JP3382141B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JP3382141B2
JP3382141B2 JP36632597A JP36632597A JP3382141B2 JP 3382141 B2 JP3382141 B2 JP 3382141B2 JP 36632597 A JP36632597 A JP 36632597A JP 36632597 A JP36632597 A JP 36632597A JP 3382141 B2 JP3382141 B2 JP 3382141B2
Authority
JP
Japan
Prior art keywords
light
film
photoelectric conversion
conversion element
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36632597A
Other languages
Japanese (ja)
Other versions
JPH11186580A (en
Inventor
康一郎 清原
正人 兵藤
聖敬 市来
昌宏 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP36632597A priority Critical patent/JP3382141B2/en
Publication of JPH11186580A publication Critical patent/JPH11186580A/en
Application granted granted Critical
Publication of JP3382141B2 publication Critical patent/JP3382141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本願の発明は、半導体薄膜に
入射した光のエネルギーを電力に変換する薄膜系の光電
変換素子に関するものである。 【0002】 【従来の技術】図1は、光電変換素子の一般的な構成を
示している。この光電変換素子11では、ガラス基板1
2上にSiO2膜13が積層されており、これらのガラ
ス基板12とSiO2膜13とで透光性基体14が構成
されている。SiO2膜13上には、CVD法やスパッ
タ法や蒸着法等で形成されたSnO2膜やZnO膜やI
23膜等の金属酸化物膜である透光性電極15が積層
されている。これらの金属酸化物膜には不純物が含まれ
ている場合も含まれていない場合もある。 【0003】透光性電極15上には非晶質Si薄膜等で
ある半導体薄膜16が積層されており、pn接合やpi
n接合等が半導体薄膜16に形成されている。半導体薄
膜16上には、Al膜等である裏面電極17が積層され
ている。なお、ガラス基板12からアルカリ成分が溶出
して透光性電極15に欠陥が生じたり透光性電極15の
電気抵抗が高くなったりすることを防止するためにSi
2膜13が設けられているが、このSiO2膜13は必
ずしも必要ではない。 【0004】この様な光電変換素子11では、ガラス基
板12側から光を入射させる。ガラス基板12に入射し
SiO2膜13及び透光性電極15を透過して半導体薄
膜16に入射した光が半導体薄膜16の禁制帯幅よりも
大きなエネルギーを有していると、この光が半導体薄膜
16の空乏層等で吸収されて、電子−正孔対を生成す
る。これらの電子及び正孔が透光性電極15または裏面
電極17に集められて、起電力が発生する。 【0005】ところで、光電変換素子11の光電変換効
率を高めるためには、半導体薄膜16に多くの光を入射
させる必要がある。このため、従来の光電変換素子11
では、透光性基体14に入射した光が透光性電極15で
吸収されにくくするために、光透過率の高い材料で透光
性電極15を形成することが考えられていた。 【0006】 【発明が解決しようとする課題】しかし、従来の光電変
換素子11では、透光性基体14と透光性電極15との
界面や透光性電極15と半導体薄膜16との界面におけ
る反射率が高かった。このため、光透過率の高い材料で
透光性電極15が形成されていても、十分な量の光が半
導体薄膜16に入射しなくて、光電変換効率が十分には
高くなかった。 【0007】従って、本願の発明は、製造コストの増大
が抑制されているにも拘らず半導体薄膜に多くの光を入
射させることができて光電変換効率が高い光電変換素子
を提供することを目的としている。 【0008】 【課題を解決するための手段】本願の発明による光電変
換素子では、複数層の透光性導電膜が積層されて透光性
電極が構成されているが、複数層の透光性導電膜の主成
分が互いに同じSnO 2 で、添加されているFである
純物の濃度が相対的に高い透光性導電膜と不純物の濃度
が相対的に低い透光性導電膜とが交互に3層以上積層さ
れているだけであるので、透光性電極を構成している複
数層の透光性導電膜を同一の製造装置で連続的に形成す
ることができる。 【0009】そして、それにも拘らず、添加されている
不純物の濃度が相対的に高い透光性導電膜と不純物の濃
度が相対的に低い透光性導電膜とが交互に積層されてい
るので、積層方向に接している2層の透光性導電膜の屈
折率が互いに異なっている。このため、透光性基体に接
する透光性導電膜や半導体薄膜に接する透光性導電膜と
して透光性基体や半導体薄膜との屈折率差が小さい透光
性導電膜を選択することができて、透光性基体と透光性
電極との界面や透光性電極と半導体薄膜との界面におけ
る反射率を低減させることができる。 【0010】 【発明の実施の形態】以下、SnO2膜が透光性電極1
5になっている薄膜系の光電変換素子に適用した本願の
発明の一参考形態及び第1〜第実施形態を、図1を参
照しながら説明する。参考形態及び第1〜第実施形態
の何れの光電変換素子でも、全体的な構成は既に図1に
示した通りである。しかし、参考形態及び第1〜第
施形態の光電変換素子11では、単層ではなく複数層の
SnO2膜が積層されて透光性電極15が構成されてい
る。 【0011】まず、2層のSnO2膜で透光性電極15
が構成されている参考形態を説明する。この参考形態の
光電変換素子11を製造するためには、ソーダ石灰シリ
カガラスを溶融窯で溶融させ、溶融した素地を錫槽に流
し込む所謂フロート法によって、後に切断されてガラス
基板12になる厚さ2mmの板状ガラスを形成する。錫
槽内の雰囲気は98体積%の窒素と2体積%の水素とか
ら成っており、この雰囲気の圧力は錫槽外の圧力よりも
若干高い。 【0012】錫槽内には、オンラインCVD法を実行す
ることができる様に、原料ガスを供給するための複数の
ノズルが板状ガラスの移動方向に沿って設けられてい
る。形成された板状ガラスが第1群のノズルの下方を通
過する際に、モノシラン、エチレン、酸素及び窒素の混
合ガスを第1群のノズルから板状ガラスに供給して、厚
さ30nmのSiO2膜13を板状ガラス上に形成す
る。 【0013】そして、板状ガラスが第2群のノズルの下
方を通過する際に、ジメチル錫ジクロライドの蒸気、酸
素、水蒸気及び窒素の混合ガスを第2群のノズルから板
状ガラスに供給して、厚さ360nmの純粋な第1層目
のSnO2膜をSiO2膜13上に形成する。 【0014】そして、更に、板状ガラスが第3群のノズ
ルの下方を通過する際に、ジメチル錫ジクロライドの蒸
気、酸素、水蒸気、窒素及びフッ化水素の混合ガスを第
3群のノズルから板状ガラスに供給して、Fが添加され
た厚さ230nmの第2層目のSnO2膜を第1層目の
SnO2膜上に形成する。 【0015】板状ガラスが第1〜第3群の夫々のノズル
の下方を通過する時間は互いに略等しいので、SiO2
膜13並びに第1層目及び第2層目のSnO2膜の夫々
の厚さは、夫々のノズルから供給する原料ガスの濃度を
変化させることによって制御する。その後、板状ガラス
を徐冷させてから、450mm×450mmの寸法のガ
ラス板に切断する。 【0016】次に、切断したガラス板を十分に洗浄し且
つ乾燥させた後、高周波グロー放電を行う容量結合型の
プラズマCVD装置で、pin接合を有する半導体薄膜
16を透光性電極15上に形成する。半導体薄膜16の
構成及び各層の形成条件は下記の通りであり、各層の厚
さは形成時間によって制御する。 【0017】 p層 a−SiC:H 10nm モノシラン 55sccm メタン 15sccm ジボラン 30sccm 放電電力 5W 基板温度 220℃ 圧力 170Pa程度 【0018】 i層 a−Si:H 300〜550nm モノシラン 100sccm 放電電力 5W 基板温度 220℃ 圧力 170Pa程度 【0019】 n層 μc−Si:H 40nm モノシラン 25sccm フォスフィン 25sccm 放電電力 50W 基板温度 220℃ 圧力 170Pa程度 【0020】次に、133Pa程度の圧力の真空蒸着に
よって、厚さ300nm程度のAl膜を裏面電極17と
して半導体薄膜16上に形成する。そして、このガラス
板を430mm×430mmの寸法に切断して、この
形態の光電変換素子11を完成させる。 【0021】半導体薄膜16及び裏面電極17を除いた
参考形態の光電変換素子11における構造及び光の透過
率が、表1の項番1に示されている。表1の項番1の右
端欄には、参考形態の透光性電極15と全体の厚さが同
じであるがFが添加された単層のSnO2膜で透光性電
極15が形成されている比較例における光の透過率も示
されている。 【0022】 【表1】【0023】なお、第1層目及び第2層目の夫々のSn
2膜の厚さは、以下の様にして測定した。即ち、移動
している板状ガラスに対して第1層目のSnO2膜の形
成を開始する位置よりも第2層目のSnO2膜の形成を
開始する位置を遅らせて、第2層目のSnO2膜の表面
が露出している部分のみならず第1層目のSnO2膜の
表面が露出している部分も形成した。 【0024】そして、第1層目のSnO2膜の表面が露
出している部分と第2層目のSnO2膜の表面が露出し
ている部分とから測定領域を選択し、測定領域以外の領
域をテープでマスクすると共に測定領域に亜鉛の粉末を
付け、これらの上から希塩酸を注いでSnO2膜をエッ
チングし、触針計(アルファステップ−200:テンコ
ールインスツルメンツ社の製品名)で夫々のSnO2
の厚さを測定した。 【0025】次に、第〜第実施形態を説明する。表
1の項番2〜4には、半導体薄膜16及び裏面電極17
を除いた第〜第実施形態の光電変換素子11におけ
る構造及び光の透過率と、各々の比較例における光の透
過率も示されている。これら第〜第実施形態の光電
変換素子11では、透光性電極15を構成しているSn
2膜の積層構造のみが上述の参考形態と相違している
だけであり、しかも、各層のSnO2膜は参考形態の製
造方法と同様にして形成される。 【0026】表1の項番5には、4層のSnO2膜で透
光性電極15が構成されている点は第実施形態と同じ
であるが、Fが添加されていない純粋なSnO2膜が半
導体薄膜16に接している点で第実施形態と相違して
いる比較例も示されている。この表1から明らかな様
に、参考形態及び第1〜第実施形態の何れの光電変換
素子11における光の透過率も比較例における光の透過
率よりも高い。従って、参考形態及び第1〜第実施形
態の何れの光電変換素子11も、半導体薄膜16に多く
の光を入射させることができて光電変換効率が高い。 【0027】透光性電極15は低抵抗である必要がある
ので、積層されている複数層のSnO2膜全体の厚さは
400nm程度以上である必要がある。しかし、透光性
電極15が厚過ぎると光の透過率が低下すると共に製造
コストが上昇するので、積層されている複数層のSnO
2膜全体の厚さは1500nm程度以下である必要があ
る。なお、以上に述べた光電変換素子11としては、太
陽電池やフォトダイオード等がある。 【0028】 【発明の効果】本願の発明による光電変換素子では、透
光性電極を構成している複数層の透光性導電膜を同一の
製造装置で連続的に形成することができるので、製造コ
ストの増大が抑制されており、そして、それにも拘ら
ず、透光性基体と透光性電極との界面や透光性電極と半
導体薄膜との界面における反射率を低減させることがで
きるので、半導体薄膜に多くの光を入射させることがで
きて光電変換効率が高い。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film photoelectric conversion element for converting light energy incident on a semiconductor thin film into electric power. FIG. 1 shows a general structure of a photoelectric conversion element. In this photoelectric conversion element 11, the glass substrate 1
An SiO 2 film 13 is laminated on the substrate 2, and the glass substrate 12 and the SiO 2 film 13 constitute a light-transmitting substrate 14. On the SiO 2 film 13, a SnO 2 film, a ZnO film, an I
The translucent electrode 15 which is a metal oxide film such as an n 2 O 3 film is laminated. These metal oxide films may or may not contain impurities. A semiconductor thin film 16 such as an amorphous Si thin film is laminated on the translucent electrode 15, and a pn junction or a pi junction is formed.
An n-junction or the like is formed in the semiconductor thin film 16. On the semiconductor thin film 16, a back electrode 17 such as an Al film is laminated. Note that, in order to prevent the alkali component from being eluted from the glass substrate 12 to cause a defect in the translucent electrode 15 or to increase the electric resistance of the translucent electrode 15, Si is used.
Although the O 2 film 13 is provided, the SiO 2 film 13 is not always necessary. In such a photoelectric conversion element 11, light is incident from the glass substrate 12 side. If light incident on the glass substrate 12 and transmitted through the SiO 2 film 13 and the light-transmissive electrode 15 and incident on the semiconductor thin film 16 has energy larger than the forbidden band width of the semiconductor thin film 16, this light will It is absorbed by a depletion layer or the like of the thin film 16 to generate an electron-hole pair. These electrons and holes are collected by the translucent electrode 15 or the back surface electrode 17 to generate an electromotive force. Incidentally, in order to increase the photoelectric conversion efficiency of the photoelectric conversion element 11, it is necessary to make a large amount of light incident on the semiconductor thin film 16. For this reason, the conventional photoelectric conversion element 11
In order to make the light incident on the light-transmissive substrate 14 difficult to be absorbed by the light-transmissive electrode 15, it has been considered to form the light-transmissive electrode 15 with a material having a high light transmittance. However, in the conventional photoelectric conversion element 11, in the interface between the light-transmitting substrate 14 and the light-transmitting electrode 15 and the interface between the light-transmitting electrode 15 and the semiconductor thin film 16, The reflectivity was high. For this reason, even if the translucent electrode 15 is formed of a material having a high light transmittance, a sufficient amount of light does not enter the semiconductor thin film 16 and the photoelectric conversion efficiency is not sufficiently high. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a photoelectric conversion element having a high photoelectric conversion efficiency, which can make a large amount of light incident on a semiconductor thin film, while suppressing an increase in manufacturing cost. And In the photoelectric conversion device according to the present invention, a plurality of light-transmitting conductive films are laminated to form a light-transmitting electrode. A light-transmitting conductive film in which the main components of the conductive film are the same SnO 2 , and the concentration of impurities as F added is relatively high, and the light-transmitting conductive film in which the concentration of impurities is relatively low. Since only three or more conductive films are alternately stacked, a plurality of light-transmitting conductive films constituting the light-transmitting electrode can be continuously formed by the same manufacturing apparatus. [0009] Nevertheless, the light-transmitting conductive film having a relatively high concentration of added impurities and the light-transmitting conductive film having a relatively low concentration of impurities are alternately laminated. The two layers of light-transmitting conductive films that are in contact with each other in the stacking direction have different refractive indexes. Therefore, as the light-transmitting conductive film in contact with the light-transmitting substrate or the light-transmitting conductive film in contact with the semiconductor thin film, a light-transmitting conductive film having a small refractive index difference from the light-transmitting substrate or the semiconductor thin film can be selected. Thus, the reflectance at the interface between the light-transmitting substrate and the light-transmitting electrode or at the interface between the light-transmitting electrode and the semiconductor thin film can be reduced. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, a SnO 2 film is formed of a light-transmitting electrode 1.
A first embodiment and first to third embodiments of the present invention applied to a thin film photoelectric conversion element of No. 5 will be described with reference to FIG. In the photoelectric conversion elements of the reference embodiment and any of the first to third embodiments, the overall configuration is as shown in FIG. However, in the photoelectric conversion element 11 of the reference embodiment and the first to third embodiments, the translucent electrode 15 is formed by stacking not a single layer but a plurality of layers of SnO 2 films. First, the light-transmitting electrode 15 is formed of two SnO 2 films.
Will be described. In order to manufacture the photoelectric conversion element 11 of this reference embodiment, a so-called lime method is used in which a soda-lime-silica glass is melted in a melting furnace, and the molten base material is poured into a tin bath. A 2 mm sheet glass is formed. The atmosphere inside the tin bath consists of 98% by volume of nitrogen and 2% by volume of hydrogen, the pressure of this atmosphere being slightly higher than the pressure outside the tin bath. In the tin bath, a plurality of nozzles for supplying a raw material gas are provided along the moving direction of the sheet glass so that the on-line CVD method can be performed. When the formed sheet glass passes below the first group of nozzles, a mixed gas of monosilane, ethylene, oxygen and nitrogen is supplied to the sheet glass from the first group of nozzles to form a 30 nm thick SiO. The two films 13 are formed on a sheet glass. When the sheet glass passes below the second group of nozzles, a mixed gas of dimethyltin dichloride vapor, oxygen, steam and nitrogen is supplied to the sheet glass from the second group of nozzles. Then, a pure first SnO 2 film having a thickness of 360 nm is formed on the SiO 2 film 13. Further, when the sheet glass passes below the nozzles of the third group, a mixed gas of dimethyltin dichloride vapor, oxygen, water vapor, nitrogen and hydrogen fluoride is passed through the nozzles of the third group. The second layer of SnO 2 film having a thickness of 230 nm to which F is added is formed on the first layer of SnO 2 film. [0015] Since the sheet glass is time substantially equal to one another which passes under the first to third groups of respective nozzles, SiO 2
The thicknesses of the film 13 and the first and second SnO 2 films are controlled by changing the concentrations of the source gases supplied from the respective nozzles. Thereafter, the sheet glass is gradually cooled, and then cut into glass plates having dimensions of 450 mm × 450 mm. Next, after the cut glass plate is sufficiently washed and dried, the semiconductor thin film 16 having a pin junction is placed on the translucent electrode 15 by a capacitively coupled plasma CVD apparatus for performing high-frequency glow discharge. Form. The configuration of the semiconductor thin film 16 and the conditions for forming each layer are as follows, and the thickness of each layer is controlled by the formation time. P layer a-SiC: H 10 nm monosilane 55 sccm methane 15 sccm diborane 30 sccm discharge power 5 W substrate temperature 220 ° C. pressure about 170 Pa i layer a-Si: H 300 to 550 nm monosilane 100 sccm discharge power 5 W substrate temperature 220 ° C. pressure About 170 Pa n layer μc-Si: H 40 nm monosilane 25 sccm phosphine 25 sccm discharge power 50 W substrate temperature 220 ° C. pressure about 170 Pa Next, an Al film having a thickness of about 300 nm is formed by vacuum deposition at a pressure of about 133 Pa. The back electrode 17 is formed on the semiconductor thin film 16. Then, this glass plate is cut into a size of 430 mm × 430 mm, and
The photoelectric conversion element 11 of the embodiment is completed. The semiconductor thin film 16 and the back electrode 17 are removed.
The structure and light transmittance of the photoelectric conversion element 11 of the reference embodiment are shown in item 1 of Table 1. In the rightmost column of item No. 1 in Table 1, the light-transmitting electrode 15 is formed of a single-layer SnO 2 film having the same overall thickness as that of the light-transmitting electrode 15 of the reference embodiment but to which F is added. The light transmittance of the comparative example is also shown. [Table 1] It should be noted that the Sn of each of the first layer and the second layer
The thickness of the O 2 film was measured as follows. That is, the position of starting the formation of the second layer of SnO 2 film is delayed from the position of starting the formation of the first layer of SnO 2 film with respect to the moving plate glass, and Not only the portion where the surface of the SnO 2 film was exposed, but also the portion where the surface of the first SnO 2 film was exposed were formed. [0024] Then, to select the measurement region and a portion where the portion where the surface of the first layer of SnO 2 film is exposed and the surface of the second layer of SnO 2 film is exposed, other than the measurement region The area was masked with a tape and zinc powder was applied to the measurement area. Dilute hydrochloric acid was poured over the area to etch the SnO 2 film, and each was measured with a stylus meter (Alpha Step-200: product name of Tencor Instruments). Was measured for the thickness of the SnO 2 film. Next, first to third embodiments will be described. Item numbers 2 to 4 in Table 1 include the semiconductor thin film 16 and the back electrode 17.
Also, the structure and light transmittance of the photoelectric conversion elements 11 of the first to third embodiments except for the above, and the light transmittance of each comparative example are shown. In each of the photoelectric conversion elements 11 of the first to third embodiments, the Sn
Only O 2 film layered structure is only different from the reference embodiment described above, moreover, the SnO 2 film of each layer is formed in the same manner as the manufacturing method of the reference embodiment. Item No. 5 in Table 1 is the same as the second embodiment in that the light-transmitting electrode 15 is composed of four SnO 2 films, but is pure SnO to which F is not added. A comparative example that differs from the second embodiment in that two films are in contact with the semiconductor thin film 16 is also shown. As is clear from Table 1, the light transmittance of each of the photoelectric conversion elements 11 of the reference embodiment and the first to third embodiments is higher than the light transmittance of the comparative example. Therefore, each of the photoelectric conversion elements 11 of the reference embodiment and the first to third embodiments can make a large amount of light incident on the semiconductor thin film 16 and has a high photoelectric conversion efficiency. Since the translucent electrode 15 needs to have a low resistance, the total thickness of a plurality of stacked SnO 2 films needs to be about 400 nm or more. However, if the translucent electrode 15 is too thick, the light transmittance is reduced and the manufacturing cost is increased.
2. The thickness of the entire film needs to be about 1500 nm or less. The photoelectric conversion element 11 described above includes a solar cell, a photodiode, and the like. According to the photoelectric conversion device of the present invention, a plurality of light-transmitting conductive films constituting a light-transmitting electrode can be continuously formed by the same manufacturing apparatus. Since the increase in manufacturing cost is suppressed, and in spite of that, the reflectance at the interface between the light-transmitting substrate and the light-transmitting electrode and the interface between the light-transmitting electrode and the semiconductor thin film can be reduced. In addition, a large amount of light can be incident on the semiconductor thin film, and the photoelectric conversion efficiency is high.

【図面の簡単な説明】 【図1】本願の発明を適用し得る薄膜系の光電変換素子
の側面図である。 【符号の説明】 11 光電変換素子 14 透光性基体 15 透光性電極 16 半導体薄膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of a thin-film photoelectric conversion element to which the present invention can be applied. [Description of Signs] 11 Photoelectric conversion element 14 Translucent base 15 Translucent electrode 16 Semiconductor thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平田 昌宏 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (56)参考文献 特開 平6−120534(JP,A) 特開 昭63−275187(JP,A) 特開 昭62−198169(JP,A) 特開 昭63−199863(JP,A) 特開 平1−149485(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Masahiro Hirata 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Nippon Sheet Glass Co., Ltd. (56) References JP-A-6-120534 (JP, A) JP-A-63-275187 (JP, A) JP-A-62-198169 (JP, A) JP-A-63-199863 (JP, A) JP-A-1-149485 (JP, A) (58) Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (1)

(57)【特許請求の範囲】 【請求項1】 透光性基体上に透光性電極と半導体薄膜
とが順次に積層されている光電変換素子において、 複数層の透光性導電膜が積層されて前記透光性電極が構
成されており、 前記複数層の透光性導電膜の主成分がSnO 2 であり、 添加されているFである不純物の濃度が相対的に高い前
記透光性導電膜と前記不純物の濃度が相対的に低い前記
透光性導電膜とが交互に3層以上積層されており、 前記不純物の濃度が相対的に高い前記透光性導電膜が前
記半導体薄膜に接していることを特徴とする光電変換素
子。
(57) [Claim 1] In a photoelectric conversion element in which a light-transmitting electrode and a semiconductor thin film are sequentially stacked on a light-transmitting substrate, a plurality of light-transmitting conductive films are stacked. And the main component of the plurality of light-transmitting conductive films is SnO 2 , and the concentration of the added F impurity is relatively high. Three or more layers of a conductive film and the light-transmitting conductive film having a relatively low impurity concentration are alternately laminated, and the light-transmitting conductive film having a relatively high impurity concentration is formed on the semiconductor thin film. A photoelectric conversion element which is in contact with the photoelectric conversion element.
JP36632597A 1997-12-24 1997-12-24 Photoelectric conversion element Expired - Fee Related JP3382141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36632597A JP3382141B2 (en) 1997-12-24 1997-12-24 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36632597A JP3382141B2 (en) 1997-12-24 1997-12-24 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH11186580A JPH11186580A (en) 1999-07-09
JP3382141B2 true JP3382141B2 (en) 2003-03-04

Family

ID=18486504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36632597A Expired - Fee Related JP3382141B2 (en) 1997-12-24 1997-12-24 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3382141B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026161A1 (en) * 1999-10-05 2001-04-12 Matsushita Battery Industrial Co., Ltd. Compound semiconductor solar cell and method of manufacture thereof
CN1331766C (en) * 2005-09-01 2007-08-15 太原理工大学 Technique for treating organic substance difficukt to be degradated in water through opto-electronic electrode
US20140311573A1 (en) * 2013-03-12 2014-10-23 Ppg Industries Ohio, Inc. Solar Cell With Selectively Doped Conductive Oxide Layer And Method Of Making The Same

Also Published As

Publication number Publication date
JPH11186580A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP5012793B2 (en) Substrate with transparent conductive oxide film and photoelectric conversion element
US20080156372A1 (en) Thin film solar cell module of see-through type and method of fabricating the same
EP1032051A2 (en) Method for manufacturing thin film photovoltaic device
KR20070119702A (en) Solar cell
WO2005011002A1 (en) Silicon based thin film solar cell
US8575472B2 (en) Photoelectric conversion device and method for producing same
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
JPH09139515A (en) Transparent conducting film electrode
JP3025179B2 (en) Method for forming photoelectric conversion element
US4922218A (en) Photovoltaic device
KR100906748B1 (en) Solar cell and method for manufacturing the same
JP4889623B2 (en) Transparent conductive film and solar cell using transparent conductive film
JP3382141B2 (en) Photoelectric conversion element
JP2000114555A (en) Manufacture of thin film solar cell
JP2002217428A (en) Photoelectric conversion device and its manufacturing method
JPH06338623A (en) Thin-film solar cell
JP2000150928A (en) Transparent electrode substrate, manufacture thereof and photovoltaic element
JP2000277766A (en) Photovoltaic element and manufacture thereof
JPS6152992B2 (en)
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JP2010103347A (en) Thin film photoelectric converter
JP4971755B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JPH11298021A (en) Substrate for photovoltaic element, and photovoltaic element using the same, and integrated photovoltaic element and manufacture of the integrated photovoltaic element
JPS59165470A (en) Amorphous silicon photovoltaic element
JPS639158A (en) Transparent conductive film for solar battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees