒素等
の添加により電気的性質を変更できる。
As the silicon thin film in the present invention, crystalline silicon such as polycrystal or microcrystal and amorphous silicon are effectively used. In addition, oxygen, nitrogen,
Impurity elements such as carbon, boron, phosphorus, and arsenic can be mixed. Light transmittance can be changed by mixing oxygen, nitrogen, carbon, and the like, and electrical properties can be changed by adding boron, phosphorus, arsenic, and the like.

以上のごとく、本発明は、基板上に透明導電膜を積層
し、次いでその上にシリコン薄膜と透明導電薄膜とを交
互に繰り返して積層してなる積層導電膜である。この透
明導電膜、シリコン薄膜および透明導電薄膜は、化学堆
積法(CVD法)、プラズマ化学堆積法(PCVD法)、光化
学堆積法(Photo CVD)、スパッタリング、イオン化蒸
着法等やこれらの蒸着法に反応ガスを併用する反応性の
薄膜形成法を用いて形成される。
As described above, the present invention is a laminated conductive film in which a transparent conductive film is laminated on a substrate, and then a silicon thin film and a transparent conductive thin film are alternately and repeatedly laminated thereon. The transparent conductive film, silicon thin film and transparent conductive thin film can be used for chemical deposition (CVD), plasma chemical deposition (PCVD), photochemical deposition (Photo CVD), sputtering, ionization deposition, etc. It is formed using a reactive thin film forming method using a reaction gas.

〔本発明を実施するための好ましい形態〕[Preferred embodiment for carrying out the present invention]

第1図は、本発明の好ましい実施の態様の一例であ
る。基板1上にIn2O3、ITO、SnO2、ZnO等の金属酸化物
からなる透明導電各々2が形成される。その上に多結
晶、微結晶等の結晶性シリコンや非晶質シリコン等から
なるシリコン薄膜3を形成し、同様にしてその上にSn
O2、ZnO等の金属酸化物からなる透明導電薄膜4、シリ
コン薄膜3′、透明導電薄膜4′・・・・・の順に積層
し、最後にシリコン薄膜を形成して積層導電膜5を形成
する。これらの積層膜は、CVD、PCVD、Photo CVD、スパ
ッタリング、イオン化蒸着法等やこれらの反応蒸着法を
用いて形成される。積層の回数は1.5回以上、高々10.5
回以下で十分である。透明導電膜、透明導電薄膜および
シリコン薄膜の膜厚は、それぞれ、1原子層以上、50Å
以下、好ましくは30Å以下である。積層導電膜の総厚み
は30Åから300Åである。なお、不純物の添加は、透明
導電膜、透明導電薄膜およびシリコン薄膜の形成中に、
不純物元素を含有する物質を導入することにより、具体
的には、CVD、PCVD、Photo CVD,スパッタリング、イオ
ン化蒸着法等の成膜室に、酸素、窒素、炭素、硼素、リ
ン、砒素等の元素や化合物を導入することにより行うこ
とができる。
FIG. 1 is an example of a preferred embodiment of the present invention. On the substrate 1, each of transparent conductive members 2 made of a metal oxide such as In 2 O 3 , ITO, SnO 2 and ZnO is formed. A silicon thin film 3 made of crystalline silicon such as polycrystal or microcrystal, amorphous silicon, or the like is formed thereon.
A transparent conductive thin film 4 made of a metal oxide such as O 2 and ZnO, a silicon thin film 3 ′, a transparent conductive thin film 4 ′ are laminated in this order, and finally a silicon thin film is formed to form a laminated conductive film 5. I do. These laminated films are formed using CVD, PCVD, PhotoCVD, sputtering, ionization vapor deposition, or the like, or any of these reactive vapor deposition methods. Number of laminations is 1.5 or more, at most 10.5
Less than enough times is enough. Each of the transparent conductive film, the transparent conductive thin film and the silicon thin film has a thickness of at least one atomic layer,
Or less, preferably 30 ° or less. The total thickness of the laminated conductive film is 30 to 300 mm. During the formation of the transparent conductive film, the transparent conductive thin film and the silicon thin film,
By introducing a substance containing an impurity element, specifically, an element such as oxygen, nitrogen, carbon, boron, phosphorus, arsenic, etc. Or by introducing a compound.

〔実施例〕〔Example〕

シート抵抗が5Ω/□、可視光透過率が79%のSnO2
付きガラス基板を用意し、この上にシリコン薄膜、透明
導電薄膜としてのSnO2薄膜をスパッタリング法で、それ
ぞれの薄膜が20Åになるように5.5回積層した。積層後
のシート抵抗と可視光透過率は、それぞれ、6Ω/□と
78%であり、ほとんど変化していなかった。
Prepare a glass substrate with a SnO 2 film with a sheet resistance of 5Ω / □ and a visible light transmittance of 79%. On this, a silicon thin film and a SnO 2 thin film as a transparent conductive thin film are formed by sputtering, and each thin film is reduced to 20 mm. The layers were laminated 5.5 times so as to form a laminate. The sheet resistance and visible light transmittance after lamination are 6Ω / □ respectively.
It was 78%, almost unchanged.

このようにして得られた積層導電膜をpin型のアモル
ファスシリコン光電変換素子の基板として用いた。ま
た、比較のために、本発明で用いた基板(シート抵抗が
5Ω/□、可視光透過率が79%のSnO2膜付きガラス基
板)を用いて、同一のプラズマプロセスでアモルファス
シリコン光電変換素子を形成した。
The laminated conductive film thus obtained was used as a substrate of a pin-type amorphous silicon photoelectric conversion element. For comparison, an amorphous silicon photoelectric conversion element was manufactured by the same plasma process using the substrate used in the present invention (a glass substrate with a SnO 2 film having a sheet resistance of 5Ω / □ and a visible light transmittance of 79%). Was formed.

本発明の効果は、当該光電変換素子の開放端電圧の増
加となって現れた。すなわち、比較例において0.86Vで
あった開放端電圧が、本発明では0.95Vにまで上昇し
た。
The effect of the present invention appeared as an increase in the open-circuit voltage of the photoelectric conversion element. That is, the open-circuit voltage, which was 0.86 V in the comparative example, rose to 0.95 V in the present invention.

〔発明の効果〕〔The invention's effect〕

実施例に示したように、本発明において、開放端電圧
が顕著に上昇した。従来、アモルファスシリコン光電変
換素子はかかる開放端電圧の低下のために、光電変換効
率の向上が妨げられていたが、本発明の利用によりこの
改善が大きく期待される。
As shown in the examples, in the present invention, the open-circuit voltage significantly increased. Conventionally, an amorphous silicon photoelectric conversion element has been hindered from improving the photoelectric conversion efficiency due to the decrease in the open-circuit voltage. However, this improvement is greatly expected by utilizing the present invention.

この改善効果は、本発明の積層導電膜の耐環境性、す
なわち、還元性の雰囲気での耐性が増強されたためと推
定されるものであり、半導体装置作製プロセスへの適合
性に優れた性質を有している。特に、実施例に示すよう
に、プラズマプロセスを利用するアモルファスシリコン
デバイスの作製に用いられる。透明導電性材料として有
用である。
This improvement effect is presumed to be due to an increase in the environmental resistance of the laminated conductive film of the present invention, that is, the resistance in a reducing atmosphere, and a property excellent in compatibility with a semiconductor device manufacturing process. Have. In particular, as shown in the examples, it is used for manufacturing an amorphous silicon device utilizing a plasma process. Useful as a transparent conductive material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の積層導電膜の層構成を示す説明図であ
る。図において 1……基板、2……透明導電膜、3……シリコン薄膜、
4……透明導電薄膜、3′……シリコン薄膜、4′……
透明導電薄膜、5……積層導電膜 である。
FIG. 1 is an explanatory diagram showing the layer structure of the laminated conductive film of the present invention. In the figure, 1 ... substrate, 2 ... transparent conductive film, 3 ... silicon thin film,
4 ... Transparent conductive thin film, 3 '... Silicon thin film, 4' ...
Transparent conductive thin film, 5 ... Laminated conductive film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に透明導電膜を積層し、次いでその
上にシリコン薄膜と透明導電薄膜とを交互に繰り返して
積層してなることを特徴とする積層導電膜。
1. A laminated conductive film comprising: a transparent conductive film laminated on a substrate; and a silicon thin film and a transparent conductive thin film alternately and repeatedly laminated thereon.
JP63141676A 1988-06-10 1988-06-10 Multilayer conductive film Expired - Fee Related JP2849388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63141676A JP2849388B2 (en) 1988-06-10 1988-06-10 Multilayer conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63141676A JP2849388B2 (en) 1988-06-10 1988-06-10 Multilayer conductive film

Publications (2)

Publication Number Publication Date
JPH01311511A JPH01311511A (en) 1989-12-15
JP2849388B2 true JP2849388B2 (en) 1999-01-20

Family

ID=15297609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63141676A Expired - Fee Related JP2849388B2 (en) 1988-06-10 1988-06-10 Multilayer conductive film

Country Status (1)

Country Link
JP (1) JP2849388B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478618B2 (en) * 1993-11-30 2003-12-15 キヤノン株式会社 Photoelectric conversion element and method for manufacturing the same
DE29711973U1 (en) * 1997-07-08 1998-11-05 Glas Platz Fa Electrical device, electrical device or lighting device
JP2010123577A (en) * 1997-07-08 2010-06-03 Karl-Otto Platz Electric device, electric apparatus or lighting device
JP2001135851A (en) * 1999-11-05 2001-05-18 Minolta Co Ltd Photoelectric conversion element and solid-state imaging device
JP5468801B2 (en) * 2009-03-23 2014-04-09 株式会社カネカ Substrate with transparent electrode and manufacturing method thereof
JP6511876B2 (en) * 2014-05-07 2019-05-15 Tdk株式会社 Laminated transparent conductive film

Also Published As

Publication number Publication date
JPH01311511A (en) 1989-12-15

Similar Documents

Publication Publication Date Title
RU2435250C2 (en) Front contact with high-work function tco for use in photovoltaic device and method of making said contact
EP2100335B1 (en) Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
US20110139237A1 (en) Photovoltaic cell, and substrate for same
US20080223430A1 (en) Buffer layer for front electrode structure in photovoltaic device or the like
KR20080079891A (en) Transparent electrode for solar cell and method for preparing the same
CN102206801A (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
EP4213220A1 (en) Transparent electrode, method for manufacturing transparent electrode, and electronic device
JP4540311B2 (en) Transparent conductive film and method for producing the same
JP2849388B2 (en) Multilayer conductive film
US20130146134A1 (en) Solar cell with nanolaminated transparent electrode and method of manufacturing the same
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
JP2001189114A (en) Manufacturing method of transparent electrode
US11942575B2 (en) Transparent electrode, method of producing transparent electrode, and electronic device
JP2001135149A (en) Zinc oxide-based transparent electrode
US20120107491A1 (en) High Permittivity Transparent Films
JPH06338623A (en) Thin-film solar cell
JPH10294478A (en) Photoelectric conversion element
KR20110105048A (en) Transparent conductive thin film, display filter and potovoltaic cell containing the same
US5643369A (en) Photoelectric conversion element having an infrared transmissive indium-tin oxide film
JP2001035252A (en) Transparent conductive film
JP3382141B2 (en) Photoelectric conversion element
JPS6152992B2 (en)
JPS6380413A (en) Transparent conductor
JP5285331B2 (en) Thin film photoelectric converter
JP2815688B2 (en) Manufacturing method of thin film solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees