JPH09139515A - Transparent conducting film electrode - Google Patents

Transparent conducting film electrode

Info

Publication number
JPH09139515A
JPH09139515A JP29682995A JP29682995A JPH09139515A JP H09139515 A JPH09139515 A JP H09139515A JP 29682995 A JP29682995 A JP 29682995A JP 29682995 A JP29682995 A JP 29682995A JP H09139515 A JPH09139515 A JP H09139515A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
transparent conductive
conductive film
conducting film
electrode
transparent conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29682995A
Other languages
Japanese (ja)
Inventor
Kei Kajiwara
Tetsumasa Umemoto
哲正 梅本
慶 梶原
Original Assignee
Sharp Corp
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide an electrode having low sheet resistance, texture structure, and plasma resistance and, in particular, an electrode for a solar cell.
SOLUTION: This electrode consists of a first transparent conducting film 3 having texture structure on an optically transparent insulating substrate 1, a second transparent conducting film 4 having conductivity higher than the first transparent conducting film 3, and a third transparent conducting film 5 which is laminated on the second transparent conducting film 4 and has plasma resistance. The light incidence is in the order of the optically transparent substrate 1, the first transparent conducting film 3, the second transparent conducting film 4, and the third transparent conducting film 5. The refractive indexes increase in this order. The electrode exhibits low sheet resistance value and improved effect of use efficiency of light. In particular, series resistance can be reduced and excellent photoelectric conversion characteristic can be obtained in an integrated type solar cell.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は透明導電膜電極、特に太陽電池用の透明導電膜電極に関する。 BACKGROUND OF THE INVENTION The present invention is a transparent conductive film electrode, more particularly to a transparent conductive film electrode of a solar cell.

【0002】 [0002]

【従来の技術】透明導電膜電極の主要な用途として太陽電池が挙げられる。 It includes solar cells as a major application of the Related Art Transparent conductive film electrodes. 太陽電池の中で非晶質シリコン太陽電池(以下、a−Si太陽電池と記す)に用いる透明導電膜電極として、従来、SnO 2が用いられていた。 Amorphous silicon solar cells in the solar cell (hereinafter, referred to as a-Si solar cell) as a transparent conductive film electrode used in conventional, SnO 2 has been used. その理由としては、透明導電膜電極の上に非晶質光電変換層を形成する際、原料ガスをグロー放電によるプラズマCVD法で行うので、透明導電膜電極には耐プラズマ性を有するSnO 2が適当であるからである。 The reason is that, when forming the amorphous photoelectric conversion layer on the transparent conductive film electrode, since the raw material gas by a plasma CVD method using glow discharge, the transparent conductive film electrode SnO 2 having a plasma resistance This is because it is appropriate.

【0003】また、a−Si太陽電池は、モジュール構造として集積型構造に用いられることが多い。 [0003], a-Si solar cells are often used as a module structure in an integrated structure. 図4に、 In Figure 4,
a−Si太陽電池の集積型構造を示す。 It shows an integrated structure of a-Si solar cell. 41は透光性絶縁基板、42は透明導電膜電極、43は非晶質光電変換層、44は裏面電極である。 41 translucent insulating substrate, 42 is a transparent conductive film electrode, 43 is amorphous photoelectric conversion layer, 44 is a back electrode. 集積型構造はセルを短冊上のユニットに分割し、各ユニット間を透明電導膜電極4 Integrated structure divides the cell into units on the strip, the transparent conductive film electrode 4 between the units
2と裏面電極44で直列接続している。 It is connected in series with 2 and the back electrode 44. このような集積型構造のa−Si太陽電池の特性を向上させるにはユニットの直列抵抗を低く抑えることが必要であり、このためには透明導電膜電極42のシート抵抗を低く抑えなければならかった。 Such in order to improve the characteristics of a-Si solar cells integrated structure it is necessary to reduce the series resistance of the unit, for this purpose must be suppressed low sheet resistance of the transparent conductive film electrode 42 won.

【0004】しかしながら、SnO 2は導電率が低く、 However, SnO 2 is the conductivity is low,
シート抵抗値を下げるためにはSnO 2の膜厚を厚くする方法が考えられるが、この方法はSnO 2を形成する常圧CVD装置の長さが数十mと長くなるためにあまり実用的ではなかった。 Although in order to lower the sheet resistance value is considered a method of increasing the thickness of SnO 2, this method is very practical for the length of the atmospheric pressure CVD apparatus for forming a SnO 2 is long and several tens of m is There was no.

【0005】逆に、導電率が高い透明導電膜としてはI [0005] Conversely, as the high conductivity transparent conductive film I
TO(インジウムスズ酸化物)が従来から知られているが、ITOには耐プラズマ性がなく、非晶質光電変換層を原料ガスのグロー放電によるプラズマCVD法で積層するとITOが変質する問題があった。 Although TO (indium tin oxide) has been known, no plasma resistance to ITO, a problem if the amorphous photoelectric conversion layer laminated by plasma CVD by glow discharge of the raw material gas with ITO altered there were.

【0006】そこで特開昭59−58874号公報に示されるようなガラス/ITO(60〜180nm)/S [0006] Therefore Glass / ITO as shown in JP 59-58874 JP (60~180nm) / S
nO 2 (20nm)の順に積層する方法が提案された。 a method of laminating in this order nO 2 (20 nm) has been proposed.
この方法では高導電性をもつITOと耐プラズマ性Sn ITO and plasma resistance Sn having high conductivity in this way
2を組み合わせることにより高導電性と耐プラズマ性の2つを兼ね備えることができる。 O 2 can combine two highly conductive and plasma resistance by combining. また、同公報ではa In addition, a is in the same publication
−Si太陽電池に適用しており、光電変換効率を鑑みると、ITO膜厚が60〜90nm、SnO 2膜厚が8〜 Is applied to -Si solar cell, in view of the photoelectric conversion efficiency, ITO film thickness 60 and 90 nm, the SnO 2 film thickness 8
20nmがよいと記載されている。 20nm is described as good.

【0007】また、近年、太陽電池において光電変換効率の効率化を図る要素技術として、表面に凹凸を形成することによって光散乱による光閉じ込め効果を得る検討がなされている。 [0007] In recent years, as an element technology to improve the efficiency of photoelectric conversion efficiency in a solar cell, studied to obtain an optical confinement effect is made by light scattering by forming an uneven surface. 例えば、単結晶Siなどの結晶質光電変換層を用いる太陽電池の場合は、結晶質光電変換層の表面を薬品によるエッチングによってテクスチュア構造を形成している。 For example, in the case of a solar cell using a crystalline photoelectric conversion layer, such as single crystal Si forms a texture structure by etching with chemicals the surface of the crystalline photoelectric conversion layer.

【0008】また、透明導電膜電極に使用されるSnO Further, SnO used for the transparent conductive film electrode
2は、CVD法で形成する際にできる表面ヘイズを制御することによってテクスチュア構造を有することができ、そのテクスチュア構造の凹凸の仕方は膜厚とヘイズ率に依存することが知られている。 2 may have a textured structure by controlling the surface haze may in forming by the CVD method, the unevenness of the manner of texture structures are known to depend on the film thickness and haze.

【0009】 [0009]

【発明が解決しようとする課題】しかし、従来の透明導電膜電極は、特開昭59−58874に示されるITO [SUMMARY OF THE INVENTION] However, the conventional transparent conductive film electrode, ITO as shown in JP 59-58874
/SnO 2の2層構造の透明導電膜電極においてもテクスチュア構造が記載されていないように、いまなお光の利用効率が不充分であった。 / Texture structure even in the transparent conductive film electrode of two-layer structure of SnO 2 so is not described, was insufficient utilization now tail light. 透明導電膜電極において光の利用効率が不充分であることは、太陽電池においては光電変換効率の低下となる。 It in the transparent conductive film electrode is insufficient utilization efficiency of light is a reduction in the photoelectric conversion efficiency in the solar cell.

【0010】また、テクスチュア構造を有するSnO 2 [0010] In addition, SnO 2 having a textured structure
単層の透明導電膜電極の場合では、上記に記載したようにシート抵抗を下げる方法が実用的ではないという問題がある。 In the case of the transparent conductive film electrode of a single layer, there is a problem that a method of reducing the sheet resistance as described above is not practical.

【0011】また、複層に積層した従来の透明導電膜電極では、各層の屈折率についての考慮がなされていないので光の反射を抑えることができず、光の利用効率の向上が不十分であった。 Further, in the conventional transparent conductive film electrode laminated on double layer, so has not been taken into account for the refractive index of each layer can not be suppressed reflection of light, is insufficient improvement of the light utilization efficiency there were.

【0012】以上をまとめると、本発明ではシート抵抗が低く、光の利用効率を高める製造上実用的な透明導電膜電極を提供することを目的とする。 [0012] In summary, the present invention a low sheet resistance, and to provide a manufacturing practical transparent conductive film electrode to enhance the light use efficiency. また、本発明は、 In addition, the present invention is,
特に太陽電池用として、シート抵抗が低く、光の利用効率を高め、耐プラズマ性を有する透明導電膜電極を提供することを目的とする。 Particularly for a solar cell, a sheet resistance is low, increase the utilization efficiency of light, and an object thereof is to provide a transparent conductive film electrode having a resistance to plasma.

【0013】 [0013]

【課題を解決するための手段】上記目的を達成するために、請求項1に記載の透明導電膜電極は、光入射側から透光性基板上に第一透明導電膜、第二透明導電膜の順に積層され、第一透明導電膜はテクスチュア構造を有し、 To achieve SUMMARY OF to the above objects, the transparent conductive film electrode according to claim 1, the first transparent conductive film from the light incident side on a transparent substrate, a second transparent conductive film is a sequentially stacked, the first transparent conductive film has a texture structure,
第二透明導電膜は第一透明導電膜よりも高い導電性を有することを特徴とする。 The second transparent conductive film is characterized by having a higher conductivity than the first transparent conductive film.

【0014】上記請求項1に記載の透明導電膜電極では、光の入射側に一番近いところにテクスチュア構造をもつことによって、テクスチュア構造での光散乱による光閉じ込め効果を最大限に生かすことができる。 [0014] In the transparent conductive film electrode according to the claim 1, by having a textured structure at the closest to the light incident side, that to maximize the light trapping effect by light scattering at texture structure it can.

【0015】また、請求項1に記載の透明導電膜電極は、第一透明導電膜として錫酸化物、第二透明導電膜としてインジウムスズ酸化物であることが望ましい。 Further, the transparent conductive film electrode according to claim 1, tin oxide as a first transparent conductive film, it is desirable that the indium tin oxide as the second transparent conductive film.

【0016】また、請求項4に記載の透明導電膜電極は、光入射側から透光性基板上に第一透明導電膜、第二透明導電膜、第三透明導電膜の順に積層され、第一透明導電膜はテクスチュア構造を有し、第二透明導電膜は第一透明導電膜よりも高い導電性を有し、第三透明導電膜は耐プラズマ性を有することを特徴とする。 Further, the transparent conductive film electrode according to claim 4, the first transparent conductive film from the light incident side on a transparent substrate, a second transparent conductive film are laminated in this order of the third transparent conductive film, the first transparent conductive film has a texture structure, the second transparent conductive film has a higher conductivity than the first transparent conductive film, the third transparent conductive film is characterized by having plasma resistance.

【0017】また、請求項4に記載の透明導電膜電では、第一透明導電膜として錫酸化物、第二透明導電膜としてインジウムスズ酸化物、第三透明導電膜として亜鉛酸化物であることが望ましい。 [0017] It the transparent conductive film conductive according to claim 4, tin oxide as a first transparent conductive film, indium tin oxide as the second transparent conductive film, a zinc oxide as a third transparent conductive film It is desirable

【0018】特に、上記請求項4に記載の透明導電膜電極は、通常、非晶質光電変換層をプラズマCVD法で作成するa−Si太陽電池用として有用である。 [0018] In particular, the transparent conductive film electrode according to the claim 4 is usually useful amorphous photoelectric conversion layer for the a-Si solar cell to create a plasma CVD method.

【0019】また、請求項3、6に記載の透明導電膜電極では透光性基板、第一透明導電膜、第二透明導電膜、 Further, the light-transmitting substrate is a transparent conductive film electrode according to claim 3 and 6, a first transparent conductive film, the second transparent conductive film,
第三透明導電膜と光の入射した順に屈折率が大きくなることを特徴とする。 Third transparent conductive film and the light incident sequentially on the refractive index of which is characterized in that increase. これによって、透明導電膜電極に入射した光の反射を抑える。 This suppresses the reflection of light incident on the transparent conductive film electrode.

【0020】 [0020]

【発明の実施の形態】以下、a−Si太陽電池用の透明導電膜電極の場合について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be described for the case of the transparent conductive film electrode for a-Si solar cell.

【0021】図1に、本発明に係る透明導電膜電極を示す。 [0021] FIG. 1 shows a transparent conductive film electrode of the present invention. 1は透光性絶縁基板、2はSiO 2膜、3はSnO 2 1 translucent insulating substrate, 2 SiO 2 film, 3 SnO 2
膜、4はITO膜、5はZnO膜である。 Film, 4 is an ITO film, 5 is a ZnO film. 本実施例では三層構造の透明導電膜電極として、テクスチュア構造を有する第一透明導電膜にSnO 2膜3を用い、高い導電率を有する第二透明導電膜にITO膜4を用い、耐プラズマ性を有する第三透明導電膜にZnO膜5を用いている。 As the transparent conductive film electrode of three-layer structure in this embodiment, the SnO 2 film 3 used for the first transparent conductive film having a texture structure, an ITO film 4 on the second transparent conductive film having high conductivity, high plasma It is used ZnO film 5 on the third transparent conductive film having a resistance. また、SiO 2膜2は本実施例での第一透明導電膜を製造する工程において500℃程度の温度を使用するため、透光性絶縁基板1に含まれるNa等の不純物が第一透明導電膜のSnO 2膜3に移動してこないようにするためである。 Further, since the SiO 2 film 2 is to use a temperature of about 500 ° C. In the step of producing the first transparent conductive film in this embodiment, an impurity such as Na contained in the translucent insulating substrate 1 is first transparent conductive This is to prevent come move the SnO 2 film 3 film.

【0022】SnO 2膜3はテクスチュア構造の光散乱による光閉じ込め効果を持たせるため、本実施例では厚さ1μm程度、ヘイズ率12〜15%としている。 [0022] SnO 2 film 3 for imparting the light confinement effect due to light scattering texture structure, a thickness of 1μm about in this embodiment, is set to 12 to 15 percent haze. また、テクスチュア構造の光散乱による光閉じこめ効果を十分に生かすのに最適なSnO 2の膜厚は0.7〜1μ Further, the optimum SnO 2 having a thickness to sufficiently make use of the light trapping effect by light scattering texture structure 0.7~1μ
m程度である。 It is about m.

【0023】a−Si太陽電池は、製造コスト等の面からプラズマCVD法が用いられており、ZnO膜5は、 The a-Si solar cell is the plasma CVD method is used in terms such as manufacturing cost, ZnO film 5,
非晶質光電変換層をプラズマCVD法で形成する時に、 The amorphous photoelectric conversion layer when formed by a plasma CVD method,
耐プラズマ性のないITO膜4を変質させないために必要である。 The plasma resistance without ITO film 4 is required in order not to alteration. 尚、ITO膜4がプラズマ雰囲気にさらされない場合は、必ずしも必要ではない。 In the case where the ITO film 4 is not exposed to the plasma atmosphere it is not always necessary.

【0024】また、透明導電膜の屈折率は通常Sn Further, the refractive index of the transparent conductive film is usually Sn
2 、ITO、ZnO膜ともに1.9前後であるが、作製条件、組成比などの制御により1.8〜2.0程度の範囲に変化させることが可能である。 O 2, ITO, is a 1.9 before and after the ZnO film both manufacturing conditions, it is possible to change the range of about 1.8 to 2.0 by controlling such composition ratio. そこでSnO 2膜3は作製条件の変更によって屈折率を1.8に、ITO Therefore SnO 2 film 3 is a refractive index by changing the manufacturing conditions in 1.8, ITO
膜4は屈折率を1.9のままに、ZnO膜5はO 2分圧を変更することによって屈折率を2.0とした。 Film 4 represents a refractive index remains 1.9, ZnO film 5 was 2.0 refractive index by changing the O 2 partial pressure. こうすることにより、透光性絶縁基板1、SnO 2膜3、IT By doing so, the translucent insulating substrate 1, SnO 2 film 3, IT
O膜4、ZnO膜5と、光入射の順に屈折率が大きくなることになり、入射した光の反射を抑える効果も持つ。 And O film 4, ZnO film 5, will be sequentially refractive index of the light incident increases, also has the effect of suppressing reflection of incident light.

【0025】ここで透光性絶縁基板1にはガラス、ポリイミド等を適宜選択し用いることができる。 [0025] Here, the translucent insulating substrate 1 can be used to select a glass, a polyimide or the like as appropriate. テクスチャア構造を有する第一透明導電膜としてはZnOも用いることができる、また耐プラズマ性を有する第三透明導電膜としてはSnO 2も用いることができるが、耐プラズマ性においてZnOの方がSnO 2より優れているためZnOを用いることが望ましい。 The first transparent conductive film can be used ZnO, also As the third transparent conductive film having a plasma resistance can SnO 2 also used, I found the following ZnO in plasma resistance SnO having a texture A structure it is desirable to use a ZnO for better than 2.

【0026】次に、本発明に係る透明導電膜電極の製造方法を説明する。 [0026] Next, a method for manufacturing a transparent conductive film electrode of the present invention.

【0027】透光性絶縁基板1として厚さ1mm、屈折率1.5のガラス基板を用い、その片面に屈折率1.5 The thickness of 1 mm, a glass substrate having a refractive index of 1.5 is used as the translucent insulating substrate 1, the refractive index on one side 1.5
のSiO 2膜2を100nmの厚さに常圧CVD法で積層する。 The SiO 2 film 2 is laminated at atmospheric pressure CVD method to a thickness of 100nm for. この時、基板温度は500℃にする。 At this time, the substrate temperature is to 500 ° C..

【0028】この上に、ヘイズ率12%〜15%のテクスチュア構造を持つ第一透明導電膜としてSnO 2膜3 [0028] On this, SnO 2 film 3 as the first transparent conductive film having a haze of 12% to 15% of the texture structure
を1μmの厚さに常圧CVD法で積層する。 The laminated at atmospheric pressure CVD method to a thickness of 1 [mu] m. 原料ガスとしてSnCl 4を25l/min、ドーピングガスはH The SnCl 4 as the source gas 25l / min, doping gas H
Fを1l/min、酸化反応させるためH 2 Oを0.2 F a 1l / min, of H 2 O for oxidizing reaction 0.2
l/min流す。 l / min flow. 通常ではH 2 Oは0.1l/minにして屈折率が1.9のSnO 2膜を作製するが、本実施例ではH 2 Oの供給量を0.2l/minに増やすことによって屈折率1.8に下げたSnO 2膜3を作製する。 The refractive index and in H 2 O is 0.1 l / min in normal to produce SnO 2 film 1.9, in this embodiment the refractive index by increasing the supply amount of H 2 O in 0.2 l / min making SnO 2 film 3 was lowered to 1.8. この時の基板温度は500℃で、シート抵抗値は1 In this substrate temperature time 500 ° C., the sheet resistance value is 1
2Ω/□である。 2Ω / □ is.

【0029】次に第一透明導電膜より高い導電性を持つ第二透明導電膜としてITO膜4をDCマグネトロンスパッタ法で、300nmの厚さに積層する。 [0029] Next, the ITO film 4 by DC magnetron sputtering method as a second transparent conductive film having high conductivity than the first transparent conductive film is laminated to a thickness of 300 nm. この時の基板温度は200℃、酸素分圧は1%で、ITO膜4だけのシート抵抗は7Ω/□、屈折率は1.9である。 The substrate temperature at this time 200 ° C., oxygen partial pressure of 1%, a sheet resistance of only the ITO film 4 7 Ohm / □, and the refractive index is 1.9.

【0030】この上に耐プラズマ性の性質を持つ第三透明導電膜層としてZnO膜5をDCまたはRFマグネトロンスパッタ法で50nmの厚さに積層する。 The laminating ZnO film 5 as a third transparent conductive film layer having a property of plasma resistance on the thickness of 50nm by DC or RF magnetron sputtering. この時の基板温度は200℃で、ZnO膜5だけのシート抵抗は200Ω/□である。 The substrate temperature at this time at 200 ° C., the sheet resistance of only ZnO film 5 is 200 [Omega / □. またZnO層の屈折率を上げるために通常O 2を導入していたものを、O 2分圧0として屈折率を2.0にする。 Also what it was introduced ordinary O 2 to increase the refractive index of the ZnO layer, the refractive index to 2.0 as O 2 partial pressure 0.

【0031】以上のようにして作製された三層構造の透明導電膜電極の全体のシート抵抗値は4Ω/□で、これは各層のシート抵抗の並列成分和に帰因している。 The overall sheet resistance of the transparent conductive film electrode of three-layer structure was produced as described above is 4ohm / □ a, which is attributable to the parallel component sum of the sheet resistance of the layers. また透光性基板1、SnO 2膜3、ITO膜4、ZnO膜5 The light transmitting substrate 1, SnO 2 film 3, ITO film 4, ZnO film 5
の順に、つまり光の入射方向の順に屈折率が大きくなるようにすることで、入射した光の反射を抑えることができる。 In the order of, i.e. by so refractive index in the order of the incident direction of light is increased, it is possible to suppress reflection of incident light.

【0032】また、前述したようにSnO 2膜3の作製プロセスでの温度は500℃程度で、ITO膜4の作製プロセスでの温度は200℃程度である。 Further, at a temperature about 500 ° C. in the manufacturing process of the SnO 2 film 3 as described above, the temperature in the manufacturing process of the ITO film 4 is about 200 ° C.. ITO膜4を作製する前に高温プロセスでSnO 2膜3を成膜することによって、ITO膜4は高温プロセスにさらされることがないため、結晶欠陥、酸化等の問題が生じず、また工程の連続処理を行った時に製造潜熱を利用することができるので製造に使用するエネルギーをロスすることなく製造できるのでコスト的にも有利である。 By depositing SnO 2 film 3 at a high temperature process prior to making the ITO film 4, since the ITO film 4 is not exposed to a high temperature process, crystal defects, problems do not occur such as oxidation, also steps since the energy used in the production can be utilized to manufacture the latent heat when subjected to continuous processing can be produced without loss is advantageous in cost.

【0033】(実施例1)以下、本発明に係る透明導電膜電極を使用した集積型のa−Si太陽電池の製造方法を図2に示す。 [0033] (Example 1) Hereinafter, a manufacturing method of a-Si solar cells integrated using a transparent conductive film electrode of the present invention shown in FIG. 図1と同一部材には、同一符号を記す。 Figure 1 The same members as referred by the same reference numerals.
6は上述した三層構造の透明導電膜電極(SnO 2 /I 6 is a transparent conductive film electrode of three-layer structure described above (SnO 2 / I
TO/ZnO)を示す。 TO / ZnO) show a.

【0034】まず、透光性基板1上に上述した方法で3 Firstly, 3 in the manner described above on the transparent substrate 1
層構造の透明導電膜電極6を積層する。 Laminating a transparent conductive film electrode 6 of the layer structure. 以上の工程終了後の断面図を図2(a)に示す。 A cross-sectional view after step is completed more than shown in FIG. 2 (a).

【0035】次に、レーザ光を照射して透明導電膜電極6の第1スクライブの溝を形成し、パターンニングを施す。 Next, by irradiating a laser beam to form a first scribe grooves of the transparent conductive film electrode 6 is subjected to patterning. この時照射するレーザ光は、Nd:YAGレーザ、 Laser beam irradiated at this time, Nd: YAG laser,
エキシマレーザのいずれでも良いが、保守が簡便でランニングコストが安いYAGレーザが工業的に優位である。 It may be any of the excimer laser, but maintenance YAG laser is cheap simple and the running cost is industrially advantage. 以上の工程終了後の断面図を図2(b)に示す。 A cross-sectional view after step is completed more than shown in FIG. 2 (b).

【0036】次に、p−i−nの三層から成り立っている非晶質光電変換層7の作製方法については説明する。 [0036] Next, a method for manufacturing the amorphous photoelectric conversion layer 7, which consists of three layers of p-i-n will be described.
まずは、p層を12nmの厚さに積層するために、プラズマCVD装置中に基板を置き、基板温度を200℃まで昇温する。 First, in order to stack a p-layer to a thickness of 12 nm, place the substrate in a plasma CVD apparatus, for raising the substrate temperature to 200 ° C.. 反応ガスとしてモノシランガスを30sc 30sc the monosilane gas as a reaction gas
cm、メタンガスを89sccm、水素ガスを150s cm, methane gas 89Sccm, hydrogen gas 150s
ccm、ドーピングガスとして水素希釈の1%ジボランガスを10sccmを流す。 ccm, flow 10sccm 1% diborane diluted with hydrogen as the doping gas. この時の圧力条件は0.2 Pressure conditions at this time 0.2
2Torrである。 Is 2Torr. 続いてi層を400nmの厚さに積層する。 Followed by laminating the i layer to a thickness of 400 nm. この時、基板温度は200℃に保持し、反応ガスとしてモノシランガスを60sccm、水素ガスを2 At this time, the substrate temperature was held at 200 ° C., 60 sccm of monosilane as a reaction gas, hydrogen gas 2
0sccm流す。 0sccm flow. この時の圧力条件は0.18Torr Pressure conditions at this time 0.18Torr
である。 It is. 続いてn層を100nmの厚さに積層する。 Followed by laminating the n layer with a thickness of 100 nm. 基板を200℃に保持し、反応ガスとしてモノシランガスを60sccm、水素ガスを3sccm、ドーピングガスとして水素希釈の0.3%ホスフィンガスを18sc The substrate is held in a 200 ° C., 60 sccm of monosilane as a reaction gas, 3 sccm of hydrogen gas, 0.3% phosphine gas diluted with hydrogen as the doping gas 18sc
cm流す。 cm flow. この時の圧力条件は0.22Torrである。 Pressure conditions at this time is 0.22Torr. 以上のように非晶質光電変換層7を積層した後の断面図を図2(c)に示す。 The cross-sectional view after stacking the amorphous photoelectric conversion layer 7 as described above shown in Figure 2 (c). 本実施例では非晶質シリコン(a−Si:H)によるp−i−n接合を用いた太陽電池の実施例を挙げたが、非晶質半導体材料として非晶質シリコンゲルマニウム(a−SiGe:H)、非晶質シリコンカーバイト(a−SiC:H)、非晶質シリコン錫(a−SiSn:H)などのa−Si系半導体があり、これらを用いてもよい。 Amorphous silicon in this embodiment: Although examples of a solar cell using a p-i-n junction by (a-Si H), amorphous silicon germanium as an amorphous semiconductor material (a-SiGe : H), amorphous silicon carbide (a-SiC: H), amorphous silicon tin (a-SiSn: H) may a-Si based semiconductor such as these may be used.

【0037】次に、レーザビームを照射して第2スクライブの溝を形成し、パターニングを施す。 Next, a second scribe groove is formed by irradiating a laser beam, subjected to patterning. 以上の工程終了後の断面図を図2(d)に示す。 A cross-sectional view after step is completed more than shown in Figure 2 (d).

【0038】次に、光の長波長側を反射するとともに裏面電極としてのZnO層9を50nmの厚さでスパッタ法により積層し、続いて裏面反射金属膜としてAg層1 Next, a ZnO layer 9 as the back electrode with reflects the long wavelength side of light is laminated by sputtering in a thickness of 50 nm, followed by Ag layer as a back reflection metal film 1
0を500nmの厚さでスパッタ法により積層する。 0 is laminated by sputtering in a thickness of 500 nm. ここでZnO及びAgの積層はスパッタ法で行ったが、この方法に限定されるものではなく、例えば蒸着法により積層することも可能であり、或は一方をスパッタ法で積層し、もう一方を蒸着法で積層することも可能である。 Here Although lamination of ZnO and Ag were carried out by the sputtering method, is not limited to this method, it is also possible to laminate, for example, by vapor deposition, or laminated one by sputtering, the other it is also possible to laminate a vapor deposition method.
以上の工程終了後の断面図を図2(e)に示す。 A cross-sectional view after step is completed more than shown in FIG. 2 (e).

【0039】最後に、レーザビームを照射して第3スクライブの溝を形成してパターニングを施し、ユニットセルに分離して集積型a−Si太陽電池を形成する。 [0039] Finally, subjected to patterning to form a third scribe groove by irradiating a laser beam, to separate the unit cells to form the integrated a-Si solar cell. ここで、ユニットセルに分離する方法はレーザビームに限られるわけではなく、スクリーン印刷法でパターンを形成し、エッチングによってユニットに分離しても良い。 Here, the method for separating the unit cell is not limited to a laser beam to form a pattern by a screen printing method, it may be separated into unit by etching. 以上の工程終了後の断面図を図2(f)に示す。 A cross-sectional view after step is completed more than shown in FIG. 2 (f).

【0040】本発明による300×300mmサイズの集積型のa−Si太陽電池の特性は、AM1.5(10 The characteristics of a-Si solar cells integrated in 300 × 300 mm size according to the present invention, AM 1.5 (10
0mW/cm 2 )において、短絡電流:0.522A、 0mW / cm 2 in), short-circuit current: 0.522A,
開放電圧26.4V、曲線因子:0.72、変換効率: Open-circuit voltage 26.4V, the fill factor: 0.72, conversion efficiency:
11%であった。 It was 11%.

【0041】(実施例2)また、他の実施例としてタンデム型構造の集積型のa−Si太陽電池の製造方法について図3に示す。 [0041] (Example 2) In addition, a method for manufacturing the a-Si solar cells integrated tandem structure illustrated in FIG. 3 as another embodiment. 図2と同一部材には同一符号を記す。 Referred by the same reference numerals in FIG. 2 and the same member.

【0042】透光性絶縁基板1に透明導電膜電極6を積層し、レーザ光を照射して透明導電膜電極のパターンニングを施すまでは、実施例1の図2(b)と同じである。 [0042] The transparent conductive film electrode 6 on the transparent insulating substrate 1 are stacked, until subjected to patterning of the transparent conductive film electrode is irradiated with a laser beam is the same as FIG. 2 in Example 1 (b) . 以上の工程終了後の断面図を図3(a)に示す。 Shown in FIG. 3 (a) A cross-sectional view after step is completed over.

【0043】この上に第一段目非晶質光電変換層8aのp層を10nmの厚さに積層する。 The laminating a p-layer of the first stage amorphous photoelectric conversion layer 8a with a thickness of 10nm thereon. その積層方法は、プラズマCVD装置中に基板を置き、基板温度を200℃ The lamination method, placing the substrate in a plasma CVD apparatus, 200 ° C. The substrate temperature
まで昇温して行う。 Until the temperature was raised. 反応ガスとしてモノシランガスを3 3 monosilane as a reaction gas
0sccm、メタンガスを35.6sccm、水素ガスを160sccm、ドーピングガスとして水素希釈の0.6%ジボランガスを0.06sccmを流す。 0 sccm, flow methane gas 35.6Sccm, 160 sccm of hydrogen gas, the 0.06sccm 0.6% diborane diluted with hydrogen as the doping gas. この時の圧力条件は0.22torrである。 Pressure conditions at this time is 0.22torr. 続いて第1段目のi層を130nmの厚さに積層する。 Followed by laminating the first stage i layer to a thickness of 130 nm. この時、基板温度は200℃に保持し、反応ガスとしてモノシランガスを60sccm、水素ガスを20sccm流す。 At this time, the substrate temperature was held at 200 ° C., a monosilane gas as the reaction gas 60 sccm, flow 20sccm hydrogen gas. この時の圧力条件は0.18torrである。 Pressure conditions at this time is 0.18torr. 続いて第一段目のn層を100nmの厚さに積層する。 Followed by laminating the n layer of the first stage to a thickness of 100 nm. 基板を200 The substrate 200
℃に保持し、反応ガスとしてモノシランガスを60sc ℃ to hold, 60Sc monosilane as a reaction gas
cm、水素ガスを20sccm、ドーピングガスとして水素希釈の2%ホスフィンガスを0.35sccm流す。 cm, the hydrogen gas 20 sccm, flow 0.35sccm 2% phosphine gas diluted with hydrogen as the doping gas. この時の圧力条件は0.22Torrである。 Pressure conditions at this time is 0.22Torr. 以上のように第一段目非晶質光電変換層8aを積層した後の断面図を図3(b)に示す。 Shown in FIG. 3 (b) a cross-sectional view after laminating the first stage amorphous photoelectric conversion layer 8a as described above.

【0044】次に第一段目非晶質光電変換層8aの上に、第二段目非晶質光電変換層8bの積層する。 Next on the first stage amorphous photoelectric conversion layer 8a, it is laminated from the second stage in amorphous photoelectric conversion layer 8b. 第2段目のp層とi層を第1段目と同じ条件で積層し、第2段目のn層を100nmの厚さに積層する。 The p-layer and the i layer of the second-stage stacked under the same conditions as the first stage, stacked n-layer of the second stage to a thickness of 100 nm. この時基板温度は200℃に保持し、反応ガスはモノシランガスをモノシランガスを30sccm、水素ガスを160scc In this case the substrate temperature was held at 200 ° C., the reaction gas is 30sccm monosilane monosilane gas, 160Scc hydrogen gas
m、ドーピングガスは水素希釈の0.6%ホスフィンガスを10sccmで流す。 m, flow 0.6% phosphine gas doping gas diluted with hydrogen at 10 sccm. この時の圧力条件を0.22 The pressure conditions in this case 0.22
torrである。 It is a torr. 以上までの工程終了後の断面図を図3 Figure 3 a cross-sectional view after the step is completed up to this
(c)に示す。 It is shown in (c).

【0045】以下、実施例1の図2(d)〜(f)と同様にして集積型のa−Si太陽電池を形成する。 [0045] Hereinafter, in the same manner as in FIG. 2 of Example 1 (d) ~ (f) to form an a-Si solar cells integrated. それらの集積型のa−Si太陽電池の工程断面図を図3(d) 3 to cross-sectional views of a-Si solar cell of those integrated (d)
〜(f)に示す。 - shown in (f).

【0046】本発明による300×300mmサイズの集積型のa−Si太陽電池の特性は、AM1.5(10 The characteristics of a-Si solar cells integrated in 300 × 300 mm size according to the present invention, AM 1.5 (10
0mW/cm 2 )において、短絡電流:0.309A、 0mW / cm 2 in), short-circuit current: 0.309A,
開放電圧44.4V、曲線因子:0.72、変換効率: Open-circuit voltage 44.4V, the fill factor: 0.72, conversion efficiency:
11%であった。 It was 11%.

【0047】 [0047]

【発明の効果】本発明によれば、光の入射側から透光性基板、テクスチャア構造を有する第一透明導電膜、第一透明導電膜より導電性の高い第二透明導電膜の順に積層することによって、シート抵抗値が小さく、光利用効率の高い透明導電膜電極を提供することができる。 According to the present invention, stacked from the light incident side light-transmitting substrate, a first transparent conductive film having a texture A structure, in order of high conductivity than the first transparent conductive second transparent conductive film by, can sheet resistance value is small, to provide a high light use efficiency transparent conductive film electrodes.

【0048】また、上記透明導電膜電極の第二透明導電膜の上に、耐プラズマ性を有する第三透明導電膜を積層することによって、シート抵抗値が小さく、光利用効率の高く、耐プラズマ性を有する三層構造の透明導電膜電極を提供することができるので、特に、集積型の太陽電池においてユニットの直列抵抗を低く抑えることができ、良好な光電変換特性を得ることが可能となる。 [0048] Further, on the second transparent conductive film of the transparent conductive film electrode, by laminating a third transparent conductive film having a plasma resistance, the sheet resistance value is small, the light utilization efficiency increases, plasma-resistant it is possible to provide a transparent conductive film electrode of three-layer structure having a gender, in particular, it is possible to reduce the series resistance of the unit in an integrated type solar cell, it is possible to obtain good photoelectric conversion characteristics .

【0049】また、透明電導膜電極を光入射側から順に屈折率が大きくなるように積層することにより、光の反射率を低下させることより光の利用効率を図ることができ、特に、太陽電池においては、光電変換効率の向上を図ることができる。 [0049] Further, by laminating a transparent conductive film electrode so that the refractive index from the light incident side in the order is increased, it is possible to achieve the light utilization efficiency from reducing the reflectivity of the light, in particular, solar cells in, it is possible to improve the photoelectric conversion efficiency.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明に係る三層構造をもつ透明導電膜電極の断面図である。 It is a cross-sectional view of a transparent conductive film electrode having a three-layer structure according to the present invention; FIG.

【図2】本発明に係る透明導電膜電極を用いた集積型のa−Si太陽電池の製造工程の断面図である。 2 is a cross-sectional view of a manufacturing process of a-Si solar cells integrated with a transparent conductive film electrode of the present invention.

【図3】本発明に係る透明導電膜電極を用いたタンデム型の構造を有する集積型のa−Si太陽電池の製造工程の断面図である。 3 is a cross-sectional view of a manufacturing process of a-Si solar cells integrated with a tandem structure using a transparent conductive film electrode of the present invention.

【図4】a−Si太陽電池の集積型構造の断面図である。 4 is a cross-sectional view of an integrated structure of a-Si solar cell.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 透光性絶縁基板 2 SiO 2膜 3 SnO 2膜 4 ITO膜 5 ZnO膜 6 三層透明導電膜電極(SnO 2 /ITO/Zn 1 translucent insulating substrate 2 SiO 2 film 3 SnO 2 film 4 ITO film 5 ZnO film 6 three-layer transparent conductive film electrode (SnO 2 / ITO / Zn
O) 7 非晶質光電変換層 8a 第一段目非晶質光電変換層 8b 第二段目非晶質光電変換層 9 ZnO層 10 Ag層 O) 7 amorphous photoelectric conversion layer 8a first stage amorphous photoelectric conversion layer 8b second stage amorphous photoelectric conversion layer 9 ZnO layer 10 Ag layer

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 光入射側から透光性基板、第一透明導電膜、第二透明導電膜の順に積層され、第一透明導電膜はテクスチュア構造を有し、第二透明導電膜は第一透明導電膜よりも高い導電性を有することを特徴とする透明導電膜電極。 1. A light-transmissive substrate from the light incident side, a first transparent conductive film, are laminated in this order of the second transparent conductive film, the first transparent conductive film has a texture structure, the second transparent conductive film first a transparent conductive film electrode, characterized in that it has a higher conductivity than the transparent conductive film.
  2. 【請求項2】 第一透明導電膜が錫酸化物、第二透明導電膜がインジウムスズ酸化物であることを特徴とする請求項1に記載の透明導電膜電極。 2. A first transparent conductive film of tin oxide, a transparent conductive film electrode according to claim 1 in which the second transparent conductive film, characterized in that indium-tin oxide.
  3. 【請求項3】 透光性基板、第一透明導電膜、第二透明導電膜の順に屈折率が大きくなることを特徴とする請求項1、2に記載の透明導電膜電極。 3. A light-transmissive substrate, a first transparent conductive film, transparent conductive film electrode according to claim 1 in which the refractive index in the order of the second transparent conductive film is characterized in that increase.
  4. 【請求項4】 光入射側から透光性基板、第一透明導電膜、第二透明導電膜、第三透明導電膜の順に積層され、 4. A light-transmitting substrate from the light incident side, a first transparent conductive film, the second transparent conductive film are laminated in this order of the third transparent conductive film,
    第一透明導電膜はテクスチュア構造を有し、第二透明導電膜は第一透明導電膜よりも高い導電性を有し、第三透明導電膜は耐プラズマ性を有することを特徴とする透明導電膜電極。 The first transparent conductive film has a texture structure, the second transparent conductive film has a higher conductivity than the first transparent conductive film, transparent conductive third transparent conductive film characterized by having a resistance to plasma membrane electrode.
  5. 【請求項5】 第一透明導電膜が錫酸化物、第二透明導電膜がインジウムスズ酸化物、第三透明導電膜が亜鉛酸化物であることを特徴とする請求項4に記載の透明導電膜電極。 5. The first transparent conductive film of tin oxide, a second transparent conductive film is an indium tin oxide, transparent conductive according to claim 4, a third transparent conductive film characterized in that it is a zinc oxide membrane electrode.
  6. 【請求項6】 透光性基板、第一透明導電膜、第二透明導電膜、第三透明導電膜の順に屈折率が大きくなることを特徴とする請求項4、5に記載の透明導電膜電極。 6. The light-transmitting substrate, a first transparent conductive film, the second transparent conductive film, transparent conductive film according to claim 4, 5 the refractive index in the order of the third transparent conductive film is characterized in that the increase electrode.
JP29682995A 1995-11-15 1995-11-15 Transparent conducting film electrode Pending JPH09139515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29682995A JPH09139515A (en) 1995-11-15 1995-11-15 Transparent conducting film electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29682995A JPH09139515A (en) 1995-11-15 1995-11-15 Transparent conducting film electrode

Publications (1)

Publication Number Publication Date
JPH09139515A true true JPH09139515A (en) 1997-05-27

Family

ID=17838704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29682995A Pending JPH09139515A (en) 1995-11-15 1995-11-15 Transparent conducting film electrode

Country Status (1)

Country Link
JP (1) JPH09139515A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759645B2 (en) 2000-02-04 2004-07-06 Kaneka Corporation Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
EP1443527A1 (en) * 2001-10-19 2004-08-04 Asahi Glass Company Ltd. SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND PRODUCTION METHOD THEREFOR, AND PHOTOELECTRIC CONVERSION ELEMENT
WO2005081324A1 (en) * 2004-02-20 2005-09-01 Sharp Kabushiki Kaisha Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
JP2009509350A (en) * 2005-09-23 2009-03-05 サン−ゴバン グラス フランス A transparent substrate having an electrode
WO2009099282A3 (en) * 2008-02-04 2009-11-05 Lg Electronics Inc. Solar cell having multiple transparent conductive layers and manufacturing method thereof
JP2010034230A (en) * 2008-07-28 2010-02-12 Sumitomo Metal Mining Co Ltd Thin-film solar cell and surface electrode for thin-film solar cell
JP2010525574A (en) * 2007-04-20 2010-07-22 クリー, インコーポレイティッド Transparent ohmic contact on the light emitting diode having a carrier substrate
WO2010090142A1 (en) * 2009-02-03 2010-08-12 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device
JP2011077306A (en) * 2009-09-30 2011-04-14 Ulvac Japan Ltd Solar cell and manufacturing method of the same
US7932576B2 (en) 2008-07-04 2011-04-26 Samsung Electronics Co., Ltd. Transparent conductive layer and method of manufacturing the same
DE102009051345A1 (en) * 2009-10-30 2011-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement comprising a transparent electrically conductive layer assembly comprising a photoelectric device and method for producing a transparent electrode,
CN102422435A (en) * 2009-05-18 2012-04-18 三菱电机株式会社 Thin film solar cell and method for manufacturing same
WO2012157428A1 (en) * 2011-05-13 2012-11-22 三洋電機株式会社 Photovoltaic device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759645B2 (en) 2000-02-04 2004-07-06 Kaneka Corporation Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
US7883789B2 (en) 2001-10-19 2011-02-08 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
EP1443527A4 (en) * 2001-10-19 2007-09-12 Asahi Glass Co Ltd Substrate with transparent conductive oxide film and production method therefor, and photoelectric conversion element
US7364808B2 (en) 2001-10-19 2008-04-29 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
EP1443527A1 (en) * 2001-10-19 2004-08-04 Asahi Glass Company Ltd. SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND PRODUCTION METHOD THEREFOR, AND PHOTOELECTRIC CONVERSION ELEMENT
WO2005081324A1 (en) * 2004-02-20 2005-09-01 Sharp Kabushiki Kaisha Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
US8957300B2 (en) 2004-02-20 2015-02-17 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
JP2009509350A (en) * 2005-09-23 2009-03-05 サン−ゴバン グラス フランス A transparent substrate having an electrode
JP2010525574A (en) * 2007-04-20 2010-07-22 クリー, インコーポレイティッド Transparent ohmic contact on the light emitting diode having a carrier substrate
US9484499B2 (en) 2007-04-20 2016-11-01 Cree, Inc. Transparent ohmic contacts on light emitting diodes with carrier substrates
WO2009099282A3 (en) * 2008-02-04 2009-11-05 Lg Electronics Inc. Solar cell having multiple transparent conductive layers and manufacturing method thereof
US9209326B2 (en) 2008-02-04 2015-12-08 Lg Electronics Inc. Solar cell having multiple transparent conductive layers and manufacturing method thereof
US7932576B2 (en) 2008-07-04 2011-04-26 Samsung Electronics Co., Ltd. Transparent conductive layer and method of manufacturing the same
JP2010034230A (en) * 2008-07-28 2010-02-12 Sumitomo Metal Mining Co Ltd Thin-film solar cell and surface electrode for thin-film solar cell
WO2010090142A1 (en) * 2009-02-03 2010-08-12 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device
US9059422B2 (en) 2009-02-03 2015-06-16 Kaneka Corporation Substrate with transparent conductive film and thin film photoelectric conversion device
JP5559704B2 (en) * 2009-02-03 2014-07-23 株式会社カネカ Manufacturing method of preparation and multi-junction thin-film photoelectric conversion device and a light-emitting element with a transparent conductive film substrate
CN102422435A (en) * 2009-05-18 2012-04-18 三菱电机株式会社 Thin film solar cell and method for manufacturing same
JP2011077306A (en) * 2009-09-30 2011-04-14 Ulvac Japan Ltd Solar cell and manufacturing method of the same
DE102009051345B4 (en) * 2009-10-30 2013-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A process for producing a transparent electrode,
DE102009051345A1 (en) * 2009-10-30 2011-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement comprising a transparent electrically conductive layer assembly comprising a photoelectric device and method for producing a transparent electrode,
WO2012157428A1 (en) * 2011-05-13 2012-11-22 三洋電機株式会社 Photovoltaic device

Similar Documents

Publication Publication Date Title
US5180686A (en) Method for continuously deposting a transparent oxide material by chemical pyrolysis
US20030172967A1 (en) Solar battery cell and manufacturing method thereof
US20080105293A1 (en) Front electrode for use in photovoltaic device and method of making same
US7875945B2 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080047602A1 (en) Front contact with high-function TCO for use in photovoltaic device and method of making same
US20080178932A1 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080308147A1 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US20080107799A1 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20050145972A1 (en) Tandem thin-film photoelectric transducer and its manufacturing method
US20080047603A1 (en) Front contact with intermediate layer(s) adjacent thereto for use in photovoltaic device and method of making same
US20080223436A1 (en) Back reflector for use in photovoltaic device
WO2005011002A1 (en) Silicon based thin film solar cell
JP2003179241A (en) Thin film solar cell
US20080308156A1 (en) Textured rear electrode structure for use in photovoltaic device such as CIGS/CIS solar cell
JP2004014958A (en) Thin film polycrystalline solar cell and manufacturing method therefor
JP2000252500A (en) Silicon thin-film photoelectric conversion device
US20120055547A1 (en) High-efficiency solar cell structures and methods of manufacture
JP2003298088A (en) Silicon based thin film photoelectric converter
JP2001308354A (en) Stacked solar cell
JP2001274447A (en) Method of manufacturing integrated thin film solar battery
US4922218A (en) Photovoltaic device
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2003142709A (en) Laminated solar battery and method for manufacturing the same
JP2005038907A (en) Integrated photoelectric converter