WO2001026161A1 - Compound semiconductor solar cell and method of manufacture thereof - Google Patents

Compound semiconductor solar cell and method of manufacture thereof Download PDF

Info

Publication number
WO2001026161A1
WO2001026161A1 PCT/JP2000/006932 JP0006932W WO0126161A1 WO 2001026161 A1 WO2001026161 A1 WO 2001026161A1 JP 0006932 W JP0006932 W JP 0006932W WO 0126161 A1 WO0126161 A1 WO 0126161A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
layer
compound semiconductor
oxide layer
solar cell
Prior art date
Application number
PCT/JP2000/006932
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Aramoto
Hideaki Oyama
Miwa Tsuji
Palaniappagounder Veluchamy
Tsuyoshi Nishio
Original Assignee
Matsushita Battery Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co., Ltd. filed Critical Matsushita Battery Industrial Co., Ltd.
Publication of WO2001026161A1 publication Critical patent/WO2001026161A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Definitions

  • the present invention relates to a compound semiconductor solar cell and a method for manufacturing the same.
  • Solar cells which convert light energy into electrical energy, can use the inexhaustible energy of sunlight.
  • Solar power is a clean energy source, unlike fossil fuels. Therefore, solar cells have been actively applied to electronic devices such as various optical sensors. Among them, compound semiconductor solar cells can be expected to have high conversion efficiency because of their large absorption coefficient.
  • a compound semiconductor solar cell generally includes a transparent electrode layer formed on a transparent substrate such as a glass substrate, an n-type compound semiconductor layer formed thereon, and a P-type compound semiconductor layer formed thereon. Have been.
  • the transparent electrode layer is generally made of a metal oxide, and contains an impurity as a carrier for increasing conductivity.
  • the impurity concentration in the transparent electrode layer is preferably high on the transparent substrate side from the viewpoint of sheet resistance, and low on the n-type compound semiconductor layer side from the viewpoint of carrier mobility.
  • the transparent electrode layer is formed on the substrate by a method such as evaporation using a raw material containing impurities as carriers. Therefore, there is a problem that the impurity concentration in the conventional transparent electrode layer becomes uniform.
  • the n-type compound semiconductor layer When an n-type compound semiconductor layer is formed directly on a transparent electrode layer, the n-type compound semiconductor layer is formed under the influence of the surface condition of the underlying transparent electrode layer. And its strength decreases There is also a problem. At the interface between the weak n-type compound semiconductor layer and the p-type compound semiconductor layer, a mixed crystal layer composed of the constituent elements of both layers is likely to be formed. Disclosure of the invention that the mixed crystal layer lowers the performance of the Pn junction and lowers the open-circuit voltage of the solar cell.
  • the present invention provides a transparent substrate, a transparent electrode layer made of a metal oxide containing impurities formed on the transparent substrate, an n-type compound semiconductor layer formed on the transparent electrode layer, and a n-type compound semiconductor layer formed on the n-type compound semiconductor layer.
  • a compound semiconductor solar cell comprising the formed p-type compound semiconductor layer, wherein the impurity concentration in the transparent electrode layer is high on the transparent substrate side and low on the n-type compound semiconductor layer side.
  • the transparent electrode layer is preferably made of tin oxide containing a halogen element as an impurity.
  • the transparent electrode layer includes a first metal oxide layer on the transparent substrate side and a second metal oxide layer on the n-type compound semiconductor layer side, and the first metal oxide layer has an impurity concentration of the second metal oxide layer. It is preferably higher than the impurity concentration in the metal oxide layer.
  • a ratio of the thickness of the second metal oxide layer to the thickness of the first metal oxide layer is 0.02 to 0.7, and the ratio of the second metal oxide layer to the impurity concentration in the first metal oxide layer is The ratio of the impurity concentration in the metal oxide layer is preferably 0.5 or less.
  • the solar cell of the present invention has a thickness of 10 angstroms or more between the transparent electrode layer and the n-type compound semiconductor layer, and includes a constituent element of the transparent electrode layer and the n-type compound semiconductor layer. It is preferable to have a mixed crystal layer.
  • the transparent electrode layer is made of tin oxide containing a halogen element as an impurity. It is preferable that the n-type compound semiconductor layer is made of a metal sulfide, and the mixed crystal layer is made of tin, cadmium, sulfur, and oxygen.
  • the mixed crystal layer preferably contains chlorine.
  • the present invention also relates to a method for manufacturing a compound semiconductor solar cell according to any of the above.
  • the present invention provides a step of forming a metal oxide layer containing impurities on a transparent substrate, and heating the metal oxide layer in a reducing atmosphere to thereby reduce the impurity concentration in the metal oxide layer.
  • the present invention relates to a method for manufacturing a compound semiconductor solar cell, comprising: a step of increasing the thickness on the substrate side and decreasing the level on the surface side;
  • the step of forming the first metal oxide layer containing impurities on the transparent substrate may further include: forming a first metal oxide layer containing impurities at a lower concentration than the first metal oxide layer on the first metal oxide layer.
  • the present invention relates to a method for manufacturing a compound semiconductor solar cell having a step of forming a two-metal oxide layer.
  • the temperature of the transparent substrate can be temporarily lowered to room temperature after the formation of the first metal oxide layer and before the formation of the second metal oxide layer.
  • the second metal oxide layer is preferably formed without lowering the temperature of the transparent substrate.
  • the present invention includes a step of forming a metal oxide layer containing impurities on a transparent substrate, and a step of forming an n-type compound semiconductor layer on the metal oxide layer in an atmosphere containing a raw material of the metal oxide.
  • the present invention relates to a method for manufacturing a compound semiconductor solar cell. In the latter step, a mixed crystal layer composed of constituent elements of both layers is formed between the metal oxide layer and the n-type compound semiconductor layer, and an impurity concentration lower than the impurity concentration on the metal oxide layer. Is formed.
  • a liquid comprising the metal oxide raw material and a solvent or a dispersion medium is used. It is preferable to obtain the atmosphere by vaporizing or atomizing.
  • the raw material of the metal oxide is preferably made of a halide containing at least tin or zinc.
  • the halide is preferably dimethyltin dichloride or methyl zinc chloride.
  • the present invention provides a step of forming a metal oxide layer containing impurities on a transparent substrate, and applying the raw material of the metal oxide on the metal oxide layer, and then forming an n-type compound on the metal oxide layer.
  • the present invention relates to a method for manufacturing a semiconductor solar cell having a step of forming a semiconductor layer. In the latter step, a mixed crystal layer and a second metal oxide layer are formed as described above.
  • the raw material of the metal oxide is preferably made of a halide containing at least tin or zinc.
  • the present invention provides a step of forming a metal oxide layer containing impurities on a transparent substrate, using a mixture of the metal oxide raw material and the n-type compound semiconductor raw material on the n-type compound semiconductor on the metal oxide layer.
  • the present invention relates to a method for manufacturing a compound semiconductor solar cell having a step of forming a layer. In the latter step, a mixed crystal layer and a second metal oxide layer are formed as described above.
  • the raw material of the metal oxide is made of a halide containing at least tin or zinc.
  • FIG. 1 is a diagram showing the relationship between the secondary ion intensity obtained when the transparent electrode layer in contact with the sulfur-doping layer of Example 1 was analyzed by SIMS and the measurement cycle.
  • FIG. 2 is a scanning electron micrograph showing a cross section of the transparent electrode layer of Example 1.
  • FIG. 3 is a diagram showing the distribution of the open circuit voltage of the solar cell obtained in Example 1. You.
  • FIG. 4 is a diagram showing the distribution of the fill factor of the solar cell obtained in Example 1.
  • FIG. 5 is a diagram showing a current density distribution of the solar cell obtained in Example 1.
  • FIG. 6 is a diagram showing the distribution of the conversion efficiency of the solar cell obtained in Example 1.
  • FIG. 7 shows the photoelectron intensity of each element obtained when a sample consisting of a tin oxide layer, a cadmium sulfide layer, and a mixed crystal layer interposed between the two layers was analyzed by Auger electron spectroscopy and the photoelectron intensity from the sample surface.
  • FIG. 8 shows the relationship between the depth and the photoelectron intensity obtained when the mixed crystal layer interposed between the tin oxide layer and the sulfur-doping layer was analyzed by Auger electron spectroscopy.
  • FIG. 4 is a diagram showing a relationship with the energy.
  • FIG. 9 is a transmission electron micrograph showing a cross section of a mixed crystal layer existing between the tin oxide layer and the sulfur-doping layer in Example 4.
  • FIG. 10 is a diagram showing the distribution of the open-circuit voltage of the solar cell obtained in Example 4.
  • FIG. 11 is a diagram showing the distribution of the fill factor of the solar cell obtained in Example 4.
  • FIG. 12 is a diagram showing a current density distribution of the solar cell obtained in Example 4.
  • FIG. 13 is a diagram showing the distribution of the conversion efficiency of the solar cell obtained in Example 4.
  • FIG. 14 is a diagram showing the distribution of the open circuit voltage of the conventional solar cell obtained in Comparative Example 1.
  • Figure 15 shows the distribution of the fill factor of the conventional solar cell obtained in Comparative Example 1.
  • FIG. 16 is a diagram showing a current density distribution of the conventional solar cell obtained in Comparative Example 1.
  • FIG. 17 is a diagram showing the distribution of the conversion efficiency of the conventional solar cell obtained in Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • the transparent electrode layer of a compound semiconductor solar cell of the present invention transparency, from the viewpoint of conductivity, S N_ ⁇ , tin oxides such as S N_ ⁇ 2, indium tin oxide, I Njiumu, Z n O, C dln 2 ⁇ 4 , C d S n ⁇ 4 , C d ⁇ ,
  • I n 2 O 3 - is preferably made of a metal oxide such as Z n O.
  • tin oxide indium oxide, indium tin oxide, Z n O, C d I n 2 0 4, C d S n C It is preferable to use such as.
  • the thickness of the transparent electrode layer is 0.1 to 1 m from the viewpoint of light transmission, and more preferably, 0.:! It is preferably from 0.6 to 0.6 m.
  • the transparent electrode layer contains an impurity.
  • Impurities are components used to adjust the carrier concentration of the transparent electrode layer.
  • the impurities are selected according to the type of metal oxide.
  • a halogen element such as fluorine, chlorine, and bromine, and antimony are preferable.
  • halogen elements especially fluorine, are preferred because of their low activation energy.
  • Zn for example, a group III element In, Al, B, F, Ga and a group 4 element Si are preferable.
  • the transparent electrode layer has higher light transmission and lower resistance.
  • the transparent electrode layer is preferably a tin oxide containing an octalogene element, particularly fluorine as an impurity.
  • the n-type compound semiconductor layer For example, sulfurizing domes,
  • CdZnS or the like is used.
  • sulfur doping is particularly preferable in that a solar cell having excellent conversion efficiency can be obtained.
  • the transparent electrode layer comprises a first metal oxide layer on the transparent substrate side and a second metal oxide layer on the n-type compound semiconductor layer side, and the impurity concentration in the first metal oxide layer is A compound semiconductor solar cell having a higher impurity concentration in the layer will be described.
  • the impurity concentration in the second metal oxide layer on the side of the n-type compound semiconductor layer is reduced, the mobility of carriers in the transparent electrode layer is increased, and the sheet resistance is reduced. Diffusion of impurities into the n-type compound semiconductor layer is also suppressed, and a decrease in the strength of the n-type compound semiconductor layer can be prevented.
  • One or more metal oxide layers may be further provided between the first metal oxide layer and the second metal oxide layer.
  • the metal oxide that constitutes the transparent electrode layer The number of layers is preferably three or less, and most preferably two, from the viewpoint of manufacturing cost and light transmittance.
  • each metal oxide layer is preferably in the range of 0.3 :! to 0.6 m from the viewpoint of the manufacturing process and the light transmittance.
  • the ratio of the thickness of the second metal oxide layer to the thickness of the first metal oxide layer is preferably from 0.02 to 0.7, and more preferably from 0.4 to 0.6. If this ratio is less than 0.02, the mobility of carriers decreases, and if it exceeds 0.7, the resistance of the transparent electrode layer increases.
  • the impurity concentration in the first metal oxide layer is preferably 1 ⁇ 10 2 fl to 5 ⁇ 10 2 ° atoms Z cm 3 .
  • the impurity concentration in the second metal oxide layer is preferably 5 ⁇ 10 19 to 2.5 ⁇ 10 2 ° atoms Z cm 3 .
  • the ratio of the impurity concentration in the second metal oxide layer to the impurity concentration in the first metal oxide layer is preferably 0.5 or less, more preferably 0.1 to 0.5. When the ratio exceeds 0.5, the mobility of carriers decreases, and when the ratio is less than 0.1, the resistance of the transparent electrode layer increases.
  • the impurity concentration may be determined by secondary ion mass spectrometry (SIMS).
  • the ratio of the impurity concentration in the second metal oxide layer to the impurity concentration in the first metal oxide layer is obtained, for example, as the ratio of the secondary ion intensity at the center in the thickness direction of each metal oxide layer.
  • Raw materials for metal oxides include, for example, tin halides such as dimethyltin dichloride and tin tetrachloride, alkyltin halides such as trimethyltin chloride, tin carboxylates, tin 3-diketone complexes, and tin alkoxides. Can be used. Of these, dimethyltin dichloride is most preferred.
  • a raw material for the impurities for example, fluorides such as ammonium fluoride and sodium fluoride, and antimony compounds such as antimony chloride are used.
  • a raw material liquid is prepared by mixing a metal oxide and a raw material for impurities with water or a solvent such as toluene or dispersed soot.
  • the ultrasonic vibrator is put in the raw material liquid, and it is operated to atomize the raw material liquid.
  • the solvent and dispersed soot evaporate and the raw material is thermally decomposed.
  • a metal oxide layer containing impurities is formed on the surface of the transparent substrate.
  • the raw material liquid When atomizing the raw material liquid, the raw material liquid may be sprayed. Further, instead of atomizing the raw material liquid, the raw material liquid may be heated and vaporized.
  • the temperature of the transparent substrate needs to be set to a temperature at which the solvent or dispersion medium in the atomized raw material liquid evaporates and the raw material of metal oxides and impurities is thermally decomposed. Therefore, the temperature of the transparent substrate varies depending on the type of raw material.
  • the temperature of the transparent substrate is set at 300 to 600 ° C, preferably at 300 to 580 ° C. At a temperature lower than 300 ° C., the thermal decomposition of dimethyltin dichloride is slowed down, it takes time to form a tin oxide layer, and the sheet resistance increases. On the other hand, when the temperature exceeds 600 ° C, the transparent substrate is deformed, or the crystal particle diameter of tin oxide becomes large, which disturbs incident light having an uneven thickness and large irregularities on the surface. It becomes an easy tin oxide layer. To obtain a solar cell with high conversion efficiency, the resistance of the first metal oxide layer must be
  • the thickness of the tin oxide layer is preferably from 0.1 to 0.5 m.
  • a second metal oxide layer having a higher resistance than the first metal oxide layer is formed.
  • the second metal oxide layer may be formed in the same manner as described above using a raw material liquid containing no impurities. Since some of the impurities in the first metal oxide layer diffuse into the second metal oxide layer, the second metal oxide layer also contains low-concentration impurities.
  • the thickness of the second tin oxide layer is preferably from 0.01 to 0.2 m.
  • the amount of impurities in the raw material liquid and the thickness of the metal oxide layer are controlled to form the first metal oxide layer, The operation may be repeated as many times as necessary, and finally the second metal oxide layer may be formed.
  • the second metal oxide layer may be formed separately or continuously after the formation of the first metal oxide layer.
  • the first metal oxide layer is formed, and then the second metal oxide layer is formed.
  • the substrate temperature may be once returned to room temperature. However, once the substrate temperature is returned to room temperature, time loss increases and stress is applied to the transparent substrate due to a temperature change, so that the characteristics of the transparent electrode layer may vary.
  • a nozzle for introducing the raw material for the first metal oxide layer and a nozzle for introducing the raw material for the second metal oxide layer are installed in the apparatus, and each metal base is successively connected stepwise so that the raw materials are not mixed.
  • Embodiment 2 After forming a metal oxide layer containing impurities on a transparent substrate, the metal oxide layer is heated in a reducing atmosphere, so that the impurity concentration is higher on the transparent substrate side and lower on the n-type compound semiconductor layer side. A method for obtaining the following will be described.
  • the metal oxide layer containing impurities may be formed in a manner similar to that of the first metal oxide layer in Embodiment 1. Then, the metal oxide layer is heated in a reducing atmosphere to desorb impurities near its surface.
  • a nitrogen atmosphere having an oxygen concentration of 30 ppm or less is preferable. If the oxygen concentration exceeds 30 ppm, no impurities are eliminated from the metal oxide layer.
  • the heating temperature is preferably from 500 to 600 ° C. If the temperature is lower than 500 ° C., impurities do not desorb from the metal oxide layer, and if the temperature exceeds 600 ° C., the physical properties of the metal oxide change or the crystallinity decreases, and the light transmission of the metal oxide decreases. Or decrease in sex. In order to efficiently remove impurities from the metal oxide layer, it is more preferable to set the heating temperature to 530 ° C. or higher.
  • the solar cell according to the present embodiment has the same transparent electrode layer as in Embodiment 1 or 2, and further includes a transparent electrode layer and an n-type compound semiconductor layer between the transparent electrode layer and the n-type compound semiconductor layer. It has a mixed crystal layer (mixed layer) composed of elements.
  • the mixed crystal layer is composed of the constituent elements of the transparent electrode layer and the n-type compound semiconductor layer, and has different physical properties from both the transparent electrode layer and the n-type compound semiconductor layer.
  • the n-type compound semiconductor layer When there is a mixed crystal layer, the n-type compound semiconductor layer is less susceptible to the surface condition of the underlying transparent electrode layer, particularly during its formation. Then, a strong n-type compound semiconductor layer in which elements are arranged in an orderly manner is obtained.
  • the mixed crystal layer includes, for example, tin, cadmium, sulfur, and oxygen. It preferably comprises Further, the mixed crystal layer preferably contains chlorine in order to suppress an increase in resistance.
  • the thickness of the mixed crystal layer is preferably 10 to 100 angstroms.
  • the thickness of the mixed crystal layer is less than 100 angstroms, the effect of the surface state of the transparent electrode layer on the n-type compound semiconductor layer cannot be sufficiently suppressed, and when the thickness exceeds 100 angstroms, the sheet resistance of the solar cell increases. Will be higher.
  • the transparent electrode layer has a strong surface, no mixed crystal layer is formed even if an n-type compound semiconductor layer is formed on the transparent electrode layer. Even if a mixed crystal layer is formed, its thickness is considered to be less than 10 angstroms.
  • a method for producing a mixed crystal layer composed of tin, cadmium, sulfur and oxygen will be described.
  • a stock solution containing tin, cadmium and sulfur and a solvent or a dispersion medium is prepared.
  • the raw material liquid may contain, for example, CdSnS. Further, a raw material liquid may be prepared by mixing a tin compound and a compound containing cadmium and sulfur.
  • tin compound examples include dimethyltin dichloride, trimethyltin chloride, tin tetrachloride, tin carboxylate, tin 3-diketone complex, and tin alkoxide.
  • Examples of the compound containing force domium and sulfur include cadmium gentium rutile cadmium, cadmium dimethyl dithirubinate, cadmium dibutyl dithiocarbamate, and cadmium dibutyl dithioxanthate.
  • a mixed crystal layer can be formed in the same manner as the metal oxide layer.
  • an ultrasonic vibrator is put in a raw material liquid, and this is operated to atomize the raw material liquid.
  • the solvent or dispersion medium evaporates and the raw material is evaporated. Decomposes thermally.
  • a mixed crystal layer composed of tin, cadmium, sulfur and oxygen is formed on the surface of the transparent electrode layer.
  • the temperature of the transparent electrode layer is preferably from 300 to 600 ° C, more preferably from 300 to 580 ° C, for example, when the raw material liquid contains dimethyltin dichloride. Below 300 ° C, thermal decomposition of dimethyltin dichloride slows down and no mixed crystal layer is formed. On the other hand, when the temperature exceeds 600 ° C., the transparent substrate is deformed, the crystal grain size of the mixed crystal layer is increased, and large irregularities are formed on the surface of the mixed crystal layer. As a result, when a cadmium sulfide layer is formed on the mixed crystal layer, the number of defects in the cadmium sulfide layer increases.
  • the mixed crystal layer can also be formed simultaneously with the formation of the first metal oxide layer containing impurities and then with the formation of the second metal oxide layer and the n-type compound semiconductor layer. To do so, you can do one of the following three steps.
  • steps (iii) a step of forming an n-type compound semiconductor layer on the first metal oxide layer using a mixture of a raw material of the second metal oxide and a raw material of the n-type compound semiconductor.
  • steps (i) to (iii) will be described by taking as an example a case where a CdS layer is formed as an n-type compound semiconductor layer. Itinerary (i)
  • a raw material of the second metal oxide layer for example, octalogenide is used.
  • the halide include dimethyltin dichloride, tin tetrachloride, trimethyltin chloride, methyl zinc chloride, ammonium fluoride, and sodium fluoride. Of these, dimethyltin dichloride, trimethyltin chloride, Methyl zinc chloride is preferred.
  • a raw material liquid 1 is prepared by mixing a raw material for the second metal oxide layer with a solvent or a dispersion medium such as water or toluene.
  • Raw materials for CdS include, for example, power dome such as getyl dithiol rubamic acid cadmium, dimethyl dithiocarbamate cadmium, dibutyl dithiocarbamate cadmium, and getyl dithioxanthate cadmium.
  • a compound containing sulfur is used.
  • the CdS raw material is mixed with a solvent such as water or toluene or a dispersed soot to prepare a raw material liquid 2.
  • the raw material liquid 1 is atomized using an ultrasonic vibrator, and then a heated transparent substrate having a transparent electrode layer is introduced under an atmosphere filled with the fine particles of the raw material liquid 1.
  • the raw material liquid 2 is atomized by using an ultrasonic vibrator to form a C d S layer.
  • the raw material liquid may be sprayed. Further, the raw material liquid may be heated to be vaporized.
  • the temperature of the transparent substrate depends on the type of raw material. For example, when dimethyltin dichloride is used as a raw material for the second metal oxide layer and cadmium getyldithiocarbamate is used as a raw material for the CdS layer, it may be 400 to 500 :, or even 4300. ⁇ 500 ° C is preferred. When the substrate temperature is lower than 400 ° C., thermal decomposition of the raw material is unlikely to occur, and many unreacted substances are mixed as impurities into the metal oxide layer. On the other hand, when the temperature exceeds 500 ° C., the metal oxide sublimes or evaporates, so that the second metal oxide layer is not formed or the thickness of the layer becomes uneven. Travel (i i)
  • a method of applying a raw material of the second metal oxide on the first metal oxide layer a method of immersing a transparent substrate having the first metal oxide layer in a raw material liquid of the second metal oxide, A method of printing a second metal oxide raw material liquid on the surface of a transparent substrate having an oxide layer, for example, screen printing, on the first metal oxide layer.
  • a method of spraying a raw material liquid of the second metal oxide a method of atomizing the raw material liquid and attaching it to the surface of the transparent substrate having the first metal oxide layer.
  • a CdS layer is formed on the first metal oxide layer after the material liquid of the second metal oxide is applied.
  • the C d S layer may be formed in the same manner as in the step (i).
  • a raw material liquid containing the same raw material for the second metal oxide layer and the raw material for the CdS layer as used in step (i) is prepared.
  • this raw material liquid for example, a mixture of the raw material liquid 1 and the raw material liquid 2 in step (i) can be used.
  • the raw material of the second metal oxide layer and the raw material of the CdS layer are mixed, for example, such that the molar ratio between the metal element of the second metal oxide layer and the metal element of the CdS layer is 1: 1. do it.
  • the formation of the CdS layer may be performed in the same manner as in the step (i) except that a raw material liquid containing the raw material of the second metal oxide layer is used.
  • Example 1 the solar cell of the present invention will be specifically described based on Examples, Example 1
  • a solar cell was fabricated in which the transparent electrode layer was composed of a first metal oxide layer having a high impurity concentration on the transparent substrate side and a second metal oxide layer having a low impurity concentration on the n-type compound semiconductor layer side.
  • a layer of tin oxide containing fluorine as an impurity (about 0.4 / xm) was formed on a borosilicate glass substrate (600 mm x 271 mm x 3 mm).
  • a raw material solution obtained by dissolving 100 g of dimethyltin dichloride powder and 4 g of ammonium fluoride powder in 360 cc of water was prepared at a frequency of 1 MHz.
  • the ultrasonic vibrator was put into a container with a built-in ultrasonic vibrator, and the ultrasonic vibrator was operated to atomize the raw material liquid.
  • the fine particles of the atomized raw material liquid are jetted out of the fine particle jet port together with the air introduced from the carrier gas inlet pipe, introduced into the Matsufur furnace through the fine particle inlet pipe, and placed on the metal conveyor belt moving inside the furnace. It was brought into contact with the surface of the placed glass substrate.
  • the surface temperature of the glass substrate was kept at 560 ° C by heat transfer from the conveyor belt heated by the heater and radiant heat in the Matsufur furnace. Twenty-five seconds after the fine particles of the raw material liquid were introduced into the muffle furnace, a fluorine-containing tin oxide layer was formed on the glass substrate. Unused fine particles of the raw material liquid were discharged through a discharge pipe.
  • the glass substrate was once returned to normal temperature, and the raw material liquid in the container was replaced with the raw material liquid for the second metal oxide layer.
  • the raw material liquid for the second metal oxide layer a raw material liquid in which 100 g of dimethyltin dichloride powder was dissolved in 360 cc of water was used. That is, the raw material liquid for the second metal oxide layer does not contain fluorine.
  • Fine particles of the raw material liquid were introduced into the Matsufuru furnace in the same manner as the first metal oxide layer, and the surface temperature of the first metal oxide layer was maintained at 560 ° C in the same manner as described above.
  • a sulfide sulfur layer was formed on the second metal oxide layer. Specifically, a raw material solution prepared by dissolving cadmium rubumic acid, a cadmium strict, in toluene is placed in a container with a built-in ultrasonic vibrator at a frequency of 1 MHz, and the ultrasonic vibrator is operated to atomize the raw material liquid. I let it. The fine particles of the atomized raw material liquid are ejected from the fine particle ejection port together with the nitrogen introduced from the carrier gas introduction pipe.
  • a tellurium dominating layer was formed on the dominating layer. Specifically, a substrate having a cadmium sulfide layer is placed on a carbon support on which cadmium telluride powder is placed via a glass spacer having a thickness of 3 mm. The powder faced the cadmium sulfide layer. Then, under a nitrogen atmosphere of 1 Torr, the temperature of the substrate was kept at 550 ° C (: the temperature of the cadmium telluride powder on the support was kept at 750 ° C. After 4 minutes, the sulfuric acid layer was formed. A 5 m thick telluride layer was formed on top.
  • a carbon electrode was formed on the cadmium telluride layer.
  • silver electrodes were formed as collector electrodes on the exposed portions of the carbon electrode and the remaining transparent electrode layer, respectively, to assemble a sulphide-dominium / tellurium-dominium-dominium solar cell.
  • the transparent electrode layer composed of the first metal oxide layer and the second metal oxide layer was analyzed by XPS (X-ray photoelectron spectroscopy).
  • XPS X-ray photoelectron spectroscopy
  • Figure 1 shows.
  • the values in Table 1 are in atomic%. table 1
  • Table 1 shows that the second oxide layer does not contain fluorine. The results show that the second oxide layer has high resistance.
  • Figure 1 shows the relationship between the secondary ion intensity and the measurement cycle.
  • the measurement cycle on the horizontal axis corresponds to the depth from the surface of the sample.
  • the vicinity of the 30th cycle corresponds to the interface between the sulfuric acid layer and the tin oxide layer.
  • FIG. 1 shows that the second metal oxide layer and the cadmium sulfide layer contain fluorine diffused from the first metal oxide layer. It is probable that such low-concentration fluorine could not be detected because XPS could not detect elements with an abundance of less than about 0.1%. On the other hand, S IMS can detect elements at the level of p pm to p p b.
  • the secondary ion intensity (corresponding to the fluorine concentration) of fluorine at the center in the thickness direction of the second metal oxide layer is about 1200 counts, and the thickness direction of the first metal oxide layer is The secondary ion intensity of fluorine at the center of is about 2400 counts, and the intensity ratio is about 1: 2.
  • the second metal oxide layer having a low fluorine concentration has a function of suppressing the diffusion of fluorine into the sulfur-doping layer and maintaining the strength of the sulfur-doping layer.
  • FIG. 2 shows a scanning electron micrograph of a cross section of the transparent electrode layer composed of the first metal oxide layer and the second metal oxide layer.
  • the thickness of the first tin oxide layer of about 0.4 / zm and the thickness of the second tin oxide layer of about 0.2 / m are about 0.6 / xm. Can be observed.
  • the open-circuit voltage, current density, fill factor, and conversion efficiency of the obtained solar cells were measured using a solar simulator.
  • the size of the sub-module is 600 mm X 27 1 mm and has 180 cells (3 X 60).
  • Fig. 3 shows the distribution of open circuit voltage
  • Fig. 4 shows the distribution of fill factor
  • Fig. 5 shows the distribution of current density
  • Fig. 6 shows the distribution of conversion efficiency.
  • the average open-circuit voltage in the plane is
  • the second metal oxide layer was formed continuously without returning the glass substrate to room temperature. That is, a container for the raw material liquid for the first oxide layer and a container for the raw material liquid for the second oxide layer are prepared, and a fine particle outlet and a fine particle introduction tube for introducing each raw material liquid into the Matsufur furnace are also provided. I prepared each. After the formation of the first oxide layer, the remaining fine particles of the raw material liquid were discharged from the Matsufur furnace, and the second metal oxide layer was continuously formed. The formation time of the second metal oxide layer was 25 seconds, and the formation time of the second metal oxide layer was 10 seconds. Otherwise, a solar cell was assembled in the same manner as in Example 1. The obtained solar cell was evaluated in the same manner as in Example 1. The average open-circuit voltage was 0.750 V, the average fill factor was 0.601, the average current density was 25.5 mA, and the average conversion efficiency was 11.5%.
  • Example 3 The better result than the solar cell of Example 1 was obtained because of the shape of the transparent electrode layer. It is considered that a uniform transparent electrode layer was obtained because there was no temperature change during the formation.
  • Example 3 The better result than the solar cell of Example 1 was obtained because of the shape of the transparent electrode layer. It is considered that a uniform transparent electrode layer was obtained because there was no temperature change during the formation.
  • impurities were removed from the vicinity of the surface of the metal oxide layer by forming a metal oxide layer containing impurities on a glass substrate as described below and then heating in a reducing atmosphere.
  • a tin oxide layer containing fluorine as an impurity was formed on a borosilicate glass substrate (600 mm ⁇ 271 mm ⁇ 3 mm) in the same manner as in the first metal oxide layer of Example 1.
  • the formation time of the tin oxide layer was set to 30 seconds, and the thickness of the layer was set to about 0.6 / 2 m.
  • the glass substrate having the tin oxide layer was placed on a metal conveyor belt moving in a Matsufur furnace.
  • the nitrogen atmosphere (reducing atmosphere) in the Matsufuru furnace was controlled to an oxygen concentration of 30 ppm or less.
  • the surface temperature of the glass substrate was maintained at 560 ° C for 5 minutes by the heat transfer from the conveyor belt heated by the heater and the radiant heat in the Matsufur furnace.
  • n-type compound semiconductor layer, a p-type compound semiconductor layer and an electrode were formed on the transparent electrode layer after the heat treatment in the same manner as in Example 1, and a solar cell was assembled.
  • Example 4 The same evaluation as in Example 1 was performed on the obtained solar cell. In plane The average open-circuit voltage was 0.745 V, the average fill factor was 0.610, the average current density was 25.6 mA, and the average conversion efficiency was 11.6%.
  • Example 4 In plane The average open-circuit voltage was 0.745 V, the average fill factor was 0.610, the average current density was 25.6 mA, and the average conversion efficiency was 11.6%.
  • a solar cell having a mixed crystal layer having a thickness of 10 ⁇ or more consisting of the constituent elements of the transparent electrode layer and the n-type compound semiconductor layer between the transparent electrode layer and the n-type compound semiconductor layer was manufactured as follows. .
  • a transparent electrode layer composed of a first metal oxide layer and a second metal oxide layer is formed on a glass substrate in the same manner as in Example 1, and tin, oxygen, force, and sulfur are formed on the transparent electrode layer.
  • a mixed crystal layer with a thickness of about 15 angstroms was formed.
  • Fine particles introduced into the Matsufuru furnace were brought into contact with the surface of a substrate having a transparent electrode layer placed on a metal conveyor belt moving in the Matsufuru furnace to form a mixed crystal layer.
  • the surface temperature of the substrate was kept at 420 ° C by the heat transfer from the conveyor belt heated by the heater and the radiant heat in the Matsufuru furnace.
  • a cadmium sulfide layer was formed on the mixed crystal layer in the same manner as in Example 1 except that the thickness was set to about 100 ⁇ . Then, the obtained sample was analyzed by Auger photoelectron spectroscopy.
  • Figure 7 shows the relationship between the obtained photoelectron intensity of each element and the depth from the surface of the sample. In FIG. 7, the zero point on the horizontal axis corresponds to the surface of the sulfur-doping layer.
  • the photoelectric intensity of the element is considered to be the maximum intensity of 1 Z 2.
  • the photoelectron intensity of sulfur and force dome is around 130 ⁇
  • the photoelectron intensity of tin and oxygen is around 1100 ⁇ , the maximum intensity being 1 Z 2. Therefore, it is considered that the portion having a thickness of about 10 to 20 angstroms when the depth from the sample surface is about 110 to 130 angstroms corresponds to the mixed crystal layer. Assuming that there is no mixed crystal layer, the points where the photoelectron intensity of each element is 1/2 should be aligned.
  • Figure 8 shows the relationship between the obtained photoelectron intensity and its energy.
  • Figure 8 shows peaks attributed to sulfur, cadmium, tin and oxygen. This analysis can detect information down to a depth of about 5 angstroms from the surface. Therefore, this result indicates that a mixed crystal layer having a thickness of at least 10 angstroms or more containing the above four elements is formed adjacent to the cadmium sulfide layer.
  • Figure 9 shows a cross-sectional photograph of the mixed crystal layer that exists between the tin oxide layer and the sulfur layer.
  • a mixed crystal layer having a thickness of about 10 angstroms can be observed at the arrow in FIG.
  • Fig. 10 shows the distribution of open-circuit voltage
  • Fig. 11 shows the distribution of fill factor
  • Fig. 12 shows the distribution of current density
  • Fig. 13 shows the distribution of conversion efficiency.
  • the average open-circuit voltage in the plane was 0.788 V
  • the average current density was 26.3 mA
  • the average fill factor was 0.648
  • the average conversion efficiency was 13.5%.
  • a solar cell having a mixed crystal layer having a thickness of 10 ⁇ or more consisting of the constituent elements of the transparent electrode layer and the n-type compound semiconductor layer between the transparent electrode layer and the n-type compound semiconductor layer was manufactured as follows. .
  • a second metal oxide layer having a lower impurity concentration than the first metal oxide layer and a mixed crystal layer were formed.
  • a tin oxide layer having a thickness of about 0.4 m similar to the first oxide layer of Example 1 was formed on a borosilicate glass substrate (600 mm ⁇ 271 mm ⁇ 3 mm).
  • a sulfurating layer was formed on the tin oxide layer.
  • a raw material solution obtained by dissolving 100 g of dimethyltin dichloride powder in 360 cc of water is placed in a container with a built-in ultrasonic oscillator at a frequency of 1 MHz, and the ultrasonic oscillator is operated.
  • the raw material liquid was atomized.
  • Fine particles of the atomized raw material liquid were ejected from the fine particle outlet together with nitrogen introduced from the carrier gas inlet pipe, and introduced into the Matsufuru furnace through the fine particle inlet pipe.
  • a raw material solution obtained by dissolving cadmium getyl dithiocarbamate in toluene was introduced into the Matsufuru furnace through another fine particle ejection port and a fine particle introduction tube in the same manner as the dimethyltin dichloride raw material liquid.
  • the fine particles introduced into the Matsufur furnace come into contact with the surface of the substrate having a tin oxide layer placed on a metal conveyor belt moving in the furnace, and are thermally decomposed to about 0.08 // m.
  • a sulphide dome layer having a thickness of 3 mm was formed. Twenty seconds after the cadmium cadmium bamate solution was introduced into the Matsufur furnace, the Matsufur furnace was evacuated.
  • the surface temperature of the substrate was maintained at 44 ° C by the heat transfer from the transport belt heated by the heater and the radiant heat in the Matsufur furnace. Thereafter, a P-type compound semiconductor layer and an electrode were formed in the same manner as in Example 1, and a solar cell was assembled.
  • the obtained solar cell was evaluated in the same manner as in Example 1.
  • the average in-plane open-circuit voltage was 0.802 V
  • the average fill factor was 0.60
  • the average current density was 26.5 mA
  • the average conversion efficiency was 14.0.
  • Comparative example A solar cell was fabricated and evaluated in the same manner as in Example 3, except that the heat treatment in the reducing atmosphere of the metal oxide layer was not performed.
  • Figure 14 shows the distribution of open-circuit voltage
  • Figure 15 shows the distribution of fill factor
  • Figure 16 shows the distribution of current density
  • Figure 17 shows the distribution of conversion efficiency.
  • the average open-ended electrons in the plane were 0.592 V
  • the average current density was 24.9 mA
  • the average fill factor was 0.529
  • the average conversion efficiency was 7.92%.
  • the solar cells of the examples are significantly improved in various performances as compared with the solar cells of the comparative examples. Further, it can be seen that the solar cells of the examples have little variation among cells.
  • a strong n-type compound semiconductor layer having high crystallinity can be formed on the transparent electrode layer. Therefore, the n-type compound semiconductor layer does not react with the p-type compound semiconductor layer and is not eroded. In addition, the electrical characteristics of the n-type compound semiconductor layer are improved. As a result, a solar cell having high current density and high conversion efficiency can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A compound semiconductor solar cell comprises a transparent substrate, a transparent electrode layer consisting of an impurity-containing metal oxide formed on the transparent substrate, an n-type compound semiconductor layer formed on the transparent electrode layer, and a p-type compound semiconductor layer formed on the n-type compound semiconductor layer. The transparent electrode layer has a high impurity concentration toward the transparent substrate and a low impurity concentration toward the n-type compound semiconductor layer.

Description

明 細 書 化合物半導体太陽電池およびその製造方法 技術分野  Description Compound semiconductor solar cell and method of manufacturing the same
本発明は、 化合物半導体太陽電池およびその製造方法に関する。 背景技術  The present invention relates to a compound semiconductor solar cell and a method for manufacturing the same. Background art
光エネルギーを電気エネルギーに変換する太陽電池は、 太陽光という 無尽蔵なエネルギーを利用できる。 太陽光は、 化石燃料と異なりクリ一 ンなエネルギー源である。 そこで、 太陽電池は、 各種光センサなどの電 子デバイスへの応用が盛んとなっている。 なかでも化合物半導体太陽電 池は、 吸収係数が大きいことから、 高い変換効率が期待できる。  Solar cells, which convert light energy into electrical energy, can use the inexhaustible energy of sunlight. Solar power is a clean energy source, unlike fossil fuels. Therefore, solar cells have been actively applied to electronic devices such as various optical sensors. Among them, compound semiconductor solar cells can be expected to have high conversion efficiency because of their large absorption coefficient.
化合物半導体太陽電池は、 一般に、 ガラス基板などの透明基板上に形 成された透明電極層、 その上に形成された n型化合物半導体層、 さらに その上に形成された P型化合物半導体層から構成されている。  A compound semiconductor solar cell generally includes a transparent electrode layer formed on a transparent substrate such as a glass substrate, an n-type compound semiconductor layer formed thereon, and a P-type compound semiconductor layer formed thereon. Have been.
前記透明電極層は、 一般に金属酸化物からなり、 導電性を上げるため にキャリアとしての不純物を含んでいる。 透明電極層中の不純物濃度は、 透明基板側では、 面抵抗の点から高く、 n型化合物半導体層側では、 キ ャリァの移動性の点から低いことが好ましい。  The transparent electrode layer is generally made of a metal oxide, and contains an impurity as a carrier for increasing conductivity. The impurity concentration in the transparent electrode layer is preferably high on the transparent substrate side from the viewpoint of sheet resistance, and low on the n-type compound semiconductor layer side from the viewpoint of carrier mobility.
しかし、 透明電極層は、 キャリアとしての不純物を含む原料を用いて、 蒸着などの方法で基板上に形成される。 そのため従来の透明電極層にお ける不純物濃度は、 一様になってしまうという問題がある。  However, the transparent electrode layer is formed on the substrate by a method such as evaporation using a raw material containing impurities as carriers. Therefore, there is a problem that the impurity concentration in the conventional transparent electrode layer becomes uniform.
透明電極層上に直接 n型化合物半導体層を形成する場合、 下地である 透明電極層の表面状態の影響を受けながら n型化合物半導体層が形成さ れるため、 n型化合物半導体層が無秩序に成長し、 その強度が弱くなる という問題もある。 強度の弱い n型化合物半導体層と p型化合物半導体 層との界面では、 両層の構成元素からなる混晶層が形成されやすい。 混 晶層は P n接合部の性能を低下させ、 太陽電池の開放電圧の低下を招く 発明の開示 When an n-type compound semiconductor layer is formed directly on a transparent electrode layer, the n-type compound semiconductor layer is formed under the influence of the surface condition of the underlying transparent electrode layer. And its strength decreases There is also a problem. At the interface between the weak n-type compound semiconductor layer and the p-type compound semiconductor layer, a mixed crystal layer composed of the constituent elements of both layers is likely to be formed. Disclosure of the invention that the mixed crystal layer lowers the performance of the Pn junction and lowers the open-circuit voltage of the solar cell.
本発明は、 透明基板、 前記透明基板上に形成された不純物を含む金属 酸化物からなる透明電極層、 前記透明電極層上に形成された n型化合物 半導体層および前記 n型化合物半導体層上に形成された p型化合物半導 体層からなる化合物半導体太陽電池であって、 前記透明電極層における 不純物濃度が、 前記透明基板側で高く、 前記 n型化合物半導体層側で低 いことを特徴とする化合物半導体太陽電池に関する。  The present invention provides a transparent substrate, a transparent electrode layer made of a metal oxide containing impurities formed on the transparent substrate, an n-type compound semiconductor layer formed on the transparent electrode layer, and a n-type compound semiconductor layer formed on the n-type compound semiconductor layer. A compound semiconductor solar cell comprising the formed p-type compound semiconductor layer, wherein the impurity concentration in the transparent electrode layer is high on the transparent substrate side and low on the n-type compound semiconductor layer side. To a compound semiconductor solar cell.
前記透明電極層は、 不純物としてハロゲン元素を含む錫酸化物からな ることが好ましい。  The transparent electrode layer is preferably made of tin oxide containing a halogen element as an impurity.
前記透明電極層は、 前記透明基板側の第 1金属酸化物層および前記 n 型化合物半導体層側の第 2金属酸化物層からなり、 前記第 1金属酸化物 層における不純物濃度が、 前記第 2金属酸化物層における不純物濃度よ り高いことが好ましい。  The transparent electrode layer includes a first metal oxide layer on the transparent substrate side and a second metal oxide layer on the n-type compound semiconductor layer side, and the first metal oxide layer has an impurity concentration of the second metal oxide layer. It is preferably higher than the impurity concentration in the metal oxide layer.
前記第 1金属酸化物層の厚さに対する前記第 2金属酸化物層の厚さの 比が 0 . 0 2〜 0 . 7であり、 前記第 1金属酸化物層における不純物濃 度に対する前記第 2金属酸化物層における不純物濃度の比が 0 . 5以下 であることが好ましい。  A ratio of the thickness of the second metal oxide layer to the thickness of the first metal oxide layer is 0.02 to 0.7, and the ratio of the second metal oxide layer to the impurity concentration in the first metal oxide layer is The ratio of the impurity concentration in the metal oxide layer is preferably 0.5 or less.
本発明の太陽電池は、 前記透明電極層と前記 n型化合物半導体層との 間に、 1 0オングストローム以上の厚さを有し、 前記透明電極層および 前記 n型化合物半導体層の構成元素からなる混晶層を有することが好ま しい。  The solar cell of the present invention has a thickness of 10 angstroms or more between the transparent electrode layer and the n-type compound semiconductor layer, and includes a constituent element of the transparent electrode layer and the n-type compound semiconductor layer. It is preferable to have a mixed crystal layer.
前記透明電極層は不純物としてハロゲン元素を含む錫酸化物からなり 前記 n型化合物半導体層は力ドミゥム硫化物からなり、 前記混晶層は錫、 カドミウム、 硫黄および酸素からなることが好ましい。 The transparent electrode layer is made of tin oxide containing a halogen element as an impurity. It is preferable that the n-type compound semiconductor layer is made of a metal sulfide, and the mixed crystal layer is made of tin, cadmium, sulfur, and oxygen.
前記混晶層は、 塩素を含有することが好ましい。  The mixed crystal layer preferably contains chlorine.
本発明は、 また、 前記のいずれかの化合物半導体太陽電池の製造方法 に関する。  The present invention also relates to a method for manufacturing a compound semiconductor solar cell according to any of the above.
すなわち、 本発明は、 透明基板上に不純物を含む金属酸化物層を形成 する工程、 前記金属酸化物層を還元雰囲気中で加熱することにより、 前 記金属酸化物層中の不純物濃度を前記透明基板側で高く、 表面側で低く する工程、 その後前記金属酸化物層上に n型化合物半導体層を形成する 工程を有する化合物半導体太陽電池の製造方法に関する。  That is, the present invention provides a step of forming a metal oxide layer containing impurities on a transparent substrate, and heating the metal oxide layer in a reducing atmosphere to thereby reduce the impurity concentration in the metal oxide layer. The present invention relates to a method for manufacturing a compound semiconductor solar cell, comprising: a step of increasing the thickness on the substrate side and decreasing the level on the surface side;
本発明は、 透明基板上に不純物を含む第 1金属酸化物層を形成するェ 程、 前記第 1金属酸化物層上に前記第 1金属酸化物層よりも低濃度の不 純物を含む第 2金属酸化物層を形成する工程を有する化合物半導体太陽 電池の製造方法に関する。  In the present invention, the step of forming the first metal oxide layer containing impurities on the transparent substrate may further include: forming a first metal oxide layer containing impurities at a lower concentration than the first metal oxide layer on the first metal oxide layer. The present invention relates to a method for manufacturing a compound semiconductor solar cell having a step of forming a two-metal oxide layer.
この場合、 前記第 1金属酸化物層の形成後、 前記第 2金属酸化物層の 形成前に、 前記透明基板の温度を一旦室温に下げることができる。 ただ し、 前記第 1金属酸化物層の形成後、 前記透明基板の温度を下げずに前 記第 2金属酸化物層を形成することが好ましい。  In this case, the temperature of the transparent substrate can be temporarily lowered to room temperature after the formation of the first metal oxide layer and before the formation of the second metal oxide layer. However, after the formation of the first metal oxide layer, the second metal oxide layer is preferably formed without lowering the temperature of the transparent substrate.
本発明は、 透明基板上に不純物を含む金属酸化物層を形成する工程、 および前記金属酸化物の原料を含む雰囲気中で前記金属酸化物層上に n 型化合物半導体層を形成する工程を有する化合物半導体太陽電池の製造 方法に関する。 後者の工程において、 前記金属酸化物層および前記 n型 化合物半導体層の間に両層の構成元素からなる混晶層が形成され、 かつ、 前記金属酸化物層上にその不純物濃度より低い不純物濃度を有する第 2 金属酸化物層が形成される。  The present invention includes a step of forming a metal oxide layer containing impurities on a transparent substrate, and a step of forming an n-type compound semiconductor layer on the metal oxide layer in an atmosphere containing a raw material of the metal oxide. The present invention relates to a method for manufacturing a compound semiconductor solar cell. In the latter step, a mixed crystal layer composed of constituent elements of both layers is formed between the metal oxide layer and the n-type compound semiconductor layer, and an impurity concentration lower than the impurity concentration on the metal oxide layer. Is formed.
この場合、 前記金属酸化物の原料と溶媒または分散媒とからなる液を 気化または霧化することにより、 前記雰囲気を得ることが好ましい。 前 記金属酸化物の原料は、 少なくとも錫または亜鉛を含むハロゲン化物か らなることが好ましい。 前記ハロゲン化物は、 二塩化ジメチル錫または メチル塩化亜鉛であることが好ましい。 In this case, a liquid comprising the metal oxide raw material and a solvent or a dispersion medium is used. It is preferable to obtain the atmosphere by vaporizing or atomizing. The raw material of the metal oxide is preferably made of a halide containing at least tin or zinc. The halide is preferably dimethyltin dichloride or methyl zinc chloride.
本発明は、 透明基板上に不純物を含む金属酸化物層を形成する工程、 および前記金属酸化物層上に前記金属酸化物の原料を塗布し、 その後前 記金属酸化物層上に n型化合物半導体層を形成する工程を有する化合物 半導体太陽電池の製造方法に関する。 後者の工程において、 前記と同様 に混晶層および第 2金属酸化物層が形成される。  The present invention provides a step of forming a metal oxide layer containing impurities on a transparent substrate, and applying the raw material of the metal oxide on the metal oxide layer, and then forming an n-type compound on the metal oxide layer. The present invention relates to a method for manufacturing a semiconductor solar cell having a step of forming a semiconductor layer. In the latter step, a mixed crystal layer and a second metal oxide layer are formed as described above.
この場合、 前記金属酸化物の原料は、 少なくとも錫または亜鉛を含む ハロゲン化物からなることが好ましい。  In this case, the raw material of the metal oxide is preferably made of a halide containing at least tin or zinc.
本発明は、 透明基板上に不純物を含む金属酸化物層を形成する工程、 前記金属酸化物の原料および n型化合物半導体の原料からなる混合物を 用いて前記金属酸化物層上に n型化合物半導体層を形成する工程を有す る化合物半導体太陽電池の製造方法に関する。 後者の工程において、 前 記と同様に混晶層および第 2金属酸化物層が形成される。  The present invention provides a step of forming a metal oxide layer containing impurities on a transparent substrate, using a mixture of the metal oxide raw material and the n-type compound semiconductor raw material on the n-type compound semiconductor on the metal oxide layer. The present invention relates to a method for manufacturing a compound semiconductor solar cell having a step of forming a layer. In the latter step, a mixed crystal layer and a second metal oxide layer are formed as described above.
この場合、 前記金属酸化物の原料が、 少なくとも錫または亜鉛を含む ハロゲン化物からなることが好ましい。 図面の簡単な説明  In this case, it is preferable that the raw material of the metal oxide is made of a halide containing at least tin or zinc. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1の硫化力ドミゥム層と接した透明電極層を S I M S により分析したときに得られた二次イオン強度と測定サイクルとの関係 を示す図である。  FIG. 1 is a diagram showing the relationship between the secondary ion intensity obtained when the transparent electrode layer in contact with the sulfur-doping layer of Example 1 was analyzed by SIMS and the measurement cycle.
図 2は、 実施例 1の透明電極層の断面を示す走査電子顕微鏡写真であ る。  FIG. 2 is a scanning electron micrograph showing a cross section of the transparent electrode layer of Example 1.
図 3は、 実施例 1で得られた太陽電池の開放電圧の分布を示す図であ る。 FIG. 3 is a diagram showing the distribution of the open circuit voltage of the solar cell obtained in Example 1. You.
図 4は、 実施例 1で得られた太陽電池の曲線因子の分布を示す図であ る。  FIG. 4 is a diagram showing the distribution of the fill factor of the solar cell obtained in Example 1.
図 5は、 実施例 1で得られた太陽電池の電流密度の分布を示す図であ る。  FIG. 5 is a diagram showing a current density distribution of the solar cell obtained in Example 1.
図 6は、 実施例 1で得られた太陽電池の変換効率の分布を示す図であ る。  FIG. 6 is a diagram showing the distribution of the conversion efficiency of the solar cell obtained in Example 1.
図 7は、 酸化錫層、 硫化カドミウム層および前記両層の間に介在する 混晶層からなる試料をォージェ電子分光法により分析したときに得られ た各元素の光電子強度と試料の表面からの深さとの関係を示す図である, 図 8は、 酸化錫層と硫化力ドミゥム層との間に介在する混晶層をォ一 ジェ電子分光法により分析したときに得られた光電子の強度とそのエネ ルギ一との関係を示す図である。  Figure 7 shows the photoelectron intensity of each element obtained when a sample consisting of a tin oxide layer, a cadmium sulfide layer, and a mixed crystal layer interposed between the two layers was analyzed by Auger electron spectroscopy and the photoelectron intensity from the sample surface. FIG. 8 shows the relationship between the depth and the photoelectron intensity obtained when the mixed crystal layer interposed between the tin oxide layer and the sulfur-doping layer was analyzed by Auger electron spectroscopy. FIG. 4 is a diagram showing a relationship with the energy.
図 9は、 実施例 4の酸化錫層と硫化力ドミゥム層との間に存在する混 晶層の断面を示す透過電子顕微鏡写真である。  FIG. 9 is a transmission electron micrograph showing a cross section of a mixed crystal layer existing between the tin oxide layer and the sulfur-doping layer in Example 4.
図 1 0は、 実施例 4で得られた太陽電池の開放電圧の分布を示す図で ある。  FIG. 10 is a diagram showing the distribution of the open-circuit voltage of the solar cell obtained in Example 4.
図 1 1は、 実施例 4で得られた太陽電池の曲線因子の分布を示す図で ある。  FIG. 11 is a diagram showing the distribution of the fill factor of the solar cell obtained in Example 4.
図 1 2は、 実施例 4で得られた太陽電池の電流密度の分布を示す図で ある。  FIG. 12 is a diagram showing a current density distribution of the solar cell obtained in Example 4.
図 1 3は、 実施例 4で得られた太陽電池の変換効率の分布を示す図で ある。  FIG. 13 is a diagram showing the distribution of the conversion efficiency of the solar cell obtained in Example 4.
図 1 4は、 比較例 1で得られた従来の太陽電池の開放電圧の分布を示 す図である。  FIG. 14 is a diagram showing the distribution of the open circuit voltage of the conventional solar cell obtained in Comparative Example 1.
図 1 5は、 比較例 1で得られた従来の太陽電池の曲線因子の分布を示 す図である。 Figure 15 shows the distribution of the fill factor of the conventional solar cell obtained in Comparative Example 1. FIG.
図 1 6は、 比較例 1で得られた従来の太陽電池の電流密度の分布を示 す図である。  FIG. 16 is a diagram showing a current density distribution of the conventional solar cell obtained in Comparative Example 1.
図 1 7は、 比較例 1で得られた従来の太陽電池の変換効率の分布を示 す図である。 発明を実施するための最良の形態  FIG. 17 is a diagram showing the distribution of the conversion efficiency of the conventional solar cell obtained in Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の化合物半導体太陽電池の透明電極層は、 透明性、 導電性など の点から、 S n〇、 S n〇2などの錫酸化物、 酸化インジウム錫、 酸化ィ ンジゥム、 Z n O、 C d l n24、 C d S n〇4、 C d〇、 The transparent electrode layer of a compound semiconductor solar cell of the present invention, transparency, from the viewpoint of conductivity, S N_〇, tin oxides such as S N_〇 2, indium tin oxide, I Njiumu, Z n O, C dln 24 , C d S n〇 4 , C d〇,
C d 2 S n O 2 , Z n 2S n〇 4、 I n 2 O 3— Z n Oなどの金属酸化物から なることが好ましい。 C d 2 S n O 2, Z n 2 S N_〇 4, I n 2 O 3 - is preferably made of a metal oxide such as Z n O.
これら金属酸化物のうちでは、 より高い光透過性および低い抵抗を有 する点から、 錫酸化物、 酸化インジウム、 酸化インジウム錫、 Z n O、 C d I n 204、 C d S n C などを用いることが好ましい。 Among these metal oxides, from the viewpoint of chromatic higher optical transparency and low resistance, tin oxide, indium oxide, indium tin oxide, Z n O, C d I n 2 0 4, C d S n C It is preferable to use such as.
前記透明電極層の厚さは、 光透過性の点から、 0. 1〜 1 m、 さら には 0. :!〜 0. 6 mであることが好ましい。  The thickness of the transparent electrode layer is 0.1 to 1 m from the viewpoint of light transmission, and more preferably, 0.:! It is preferably from 0.6 to 0.6 m.
前記透明電極層は不純物を含んでいる。 不純物は、 透明電極層のキヤ リア濃度を調整するために用いられる成分である。 不純物は、 金属酸化 物の種類に応じて選定される。  The transparent electrode layer contains an impurity. Impurities are components used to adjust the carrier concentration of the transparent electrode layer. The impurities are selected according to the type of metal oxide.
錫酸化物の不純物としては、 例えばフッ素、 塩素、 臭素などのハロゲ ン元素、 アンチモンが好ましい。 これらのうちでは、 活性化エネルギー が低い点から、 特にハロゲン元素、 なかでもフッ素が好ましい。 Z n〇 の不純物としては、 例えば 3族元素の I n、 A l 、 B、 F、 G aおよび 4族元素の S iが好ましい。  As the impurities of the tin oxide, for example, a halogen element such as fluorine, chlorine, and bromine, and antimony are preferable. Of these, halogen elements, especially fluorine, are preferred because of their low activation energy. As the impurity of Zn, for example, a group III element In, Al, B, F, Ga and a group 4 element Si are preferable.
より具体的には、 透明電極層は、 より高い光透過性および低い抵抗を 有する点から、 例えば酸化インジウム、 酸化インジウム錫、 ハロゲン元 素またはアンチモンを不純物として含む錫酸化物、 I n、 A 1 または S i を不純物として含む Z n Oからなることが好ましい。 特に、 最適な 電気特性を有する太陽電池が得られることから、 透明電極層は、 八ロゲ ン元素、 特にフッ素を不純物として含む錫酸化物であることが好ましい, 前記 n型化合物半導体層としては、 例えば硫化力ドミゥム、 More specifically, the transparent electrode layer has higher light transmission and lower resistance. In view of the above, it is preferable to use, for example, indium oxide, indium tin oxide, tin oxide containing halogen element or antimony as an impurity, or ZnO containing In, A 1, or Si as an impurity. In particular, in order to obtain a solar cell having optimal electric characteristics, the transparent electrode layer is preferably a tin oxide containing an octalogene element, particularly fluorine as an impurity. As the n-type compound semiconductor layer, For example, sulfurizing domes,
C d Z n Sなどが用いられる。 これらのうちでは、 変換効率の優れた太 陽電池が得られる点から、 特に硫化力 ドミゥムが好ましい。 CdZnS or the like is used. Among these, sulfur doping is particularly preferable in that a solar cell having excellent conversion efficiency can be obtained.
前記 P型化合物半導体層としては、 例えばテルル化力ドミゥム  As the P-type compound semiconductor layer, for example,
(C d T e ) 、 C u I n S e 2、 C u I n S 2 C u I n T e 2(C d T e), C u I n S e 2 , C u I n S 2 C u I n T e 2 ,
C u A 1 S e 2 , C u A l S 2、 C uA l T e 2、 C u G a S e 2C u A 1 S e 2, C u A l S 2, C uA l T e 2, C u G a S e 2,
C u G a S 2 , C u G a T e 2などの各種カルコパライ ト化合物半導体が 用いられる。 これらのうちでは、 太陽光の吸収に適したバンドギャップ を有する点から、 特にテルル化力ドミゥムが好ましい。 実施の形態 1 C u G a S 2, C u G a T various Karukoparai DOO compound semiconductor such as e 2 is used. Of these, tellurium dome is particularly preferable because it has a band gap suitable for absorbing sunlight. Embodiment 1
透明電極層が、 透明基板側の第 1金属酸化物層および n型化合物半導 体層側の第 2金属酸化物層からなり、 第 1金属酸化物層における不純物 濃度が、 第 2金属酸化物層における不純物濃度より高い化合物半導体太 陽電池について説明する。  The transparent electrode layer comprises a first metal oxide layer on the transparent substrate side and a second metal oxide layer on the n-type compound semiconductor layer side, and the impurity concentration in the first metal oxide layer is A compound semiconductor solar cell having a higher impurity concentration in the layer will be described.
n型化合物半導体層側の第 2金属酸化物層における不純物濃度を小さ くすると、 透明電極層におけるキャリアの移動性が高められ、 面抵抗が 小さくなる。 n型化合物半導体層への不純物の拡散も抑制され、 n型化 合物半導体層の強度低下を防ぐこともできる。  When the impurity concentration in the second metal oxide layer on the side of the n-type compound semiconductor layer is reduced, the mobility of carriers in the transparent electrode layer is increased, and the sheet resistance is reduced. Diffusion of impurities into the n-type compound semiconductor layer is also suppressed, and a decrease in the strength of the n-type compound semiconductor layer can be prevented.
第 1金属酸化物層と第 2金属酸化物層との間に、 さらに 1層以上の金 属酸化物層があってもよい。 ただし、 透明電極層を構成する金属酸化物 層の数は、 製造コストおよび光透過性の点から、 3層以下であることが 好ましく、 2層であることが最も好ましい。 One or more metal oxide layers may be further provided between the first metal oxide layer and the second metal oxide layer. However, the metal oxide that constitutes the transparent electrode layer The number of layers is preferably three or less, and most preferably two, from the viewpoint of manufacturing cost and light transmittance.
各金属酸化物層の厚さは、 製造工程上の理由および光透過性の点から、 0. :!〜 0. 6 mであることが好ましい。  The thickness of each metal oxide layer is preferably in the range of 0.3 :! to 0.6 m from the viewpoint of the manufacturing process and the light transmittance.
第 1金属酸化物層の厚さに対する第 2金属酸化物層の厚さの比は、 0. 0 2〜 0. 7、 さらには 0. 4〜 0. 6であることが好ましい。 こ の比が 0. 0 2未満になると、 キャリアの移動度が低下し、 0. 7を超 えると、 透明電極層の抵抗が増加する。  The ratio of the thickness of the second metal oxide layer to the thickness of the first metal oxide layer is preferably from 0.02 to 0.7, and more preferably from 0.4 to 0.6. If this ratio is less than 0.02, the mobility of carriers decreases, and if it exceeds 0.7, the resistance of the transparent electrode layer increases.
第 1金属酸化物層における不純物濃度は、 1 X 1 02fl〜 5 X 1 02° a t om s Z c m3であることが好ましい。 また、 第 2金属酸化物層にお ける不純物濃度は、 5 X 1 019〜 2. 5 X 1 02° a t o m s Z c m3であ ることが好ましい。 第 1金属酸化物層における不純物濃度が前記範囲を 外れると、 キャリア移動度が低下し、 第 2金属酸化物層における不純物 濃度が前記範囲を外れると、 透明電極層の抵抗が増加する。 The impurity concentration in the first metal oxide layer is preferably 1 × 10 2 fl to 5 × 10 2 ° atoms Z cm 3 . The impurity concentration in the second metal oxide layer is preferably 5 × 10 19 to 2.5 × 10 2 ° atoms Z cm 3 . When the impurity concentration in the first metal oxide layer is out of the above range, the carrier mobility decreases, and when the impurity concentration in the second metal oxide layer is out of the above range, the resistance of the transparent electrode layer increases.
第 1金属酸化物層における不純物濃度に対する第 2金属酸化物層にお ける不純物濃度の比は、 0. 5以下、 さらには 0. 1〜 0. 5であるこ とが好ましい。 この比が 0. 5を超えると、 キャリアの移動度が低下し、 0. 1未満になると、 透明電極層の抵抗が増加する。  The ratio of the impurity concentration in the second metal oxide layer to the impurity concentration in the first metal oxide layer is preferably 0.5 or less, more preferably 0.1 to 0.5. When the ratio exceeds 0.5, the mobility of carriers decreases, and when the ratio is less than 0.1, the resistance of the transparent electrode layer increases.
不純物濃度は、 2次イオン質量分析 (S I MS) により求めてもよい。  The impurity concentration may be determined by secondary ion mass spectrometry (SIMS).
S I MSによれば、 透明電極層の厚さ方向における元素の分布状態の変 化を知ることができる。 第 1金属酸化物層における不純物濃度に対する 第 2金属酸化物層における不純物濃度の比は、 例えば各金属酸化物層の 厚さ方向の中心における 2次イオン強度の比として求められる。 According to SIMS, it is possible to know a change in the distribution state of elements in the thickness direction of the transparent electrode layer. The ratio of the impurity concentration in the second metal oxide layer to the impurity concentration in the first metal oxide layer is obtained, for example, as the ratio of the secondary ion intensity at the center in the thickness direction of each metal oxide layer.
次に、 透明基板側の第 1金属酸化物層および n型化合物半導体層側の 第 2金属酸化物層からなる透明電極層の形成方法の一例を示す。  Next, an example of a method for forming a transparent electrode layer including the first metal oxide layer on the transparent substrate side and the second metal oxide layer on the n-type compound semiconductor layer side will be described.
( i ) 第 1金属酸化物層 金属酸化物の原料としては、 例えば二塩化ジメチル錫、 四塩化錫など のハロゲン化錫、 トリメチル塩化錫などのハロゲン化アルキル錫、 錫の カルボン酸塩、 錫の 3 —ジケトン錯体、 錫のアルコキシドを用いること ができる。 これらのうちでは、 二塩化ジメチル錫が最も好ましい。 (i) First metal oxide layer Raw materials for metal oxides include, for example, tin halides such as dimethyltin dichloride and tin tetrachloride, alkyltin halides such as trimethyltin chloride, tin carboxylates, tin 3-diketone complexes, and tin alkoxides. Can be used. Of these, dimethyltin dichloride is most preferred.
不純物の原料としては、 例えばフッ化アンモニゥム、 フッ化ナトリウ ムなどのフッ化物、 塩化アンチモンなどのアンチモン化合物を用いる。 水またはトルエンなどの溶媒または分散煤に金属酸化物と不純物の原 料を混合して原料液を調製する。  As a raw material for the impurities, for example, fluorides such as ammonium fluoride and sodium fluoride, and antimony compounds such as antimony chloride are used. A raw material liquid is prepared by mixing a metal oxide and a raw material for impurities with water or a solvent such as toluene or dispersed soot.
原料液中に超音波振動子を入れ、 これを作動させて原料液を霧化させ る。 霧化した原料液が加熱された透明基板の表面に接触するか、 または 近づく と、 溶媒や分散煤が蒸発して原料が熱分解する。 その結果、 透明 基板の表面に不純物を含む金属酸化物層が形成される。  The ultrasonic vibrator is put in the raw material liquid, and it is operated to atomize the raw material liquid. When the atomized raw material liquid comes into contact with or approaches the surface of the heated transparent substrate, the solvent and dispersed soot evaporate and the raw material is thermally decomposed. As a result, a metal oxide layer containing impurities is formed on the surface of the transparent substrate.
原料液を霧化する場合、 原料液をスプレーしてもよい。 また、 原料液 を霧化するかわりに原料液を加熱して気化させてもよい。  When atomizing the raw material liquid, the raw material liquid may be sprayed. Further, instead of atomizing the raw material liquid, the raw material liquid may be heated and vaporized.
透明基板の温度は、 霧化した原料液中の溶媒や分散媒が蒸発し、 金属 酸化物および不純物の原料が熱分解する温度に設定する必要がある。 従 つて、 透明基板の温度は原料の種類によって異なる。  The temperature of the transparent substrate needs to be set to a temperature at which the solvent or dispersion medium in the atomized raw material liquid evaporates and the raw material of metal oxides and impurities is thermally decomposed. Therefore, the temperature of the transparent substrate varies depending on the type of raw material.
二塩化ジメチル錫の場合、 透明基板の温度は、 3 0 0〜 6 0 0 °C、 好 ましくは 3 0 0〜 5 8 0 °Cに設定する。 3 0 0 °C未満の温度では、 二塩 化ジメチル錫の熱分解が遅くなり、 酸化錫層の形成に時間がかかり、 面 抵抗も増大する。 一方、 6 0 0 °Cを超える温度では、 透明基板が変形し たり、 酸化錫の結晶粒子径が大きくなつて、 不均一な厚さを有し、 表面 に大きな凹凸を有する入射光を錯乱しやすい酸化錫層となってしまう。 高い変換効率の太陽電池を得るためには、 第 1金属酸化物層の抵抗は In the case of dimethyltin dichloride, the temperature of the transparent substrate is set at 300 to 600 ° C, preferably at 300 to 580 ° C. At a temperature lower than 300 ° C., the thermal decomposition of dimethyltin dichloride is slowed down, it takes time to form a tin oxide layer, and the sheet resistance increases. On the other hand, when the temperature exceeds 600 ° C, the transparent substrate is deformed, or the crystal particle diameter of tin oxide becomes large, which disturbs incident light having an uneven thickness and large irregularities on the surface. It becomes an easy tin oxide layer. To obtain a solar cell with high conversion efficiency, the resistance of the first metal oxide layer must be
2 0 Ω /口以下であることが好ましい。 酸化錫層の厚さは、 0 . 1 〜 0 . 5 mが好ましい。 ( i i ) 第 2金属酸化物層 It is preferably 20 Ω / port or less. The thickness of the tin oxide layer is preferably from 0.1 to 0.5 m. (ii) Second metal oxide layer
高い変換効率の太陽電池を得るためには、 第 1金属酸化物層よりも高 い抵抗を有する第 2金属酸化物層を形成する。 例えば不純物を含まない 原料液を用いて、 前記と同様の方法で第 2金属酸化物層を形成すればよ い。 第 1金属酸化物層の不純物の一部が、 第 2金属酸化物層に拡散する ため、 第 2金属酸化物層も低濃度の不純物を含むことになる。 第 2層目 の酸化錫層の厚さは、 0 . 0 1〜 0 . 2 mが好ましい。  In order to obtain a solar cell with high conversion efficiency, a second metal oxide layer having a higher resistance than the first metal oxide layer is formed. For example, the second metal oxide layer may be formed in the same manner as described above using a raw material liquid containing no impurities. Since some of the impurities in the first metal oxide layer diffuse into the second metal oxide layer, the second metal oxide layer also contains low-concentration impurities. The thickness of the second tin oxide layer is preferably from 0.01 to 0.2 m.
3層以上の金属酸化物層からなる透明電極層を作製する場合、 原料液 中の不純物の量や金属酸化物層の厚さを制御して第 1金属酸化物層の形 成後、 同様の操作を必要な回数だけ繰り返し、 最後に第 2金属酸化物層 を形成すればよい。  When producing a transparent electrode layer composed of three or more metal oxide layers, the amount of impurities in the raw material liquid and the thickness of the metal oxide layer are controlled to form the first metal oxide layer, The operation may be repeated as many times as necessary, and finally the second metal oxide layer may be formed.
第 2金属酸化物層は、 第 1金属酸化物層の形成後、 個別に行ってもよ く、 連続して行ってもよい。  The second metal oxide layer may be formed separately or continuously after the formation of the first metal oxide layer.
具体的には、 金属酸化物層を形成するための装置や、 原料を装置に導 入するためのノズルが一つだけしかない場合、 第 1金属酸化物層の形成 後第 2金属酸化物層の原料を装置に導入する前に、 基板温度を一旦室温 に戻してもよい。 ただし、 基板温度を一旦室温に戻すと、 時間のロスが 多くなり、 透明基板に温度変化によるス トレスがかかることから、 透明 電極層の特性がばらつく ことがある。  Specifically, when there is only one device for forming the metal oxide layer or only one nozzle for introducing the raw material into the device, the first metal oxide layer is formed, and then the second metal oxide layer is formed. Before introducing the raw material into the apparatus, the substrate temperature may be once returned to room temperature. However, once the substrate temperature is returned to room temperature, time loss increases and stress is applied to the transparent substrate due to a temperature change, so that the characteristics of the transparent electrode layer may vary.
一方、 装置内に第 1金属酸化物層の原料を導入するノズルと第 2金属 酸化物層の原料を導入するノズルとを設置し、 原料が混ざらないように 段階的に連続して各金属基酸化物層を形成する場合、 基板温度を下げる 必要がないため、 時間のロスがなく、 透明基板にス トレスもかからない, 実施の形態 2 透明基板上に不純物を含む金属酸化物層を形成後、 金属酸化物層を還 元雰囲気中で加熱することにより、 不純物濃度が透明基板側で高く、 n 型化合物半導体層側で低い透明電極層を得る方法について説明する。 不純物を含む金属酸化物層は、 実施の形態 1の第 1金属酸化物層と同 様に形成すればよい。 そして、 金属酸化物層を還元雰囲気中で加熱して、 その表面付近の不純物を脱離させる。 On the other hand, a nozzle for introducing the raw material for the first metal oxide layer and a nozzle for introducing the raw material for the second metal oxide layer are installed in the apparatus, and each metal base is successively connected stepwise so that the raw materials are not mixed. When forming an oxide layer, there is no need to lower the substrate temperature, so there is no time loss and no stress is applied to the transparent substrate, Embodiment 2. After forming a metal oxide layer containing impurities on a transparent substrate, the metal oxide layer is heated in a reducing atmosphere, so that the impurity concentration is higher on the transparent substrate side and lower on the n-type compound semiconductor layer side. A method for obtaining the following will be described. The metal oxide layer containing impurities may be formed in a manner similar to that of the first metal oxide layer in Embodiment 1. Then, the metal oxide layer is heated in a reducing atmosphere to desorb impurities near its surface.
還元雰囲気としては、 酸素濃度 3 0 p p m以下の窒素雰囲気が好まし い。 酸素濃度が 3 0 p p mを超えると、 金属酸化物層から不純物が脱離 しない。 加熱温度は 5 0 0〜 6 0 0 °Cが好ましい。 5 0 0 °C未満では、 金属酸化物層から不純物が脱離せず、 6 0 0 °Cを超えると、 金属酸化物 の物性が変化したり、 結晶性が低下して金属酸化物の光透過性が低下し たり'する。 金属酸化物層からの不純物の脱離を効率よく行うには、 加熱 温度を 5 3 0 °C以上にすることがさらに好ましい。 実施の形態 3  As the reducing atmosphere, a nitrogen atmosphere having an oxygen concentration of 30 ppm or less is preferable. If the oxygen concentration exceeds 30 ppm, no impurities are eliminated from the metal oxide layer. The heating temperature is preferably from 500 to 600 ° C. If the temperature is lower than 500 ° C., impurities do not desorb from the metal oxide layer, and if the temperature exceeds 600 ° C., the physical properties of the metal oxide change or the crystallinity decreases, and the light transmission of the metal oxide decreases. Or decrease in sex. In order to efficiently remove impurities from the metal oxide layer, it is more preferable to set the heating temperature to 530 ° C. or higher. Embodiment 3
本実施の形態の太陽電池は、 実施の形態 1または 2と同様の透明電極 層を有し、 さらに透明電極層と n型化合物半導体層との間に透明電極層 および n型化合物半導体層の構成元素からなる混晶層 (m i xe d l aye r ) を 有する。 混晶層は、 透明電極層および n型化合物半導体層の構成元素か らなり、 かつ、 透明電極層とも n型化合物半導体層とも異なった物性を 有する。  The solar cell according to the present embodiment has the same transparent electrode layer as in Embodiment 1 or 2, and further includes a transparent electrode layer and an n-type compound semiconductor layer between the transparent electrode layer and the n-type compound semiconductor layer. It has a mixed crystal layer (mixed layer) composed of elements. The mixed crystal layer is composed of the constituent elements of the transparent electrode layer and the n-type compound semiconductor layer, and has different physical properties from both the transparent electrode layer and the n-type compound semiconductor layer.
混晶層がある場合、 n型化合物半導体層は、 特にその形成時において、 下地となる透明電極層の表面状態の影響を受けにくくなる。 そして、 元 素が秩序よく配列した強固な n型化合物半導体層が得られる。  When there is a mixed crystal layer, the n-type compound semiconductor layer is less susceptible to the surface condition of the underlying transparent electrode layer, particularly during its formation. Then, a strong n-type compound semiconductor layer in which elements are arranged in an orderly manner is obtained.
透明電極層が錫酸化物からなり、 n型化合物半導体層が硫化力ドミゥ ムからなる場合、 混晶層は、 例えば、 錫、 カドミウム、 硫黄および酸素 からなることが好ましい。 また、 混晶層は、 抵抗の増加を抑制するため に塩素を含有することが好ましい。 When the transparent electrode layer is made of tin oxide and the n-type compound semiconductor layer is made of sulfide dominate, the mixed crystal layer includes, for example, tin, cadmium, sulfur, and oxygen. It preferably comprises Further, the mixed crystal layer preferably contains chlorine in order to suppress an increase in resistance.
混晶層の厚さは 1 0〜 1 0 0オングストロームが好ましい。 混晶層の 厚さが 1 0オングストローム未満になると、 透明電極層の表面状態が n 型化合物半導体層に与える影響を充分に抑制できず、 1 0 0オングスト ロームを超えると、 太陽電池の面抵抗が高くなる。  The thickness of the mixed crystal layer is preferably 10 to 100 angstroms. When the thickness of the mixed crystal layer is less than 100 angstroms, the effect of the surface state of the transparent electrode layer on the n-type compound semiconductor layer cannot be sufficiently suppressed, and when the thickness exceeds 100 angstroms, the sheet resistance of the solar cell increases. Will be higher.
透明電極層は強固な表面を有するため、 透明電極層上に n型化合物半 導体層を形成しても混晶層は形成されない。 仮に混晶層が形成されたと しても、 その厚さは 1 0オングストローム未満であると考えられる。 一例として、 錫、 カドミウム、 硫黄および酸素からなる混晶層の作製 方法について述べる。  Since the transparent electrode layer has a strong surface, no mixed crystal layer is formed even if an n-type compound semiconductor layer is formed on the transparent electrode layer. Even if a mixed crystal layer is formed, its thickness is considered to be less than 10 angstroms. As an example, a method for producing a mixed crystal layer composed of tin, cadmium, sulfur and oxygen will be described.
まず、 錫、 カドミウムおよび硫黄ならびに溶媒または分散媒を含む原 料液を調製する。 原料液には、 例えば C d S n Sを含ませればよい。 ま た、 錫化合物と、 カドミウムおよび硫黄を含む化合物とを混合して原料 液を調製してもよい。  First, a stock solution containing tin, cadmium and sulfur and a solvent or a dispersion medium is prepared. The raw material liquid may contain, for example, CdSnS. Further, a raw material liquid may be prepared by mixing a tin compound and a compound containing cadmium and sulfur.
錫化合物としては、 二塩化ジメチル錫、 塩化トリメチル錫、 四塩化錫、 錫のカルボン酸塩、 錫の) 3—ジケトン錯体、 錫のアルコキシドなどが挙 げられる。  Examples of the tin compound include dimethyltin dichloride, trimethyltin chloride, tin tetrachloride, tin carboxylate, tin 3-diketone complex, and tin alkoxide.
力ドミゥムおよび硫黄を含む化合物としては、 ジェチルジチ才力ルバ ミン酸カドミウム、 ジメチルジチ才力ルバミン酸カドミウム、 ジブチル ジチォカルバミン酸カドミゥム、 ジェチルジチォキサントゲン酸力ドミ ゥムなどが挙げられる。  Examples of the compound containing force domium and sulfur include cadmium gentium rutile cadmium, cadmium dimethyl dithirubinate, cadmium dibutyl dithiocarbamate, and cadmium dibutyl dithioxanthate.
得られた原料液を用いて、 金属酸化物層と同様の方法で混晶層を形成 することができる。 例えば、 原料液中に超音波振動子を入れ、 これを作 動させて原料液を霧化させる。 霧化した原料液が加熱された透明電極層 の表面に接触するか、 または近づくと、 溶媒や分散媒が蒸発して原料が 熱分解する。 その結果、 透明電極層の表面に錫、 カ ドミウム、 硫黄およ び酸素からなる混晶層が形成される。 Using the obtained raw material liquid, a mixed crystal layer can be formed in the same manner as the metal oxide layer. For example, an ultrasonic vibrator is put in a raw material liquid, and this is operated to atomize the raw material liquid. When the atomized raw material liquid contacts or approaches the heated surface of the transparent electrode layer, the solvent or dispersion medium evaporates and the raw material is evaporated. Decomposes thermally. As a result, a mixed crystal layer composed of tin, cadmium, sulfur and oxygen is formed on the surface of the transparent electrode layer.
透明電極層の温度は、 例えば原料液が二塩化ジメチル錫を含む場合、 3 0 0〜 6 0 0 °C、 さらには 3 0 0〜 5 8 0 °Cが好ましい。 3 0 0 °C未 満になると、 二塩化ジメチル錫の熱分解が遅くなり、 混晶層が形成され ない。 一方、 6 0 0 °Cを超えると、 透明基板が変形したり、 混晶層の結 晶粒子径が大きくなって、 混晶層の表面に大きな凹凸ができてしまう。 その結果、 混晶層上に硫化カ ドミウム層を形成すると、 硫化カ ドミウム 層中の欠陥が多くなる。  The temperature of the transparent electrode layer is preferably from 300 to 600 ° C, more preferably from 300 to 580 ° C, for example, when the raw material liquid contains dimethyltin dichloride. Below 300 ° C, thermal decomposition of dimethyltin dichloride slows down and no mixed crystal layer is formed. On the other hand, when the temperature exceeds 600 ° C., the transparent substrate is deformed, the crystal grain size of the mixed crystal layer is increased, and large irregularities are formed on the surface of the mixed crystal layer. As a result, when a cadmium sulfide layer is formed on the mixed crystal layer, the number of defects in the cadmium sulfide layer increases.
混晶層は、 不純物を含む第 1金属酸化物層を形成した後、 第 2金属酸 化物層および n型化合物半導体層と同時に形成することもできる。 その ためには、 以下の 3通りの行程のいずれかを行えばよい。  The mixed crystal layer can also be formed simultaneously with the formation of the first metal oxide layer containing impurities and then with the formation of the second metal oxide layer and the n-type compound semiconductor layer. To do so, you can do one of the following three steps.
( i ) 第 2金属酸化物の原料を含む雰囲気中で第 1金属酸化物層上に n 型化合物半導体層を形成する行程。  (i) forming an n-type compound semiconductor layer on the first metal oxide layer in an atmosphere containing a raw material of the second metal oxide;
(ii) 第 1金属酸化物層上に第 2金属酸化物の原料を塗布し、 その後、 n型化合物半導体層を形成する行程。  (ii) a step of applying a raw material of a second metal oxide on the first metal oxide layer, and thereafter forming an n-type compound semiconductor layer.
(iii) 第 2金属酸化物の原料および n型化合物半導体の原料からなる混 合物を用いて第 1金属酸化物層上に n型化合物半導体層を形成する工程。 以下に、 n型化合物半導体層として C d S層を形成する場合を例にと つて行程 ( i ) 〜 (iii) について説明する。 行程 ( i )  (iii) a step of forming an n-type compound semiconductor layer on the first metal oxide layer using a mixture of a raw material of the second metal oxide and a raw material of the n-type compound semiconductor. Hereinafter, steps (i) to (iii) will be described by taking as an example a case where a CdS layer is formed as an n-type compound semiconductor layer. Itinerary (i)
第 2金属酸化物層の原料としては、 例えば八ロゲン化物を用いる。 ハ ロゲン化物としては、 例えば二塩化ジメチル錫、 四塩化錫、 トリメチル 塩化錫、 メチル塩化亜鉛、 フッ化アンモニゥム、 フッ化ナトリウムが挙 げられる。 これらのうちでは、 二塩化ジメチル錫、 トリメチル塩化錫、 メチル塩化亜鉛が好ましい。 第 2金属酸化物層の原料は、 水やトルエン などの溶媒または分散媒と混合して原料液 1 を調製する。 As a raw material of the second metal oxide layer, for example, octalogenide is used. Examples of the halide include dimethyltin dichloride, tin tetrachloride, trimethyltin chloride, methyl zinc chloride, ammonium fluoride, and sodium fluoride. Of these, dimethyltin dichloride, trimethyltin chloride, Methyl zinc chloride is preferred. A raw material liquid 1 is prepared by mixing a raw material for the second metal oxide layer with a solvent or a dispersion medium such as water or toluene.
C d Sの原料としては、 例えばジェチルジチ才力ルバミン酸力 ドミゥ ム、 ジメチルジチォカルバミン酸カ ドミウム、 ジブチルジチォカルバミ ン酸カ ドミゥム、 ジェチルジチォキサントゲン酸力 ドミゥムなどの力 ド ミゥムと硫黄を含む化合物を用いる。 C d Sの原料は水やトルエンなど の溶媒または分散煤と混合して原料液 2を調製する。  Raw materials for CdS include, for example, power dome such as getyl dithiol rubamic acid cadmium, dimethyl dithiocarbamate cadmium, dibutyl dithiocarbamate cadmium, and getyl dithioxanthate cadmium. A compound containing sulfur is used. The CdS raw material is mixed with a solvent such as water or toluene or a dispersed soot to prepare a raw material liquid 2.
まず、 原料液 1 を超音波振動子を用いて霧化させ、 次いで原料液 1 の 微粒子が充満した雰囲気下に透明電極層を有する加熱された透明基板を 導入する。 続いて、 原料液 2を超音波振動子を用いて霧化させ、 C d S 層を形成する。 原料液を霧化する場合、 原料液をスプレーしてもよい。 また、 原料液を加熱して気化させてもよい。  First, the raw material liquid 1 is atomized using an ultrasonic vibrator, and then a heated transparent substrate having a transparent electrode layer is introduced under an atmosphere filled with the fine particles of the raw material liquid 1. Subsequently, the raw material liquid 2 is atomized by using an ultrasonic vibrator to form a C d S layer. When atomizing the raw material liquid, the raw material liquid may be sprayed. Further, the raw material liquid may be heated to be vaporized.
透明基板の温度は、 原料の種類によって異なる。 例えば第 2金属酸化 物層の原料として二塩化ジメチル錫を用い、 C d S層の原料としてジェ チルジチォカルバミン酸カ ドミウムを用いる場合、 4 0 0〜 5 0 0 :、 さらには 4 3 0〜 5 0 0 °Cが好ましい。 基板温度が 4 0 0 °C未満になる と、 原料の熱分解が起こりにく く、 多くの未反応物が不純物として金属 酸化物層に混入する。 一方、 5 0 0 °Cを超えると、 金属酸化物が昇華し たり、 蒸発したり して、 第 2金属酸化物層が形成されなかったり、 層の 厚さが不均一になる。 行程 ( i i )  The temperature of the transparent substrate depends on the type of raw material. For example, when dimethyltin dichloride is used as a raw material for the second metal oxide layer and cadmium getyldithiocarbamate is used as a raw material for the CdS layer, it may be 400 to 500 :, or even 4300. ~ 500 ° C is preferred. When the substrate temperature is lower than 400 ° C., thermal decomposition of the raw material is unlikely to occur, and many unreacted substances are mixed as impurities into the metal oxide layer. On the other hand, when the temperature exceeds 500 ° C., the metal oxide sublimes or evaporates, so that the second metal oxide layer is not formed or the thickness of the layer becomes uneven. Travel (i i)
第 1金属酸化物層上に第 2金属酸化物の原料を塗布する方法としては. 第 1金属酸化物層を有する透明基板を第 2金属酸化物の原料液中に浸漬 する方法、 第 1金属酸化物層を有する透明基板の表面に第 2金属酸化物 の原料液を印刷する方法、 例えばスクリーン印刷、 第 1金属酸化物層上 に第 2金属酸化物の原料液をスプレーする方法、 原料液を霧化して第 1 金属酸化物層を有する透明基板の表面に付着させる方法などがある。 次いで、 第 2金属酸化物の原料液が塗布された後の第 1金属酸化物層 上に C d S層を形成する。 C d S層の形成は、 行程 ( i ) と同様に行え ばよい。 行程 (iii) As a method of applying a raw material of the second metal oxide on the first metal oxide layer, a method of immersing a transparent substrate having the first metal oxide layer in a raw material liquid of the second metal oxide, A method of printing a second metal oxide raw material liquid on the surface of a transparent substrate having an oxide layer, for example, screen printing, on the first metal oxide layer In addition, there are a method of spraying a raw material liquid of the second metal oxide, a method of atomizing the raw material liquid and attaching it to the surface of the transparent substrate having the first metal oxide layer. Next, a CdS layer is formed on the first metal oxide layer after the material liquid of the second metal oxide is applied. The C d S layer may be formed in the same manner as in the step (i). Process (iii)
まず、 行程 ( i ) で用いたのと同様の第 2金属酸化物層の原料および C d S層の原料を含む原料液を調製する。 この原料液としては、 例えば 行程 ( i ) の原料液 1および原料液 2の混合物を用いることができる。 第 2金属酸化物層の原料と、 C d S層の原料とは、 例えば第 2金属酸化 物層の金属元素と C d S層の金属元素とのモル比が 1 : 1 となるように 混合すればよい。  First, a raw material liquid containing the same raw material for the second metal oxide layer and the raw material for the CdS layer as used in step (i) is prepared. As this raw material liquid, for example, a mixture of the raw material liquid 1 and the raw material liquid 2 in step (i) can be used. The raw material of the second metal oxide layer and the raw material of the CdS layer are mixed, for example, such that the molar ratio between the metal element of the second metal oxide layer and the metal element of the CdS layer is 1: 1. do it.
C d S層の形成は、 第 2金属酸化物層の原料が含まれている原料液を 用いること以外、 行程 ( i ) と同様に行えばよい。  The formation of the CdS layer may be performed in the same manner as in the step (i) except that a raw material liquid containing the raw material of the second metal oxide layer is used.
次に、 本発明の太陽電池について実施例に基づいて具体的に説明する, 実施例 1  Next, the solar cell of the present invention will be specifically described based on Examples, Example 1
透明電極層が、 透明基板側の高い不純物濃度を有する第 1金属酸化物 層および n型化合物半導体層側の低い不純物濃度を有する第 2金属酸化 物層からなる太陽電池を作製した。  A solar cell was fabricated in which the transparent electrode layer was composed of a first metal oxide layer having a high impurity concentration on the transparent substrate side and a second metal oxide layer having a low impurity concentration on the n-type compound semiconductor layer side.
( i ) 第 1金属酸化物層の形成  (i) Formation of the first metal oxide layer
硼珪酸ガラス基板 ( 6 0 0 mm X 2 7 1 mm x 3 mm) 上に不純物と してフッ素を含む酸化錫の層 (厚さ約 0. 4 /xm) を形成した。  A layer of tin oxide containing fluorine as an impurity (about 0.4 / xm) was formed on a borosilicate glass substrate (600 mm x 271 mm x 3 mm).
具体的には、 二塩化ジメチル錫粉末 1 0 0 gおよびフッ化アンモニゥ ム粉末 4 gを 3 6 0 c cの水に溶解させた原料液を、 周波数 1 MH zの 超音波振動子を内蔵した容器に入れ、 超音波振動子を稼動させ、 原料液 を霧化させた。 そして、 霧化した原料液の微粒子をキャリアガス導入管 から導入した空気とともに微粒子噴出口から噴出させ、 微粒子導入管を 通してマツフル炉内に導入し、 炉内を移動する金属製搬送ベルトに載置 されたガラス基板の表面に接触させた。 Specifically, a raw material solution obtained by dissolving 100 g of dimethyltin dichloride powder and 4 g of ammonium fluoride powder in 360 cc of water was prepared at a frequency of 1 MHz. The ultrasonic vibrator was put into a container with a built-in ultrasonic vibrator, and the ultrasonic vibrator was operated to atomize the raw material liquid. Then, the fine particles of the atomized raw material liquid are jetted out of the fine particle jet port together with the air introduced from the carrier gas inlet pipe, introduced into the Matsufur furnace through the fine particle inlet pipe, and placed on the metal conveyor belt moving inside the furnace. It was brought into contact with the surface of the placed glass substrate.
ガラス基板の表面温度は、 ヒー夕で加熱された搬送ベルトからの伝熱 とマツフル炉内の輻射熱により 5 6 0 °Cに保持した。 原料液の微粒子が マッフル炉内に導入されてから 2 5秒でフッ素を含有する酸化錫層がガ ラス基板上に形成された。 利用されなかった原料液の微粒子等は、 排出 管を通して排出した。  The surface temperature of the glass substrate was kept at 560 ° C by heat transfer from the conveyor belt heated by the heater and radiant heat in the Matsufur furnace. Twenty-five seconds after the fine particles of the raw material liquid were introduced into the muffle furnace, a fluorine-containing tin oxide layer was formed on the glass substrate. Unused fine particles of the raw material liquid were discharged through a discharge pipe.
( i i ) 第 2金属酸化物層の形成  (ii) Formation of second metal oxide layer
第 1金属酸化物層の形成後、 ガラス基板を一旦常温に戻し、 容器内の 原料液を第 2金属酸化物層の原料液に入れ替えた。 第 2金属酸化物層の 原料液としては、 二塩化ジメチル錫粉末 1 0 0 gを 3 6 0 c cの水に溶 解させた原料液を用いた。 すなわち、 第 2金属酸化物層の原料液にはフ ッ素が含まれていない。  After the formation of the first metal oxide layer, the glass substrate was once returned to normal temperature, and the raw material liquid in the container was replaced with the raw material liquid for the second metal oxide layer. As the raw material liquid for the second metal oxide layer, a raw material liquid in which 100 g of dimethyltin dichloride powder was dissolved in 360 cc of water was used. That is, the raw material liquid for the second metal oxide layer does not contain fluorine.
第 1金属酸化物層と同様に原料液の微粒子をマツフル炉内に導入した, 第 1金属酸化物層の表面温度は、 前記と同様にして 5 6 0 °Cに保持した, 原料液の微粒子がマツフル炉内に導入されてから 1 0秒で厚さ約 0 . 2 / mの酸化錫層が第 1金属酸化物層上に形成された。  Fine particles of the raw material liquid were introduced into the Matsufuru furnace in the same manner as the first metal oxide layer, and the surface temperature of the first metal oxide layer was maintained at 560 ° C in the same manner as described above. Was introduced into the Matsufur furnace, and a tin oxide layer having a thickness of about 0.2 / m was formed on the first metal oxide layer in 10 seconds.
( i i i ) n型化合物半導体層の形成  (ii) Formation of n-type compound semiconductor layer
第 2金属酸化物層上には硫化力 ドミゥム層を形成した。 具体的には、 ジェチルジチ才力ルバミン酸カ ドミゥムを トルエンに溶解させた原料液 を周波数 1 M H z の超音波振動子を内蔵した容器に入れ、 超音波振動子 を稼動させて原料液を霧化させた。 そして、 霧化した原料液の微粒子を キヤリァガス導入管より導入した窒素とともに微粒子噴出口から噴出さ せ、 微粒子導入管を通してマツフル炉内に導入し、 炉内を移動する金属 製搬送ベルトに載置された酸化錫層を有する基板の表面に接触させた。 酸化錫層の表面温度は、 前記と同様にして 4 5 0 °Cに保持した。 原料 液の微粒子がマッフル炉内に導入されてから 3 0秒で厚さ 0 . 0 8 m 程度の硫化力 ドミゥム層が酸化錫層上に形成された。 On the second metal oxide layer, a sulfide sulfur layer was formed. Specifically, a raw material solution prepared by dissolving cadmium rubumic acid, a cadmium gentil, in toluene is placed in a container with a built-in ultrasonic vibrator at a frequency of 1 MHz, and the ultrasonic vibrator is operated to atomize the raw material liquid. I let it. The fine particles of the atomized raw material liquid are ejected from the fine particle ejection port together with the nitrogen introduced from the carrier gas introduction pipe. Then, it was introduced into a Matsufuru furnace through a fine particle introduction tube, and was brought into contact with the surface of a substrate having a tin oxide layer placed on a metal conveyor belt moving in the furnace. The surface temperature of the tin oxide layer was maintained at 450 ° C. in the same manner as described above. In 30 seconds after the fine particles of the raw material liquid were introduced into the muffle furnace, a sulfurating force layer with a thickness of about 0.08 m was formed on the tin oxide layer.
( i v) p型化合物半導体層の形成  (iv) Formation of p-type compound semiconductor layer
硫化力 ドミゥム層上にはテルル化力 ドミゥム層を形成した。 具体的に は、 テルル化カ ドミウム粉末をのせた炭素製支持体上に、 厚さ 3 m mの ガラス製スぺーサを介して硫化カ ドミゥム層を有する基板を載置し、 テ ルル化カ ドミウム粉末と硫化カ ドミウム層とを対向させた。 そして、 1 T o r rの窒素雰囲気下で、 基板温度を 5 5 0 ° (:、 支持体上のテルル化 カ ドミウム粉末の温度を 7 5 0 °Cに保持した。 4分後、 硫化力 ドミゥム 層上に厚さ 5 mのテルル化力 ドミゥム層が形成された。  Sulfurizing force A tellurium dominating layer was formed on the dominating layer. Specifically, a substrate having a cadmium sulfide layer is placed on a carbon support on which cadmium telluride powder is placed via a glass spacer having a thickness of 3 mm. The powder faced the cadmium sulfide layer. Then, under a nitrogen atmosphere of 1 Torr, the temperature of the substrate was kept at 550 ° C (: the temperature of the cadmium telluride powder on the support was kept at 750 ° C. After 4 minutes, the sulfuric acid layer was formed. A 5 m thick telluride layer was formed on top.
( V ) 太陽電池の組立  (V) Solar cell assembly
テルル化カ ドミウム層上に炭素電極を形成した。 次いで、 炭素電極と 残しておいた透明電極層の露出部に、 それぞれ集電極としての銀電極を 形成し、 硫化力 ドミゥム /テルル化力 ドミゥム太陽電池を組み立てた。  A carbon electrode was formed on the cadmium telluride layer. Next, silver electrodes were formed as collector electrodes on the exposed portions of the carbon electrode and the remaining transparent electrode layer, respectively, to assemble a sulphide-dominium / tellurium-dominium-dominium solar cell.
( v i ) 透明電極層の分析  (vi) Analysis of transparent electrode layer
[ X P Sによる透明電極層の分析]  [Analysis of transparent electrode layer by XPS]
X P S ( X線光電子分光分析法) により、 第 1金属酸化物層と第 2金 属酸化物層からなる透明電極層を分析した。 分析の結果得られた第 1金 属酸化物層 (第 1層目) および第 2金属酸化物層 (第 2層目) の表面お よび 1 0 0オングス トロームの深さにおける元素の組成を表 1 に示す。 表 1 中の数値は原子%である。 表 1 The transparent electrode layer composed of the first metal oxide layer and the second metal oxide layer was analyzed by XPS (X-ray photoelectron spectroscopy). The elemental compositions at the surface of the first metal oxide layer (first layer) and the second metal oxide layer (second layer) and at a depth of 100 angstroms are shown. Figure 1 shows. The values in Table 1 are in atomic%. table 1
Figure imgf000020_0001
表 1は、 第 2酸化物層にはフッ素が含まれていないことを示している, この結果は、 第 2酸化物層が高抵抗であることを示している。
Figure imgf000020_0001
Table 1 shows that the second oxide layer does not contain fluorine. The results show that the second oxide layer has high resistance.
[S I MSによる硫化力ドミゥム層および透明電極層の分析]  [Simulation of Sulfidation Dummy Layer and Transparent Electrode Layer by SIMS]
S I MS (二次イオン質量分析法) により、 硫化力ドミゥム層および 透明電極層を分析した。 二次イオン強度と測定サイクルとの関係を図 1 に示す。 横軸の測定サイクルは試料の表面からの深さに対応する。 図 1 において、 3 0サイクル付近が硫化力ドミゥム層と酸化錫層との界面に 対応する。  The sulfur sulfide layer and the transparent electrode layer were analyzed by SIMS (secondary ion mass spectrometry). Figure 1 shows the relationship between the secondary ion intensity and the measurement cycle. The measurement cycle on the horizontal axis corresponds to the depth from the surface of the sample. In FIG. 1, the vicinity of the 30th cycle corresponds to the interface between the sulfuric acid layer and the tin oxide layer.
図 1は、 第 2金属酸化物層や硫化カドミウム層が、 第 1金属酸化物層 から拡散してきたフッ素を含有していることを示している。 X P Sでは 約 0. 1 %以下の存在比を有する元素の検出はできないため、 このよう な低濃度のフッ素は検出できなかったものと考えられる。 一方、 S I M Sは p pmから p p bレベルの元素の検出が可能である。  FIG. 1 shows that the second metal oxide layer and the cadmium sulfide layer contain fluorine diffused from the first metal oxide layer. It is probable that such low-concentration fluorine could not be detected because XPS could not detect elements with an abundance of less than about 0.1%. On the other hand, S IMS can detect elements at the level of p pm to p p b.
図 1において、 第 2金属酸化物層の厚さ方向の中心におけるフッ素の 二次イオン強度 (フッ素濃度に対応する) が約 1 2 0 0カウントであり , 第 1金属酸化物層の厚さ方向の中心におけるフッ素の二次イオン強度が 約 2 4 0 0カウントであり、 強度比は約 1 : 2である。 このようにフッ 素濃度の低い第 2金属酸化物層は、 フッ素の硫化力 ドミゥム層中への拡 散を抑制し、 硫化力ドミゥム層の強度を維持する機能を有する。  In FIG. 1, the secondary ion intensity (corresponding to the fluorine concentration) of fluorine at the center in the thickness direction of the second metal oxide layer is about 1200 counts, and the thickness direction of the first metal oxide layer is The secondary ion intensity of fluorine at the center of is about 2400 counts, and the intensity ratio is about 1: 2. Thus, the second metal oxide layer having a low fluorine concentration has a function of suppressing the diffusion of fluorine into the sulfur-doping layer and maintaining the strength of the sulfur-doping layer.
[走査電子顕微鏡による透明電極層の分析] 図 2に第 1金属酸化物層と第 2金属酸化物層からなる透明電極層の断 面の走査電子顕微鏡写真を示す。 図 2において、 厚さ約 0. 4 /zmの第 1層目の酸化錫層、 および厚さ約 0. 2 / mの第 2層目の酸化錫層から なる厚さ約 0. 6 /xmの透明電極層が観察できる。 [Analysis of transparent electrode layer by scanning electron microscope] FIG. 2 shows a scanning electron micrograph of a cross section of the transparent electrode layer composed of the first metal oxide layer and the second metal oxide layer. In FIG. 2, the thickness of the first tin oxide layer of about 0.4 / zm and the thickness of the second tin oxide layer of about 0.2 / m are about 0.6 / xm. Can be observed.
(vii) 太陽電池の評価  (vii) Evaluation of solar cells
ソーラーシミュレー夕を用いて得られた太陽電池の開放電圧、 電流密 度、 曲線因子および変換効率を測定した。 サブモジュールのサイズは 6 0 0 mmX 2 7 1 mmであり、 1 8 0セル ( 3 X 6 0 ) を有する。 図 3は開放電圧の分布、 図 4は曲線因子の分布、 図 5は電流密度の分 布、 図 6は変換効率の分布をそれぞれ示す。 面内の平均開放電圧は  The open-circuit voltage, current density, fill factor, and conversion efficiency of the obtained solar cells were measured using a solar simulator. The size of the sub-module is 600 mm X 27 1 mm and has 180 cells (3 X 60). Fig. 3 shows the distribution of open circuit voltage, Fig. 4 shows the distribution of fill factor, Fig. 5 shows the distribution of current density, and Fig. 6 shows the distribution of conversion efficiency. The average open-circuit voltage in the plane is
0. 7 2 0 V、 平均の曲線因子は 0. 5 9 3、 平均電流密度は 2 5. 7 mA、 平均変換効率は 1 1. 0 %であった。 実施例 2  0.720 V, the average fill factor was 0.593, the average current density was 25.7 mA, and the average conversion efficiency was 11.0%. Example 2
第 1金属酸化物層の形成後、 ガラス基板を常温に戻さずに連続して第 2金属酸化物層を形成した。 すなわち、 第 1酸化物層の原料液を入れる 容器と第 2酸化物層の原料液を入れる容器をそれぞれ準備し、 各原料液 をマツフル炉内へ導入するための微粒子噴出口および微粒子導入管もそ れぞれ準備した。 そして、 第 1酸化物層の形成後、 残った原料液の微粒 子をマツフル炉内から排出し、 続けて第 2金属酸化物層の形成を行った, 第 1金属酸化物層の形成時間は 2 5秒、 第 2金属酸化物層の形成時間は 1 0秒とした。 その他は、 実施例 1 と同様にして太陽電池を組み立てた, 得られた太陽電池について、 実施例 1 と同様の評価を行った。 平均開 放電圧は 0. 7 5 0 V、 平均の曲線因子は 0. 6 0 1、 平均電流密度は 2 5. 5 mA、 平均変換効率は 1 1. 5 %であった。  After the formation of the first metal oxide layer, the second metal oxide layer was formed continuously without returning the glass substrate to room temperature. That is, a container for the raw material liquid for the first oxide layer and a container for the raw material liquid for the second oxide layer are prepared, and a fine particle outlet and a fine particle introduction tube for introducing each raw material liquid into the Matsufur furnace are also provided. I prepared each. After the formation of the first oxide layer, the remaining fine particles of the raw material liquid were discharged from the Matsufur furnace, and the second metal oxide layer was continuously formed. The formation time of the second metal oxide layer was 25 seconds, and the formation time of the second metal oxide layer was 10 seconds. Otherwise, a solar cell was assembled in the same manner as in Example 1. The obtained solar cell was evaluated in the same manner as in Example 1. The average open-circuit voltage was 0.750 V, the average fill factor was 0.601, the average current density was 25.5 mA, and the average conversion efficiency was 11.5%.
実施例 1の太陽電池より良好な結果が得られたのは、 透明電極層の形 成時に温度変化がなかったため、 均質な透明電極層が得られたことによ ると考えられる。 実施例 3 The better result than the solar cell of Example 1 was obtained because of the shape of the transparent electrode layer. It is considered that a uniform transparent electrode layer was obtained because there was no temperature change during the formation. Example 3
本実施例では、 以下のようにガラス基板上に不純物を含む金属酸化物 層を形成後、 還元雰囲気中で加熱することにより、 金属酸化物層の表面 付近から不純物を離脱させた。  In this example, impurities were removed from the vicinity of the surface of the metal oxide layer by forming a metal oxide layer containing impurities on a glass substrate as described below and then heating in a reducing atmosphere.
硼珪酸ガラス基板 ( 6 0 0 m m X 2 7 1 m m X 3 m m ) 上に不純物と してフッ素を含む酸化錫層を実施例 1 の第 1金属酸化物層と同様にして 形成した。 ただし、 酸化錫層の形成時間は 3 0秒とし、 層の厚さを約 0 . 6 /2 mとした。  A tin oxide layer containing fluorine as an impurity was formed on a borosilicate glass substrate (600 mm × 271 mm × 3 mm) in the same manner as in the first metal oxide layer of Example 1. However, the formation time of the tin oxide layer was set to 30 seconds, and the thickness of the layer was set to about 0.6 / 2 m.
次いで、 酸化錫層を有するガラス基板をマツフル炉内を移動する金属 製搬送ベルトに載置した。 マツフル炉内は酸素濃度を 3 0 p p m以下に 制御した窒素雰囲気 (還元雰囲気) とした。 ガラス基板の表面温度は、 ヒー夕により加熱された搬送ベル卜からの伝熱とマツフル炉内の輻射熱 により 5 6 0 °Cに 5分間保持した。  Next, the glass substrate having the tin oxide layer was placed on a metal conveyor belt moving in a Matsufur furnace. The nitrogen atmosphere (reducing atmosphere) in the Matsufuru furnace was controlled to an oxygen concentration of 30 ppm or less. The surface temperature of the glass substrate was maintained at 560 ° C for 5 minutes by the heat transfer from the conveyor belt heated by the heater and the radiant heat in the Matsufur furnace.
その後、 熱処理後の透明電極層上に、 実施例 1 と同様にして n型化合 物半導体層、 p型化合物半導体層および電極を形成し、 太陽電池を組み 立てた。  Thereafter, an n-type compound semiconductor layer, a p-type compound semiconductor layer and an electrode were formed on the transparent electrode layer after the heat treatment in the same manner as in Example 1, and a solar cell was assembled.
X P Sにより、 透明電極層の分析を行ったところ、 n型化合物半導体 層付近の透明電極層では不純物であるフッ素は検出されなかった。  When the transparent electrode layer was analyzed by XPS, fluorine as an impurity was not detected in the transparent electrode layer near the n-type compound semiconductor layer.
このことから、 不純物を含む透明電極層を還元雰囲気中で加熱するこ とにより、 透明電極層の表面付近のフッ素が除去され、 透明基板側で不 純物濃度が高く、 n型化合物半導体層側で不純物濃度が低い透明電極層 を形成できることがわかる。  Therefore, by heating the transparent electrode layer containing impurities in a reducing atmosphere, fluorine near the surface of the transparent electrode layer is removed, the impurity concentration is high on the transparent substrate side, and the n-type compound semiconductor layer side Thus, it can be seen that a transparent electrode layer having a low impurity concentration can be formed.
得られた太陽電池について、 実施例 1 と同様の評価を行った。 面内の 平均開放電圧は 0. 7 4 5 V、 平均の曲線因子は 0 · 6 1 0、 平均電流 密度は 2 5. 6 m A、 平均変換効率は 1 1. 6 %であった。 実施例 4 The same evaluation as in Example 1 was performed on the obtained solar cell. In plane The average open-circuit voltage was 0.745 V, the average fill factor was 0.610, the average current density was 25.6 mA, and the average conversion efficiency was 11.6%. Example 4
( i ) 太陽電池の作製  (i) Production of solar cell
透明電極層と n型化合物半導体層との間に透明電極層および n型化合 物半導体層の構成元素からなる厚さ 1 0オングス トローム以上の混晶層 を有する太陽電池を以下のように作製した。  A solar cell having a mixed crystal layer having a thickness of 10 Å or more consisting of the constituent elements of the transparent electrode layer and the n-type compound semiconductor layer between the transparent electrode layer and the n-type compound semiconductor layer was manufactured as follows. .
実施例 1 と同様にしてガラス基板上に第 1金属酸化物層と第 2金属酸 化物層からなる透明電極層を形成し、 その透明電極層上に、 錫、 酸素、 力 ドミゥムおよび硫黄からなる厚さ約 1 5オングス トロ一ムの混晶層を 形成した。  A transparent electrode layer composed of a first metal oxide layer and a second metal oxide layer is formed on a glass substrate in the same manner as in Example 1, and tin, oxygen, force, and sulfur are formed on the transparent electrode layer. A mixed crystal layer with a thickness of about 15 angstroms was formed.
具体的には、 二塩化ジメチル錫 1 0 0 gと、 ジェチルジチ才力ルバミ ン酸カ ドミウム 1 0 0 gとを l O O O c cのトルエンに溶解させた原料 液を周波数 1 MH zの超音波振動子を内蔵した容器に入れ、 超音波振動 子を稼動させ、 原料液を霧化させた。 霧化した原料液の微粒子をキヤリ ァガス導入管から導入した空気とともに微粒子噴出口から噴出させ、 微 粒子導入管を通してマッフル炉内に導入した。 マツフル炉内に導入され た微粒子をマツフル炉内を移動する金属製搬送ベルトに載置した透明電 極層を有する基板の表面に接触させて混晶層を形成した。 基板の表面温 度は、 ヒータにより加熱された搬送ベルトからの伝熱とマツフル炉内の 輻射熱により 4 2 0 °Cに保持した。 原料液の微粒子をマツフル炉内に導 入してから 1 0秒後にマツフル炉内を排気した。  Specifically, 100 g of dimethyltin dichloride and 100 g of cadmium rubamate, getylditi, are dissolved in toluene of l cc cc, and an ultrasonic vibrator with a frequency of 1 MHz is used. Was put into a container with a built-in, the ultrasonic vibrator was operated, and the raw material liquid was atomized. Fine particles of the atomized raw material liquid were ejected from the fine particle outlet together with air introduced from the carrier gas introduction pipe, and introduced into the muffle furnace through the fine particle introduction pipe. Fine particles introduced into the Matsufuru furnace were brought into contact with the surface of a substrate having a transparent electrode layer placed on a metal conveyor belt moving in the Matsufuru furnace to form a mixed crystal layer. The surface temperature of the substrate was kept at 420 ° C by the heat transfer from the conveyor belt heated by the heater and the radiant heat in the Matsufuru furnace. Ten seconds after the fine particles of the raw material liquid were introduced into the Matsufuru furnace, the inside of the Matsufuru furnace was evacuated.
その後、 混晶層の上に、 実施例 1 と同様にして n型化合物半導体層、 P型化合物半導体層および電極を形成し、 太陽電池を組み立てた。  Thereafter, an n-type compound semiconductor layer, a P-type compound semiconductor layer and an electrode were formed on the mixed crystal layer in the same manner as in Example 1, and a solar cell was assembled.
(ii) 混晶層の分析 [ォージェ光電子分光法による分析] (ii) Analysis of mixed crystal layer [Analysis by Auger photoelectron spectroscopy]
厚さを約 1 0 0オングストロームとしたこと以外、 実施例 1と同様に して、 混晶層の上に硫化カドミウム層を形成した。 そして、 得られた試 料をォージェ光電子分光法により分析した。 得られた各元素の光電子強 度と試料の表面からの深さとの関係を図 7に示す。 図 7中、 横軸の 0点 が硫化力ドミゥム層の表面に対応する。  A cadmium sulfide layer was formed on the mixed crystal layer in the same manner as in Example 1 except that the thickness was set to about 100 Å. Then, the obtained sample was analyzed by Auger photoelectron spectroscopy. Figure 7 shows the relationship between the obtained photoelectron intensity of each element and the depth from the surface of the sample. In FIG. 7, the zero point on the horizontal axis corresponds to the surface of the sulfur-doping layer.
酸化錫層または硫化力ドミゥム層と混晶層との界面では、 元素の光電 子強度は最大強度の 1 Z 2になっていると考えられる。 図 7において、 硫黄および力ドミゥムの光電子強度は約 1 3 0オングストローム近傍、 錫および酸素の光電子強度は約 1 1 0オングストローム近傍で強度が最 大強度の 1 Z 2となっている。 従って、 試料表面からの深さが約 1 1 0 〜 1 3 0オングストロームの時点の厚さ約 1 0〜 2 0オングストローム の部分が混晶層に相当すると考えられる。 混晶層が存在しないとすれば、 各元素の光電子強度が 1 / 2となる点が一直線上に揃うはずである。  At the interface between the tin oxide layer or the sulfur-doped layer and the mixed crystal layer, the photoelectric intensity of the element is considered to be the maximum intensity of 1 Z 2. In FIG. 7, the photoelectron intensity of sulfur and force dome is around 130 Å, and the photoelectron intensity of tin and oxygen is around 1100 Å, the maximum intensity being 1 Z 2. Therefore, it is considered that the portion having a thickness of about 10 to 20 angstroms when the depth from the sample surface is about 110 to 130 angstroms corresponds to the mixed crystal layer. Assuming that there is no mixed crystal layer, the points where the photoelectron intensity of each element is 1/2 should be aligned.
この結果から、 試料表面からの深さが約 1 0 0オングストロームの位 置に、 錫、 カドミウム、 硫黄および酸素からなる厚さ約 1 0〜 2 0オン ダストロームの混晶層が形成されていることがわかる。  The results show that a mixed crystal layer consisting of tin, cadmium, sulfur, and oxygen and having a thickness of about 10 to 20 onda was formed at a depth of about 100 angstroms from the sample surface. I understand.
次に、 スパッ夕により、 前記と同じ試料から硫化カドミウム層を除去 し、 混晶層をォージェ光電子分光法により分析した。 得られた光電子の 強度とそのエネルギーとの関係を図 8に示す。  Next, the cadmium sulfide layer was removed from the same sample by spattering, and the mixed crystal layer was analyzed by Auger photoelectron spectroscopy. Figure 8 shows the relationship between the obtained photoelectron intensity and its energy.
図 8には、 硫黄、 カドミウム、 錫および酸素に帰属されるピークが観 測される。 この分析では、 表面から約 5オングストロームの深さまでの 情報を検出することができる。 従ってこの結果は、 硫化カドミウム層に 隣接して前記 4種の元素を含む少なくとも 1 0オングストローム以上の 厚さを有する混晶層が形成されていることを示すものである。  Figure 8 shows peaks attributed to sulfur, cadmium, tin and oxygen. This analysis can detect information down to a depth of about 5 angstroms from the surface. Therefore, this result indicates that a mixed crystal layer having a thickness of at least 10 angstroms or more containing the above four elements is formed adjacent to the cadmium sulfide layer.
[透過電子顕微鏡による混晶層の観察] 図 9に酸化錫層と硫化力 ドミゥム層との間に存在する混晶層の断面写 真を示す。 図 9の矢印部分に約 1 0オングストロームの厚さを有する混 晶層が観測できる。 [Observation of mixed crystal layer by transmission electron microscope] Figure 9 shows a cross-sectional photograph of the mixed crystal layer that exists between the tin oxide layer and the sulfur layer. A mixed crystal layer having a thickness of about 10 angstroms can be observed at the arrow in FIG.
(iii) 太陽電池の評価  (iii) Evaluation of solar cells
得られた太陽電池を実施例 1 と同様に評価した。 図 1 0に開放電圧の 分布、 図 1 1に曲線因子の分布、 図 1 2に電流密度の分布、 図 1 3に変 換効率の分布をそれぞれ示す。 面内の平均開放電圧は 0. 7 8 8 V、 平 均電流密度は 2 6. 3 mA、 平均の曲線因子は 0. 6 4 8、 平均変換効 率は 1 3. 5 %であった。 実施例 5  The obtained solar cell was evaluated in the same manner as in Example 1. Fig. 10 shows the distribution of open-circuit voltage, Fig. 11 shows the distribution of fill factor, Fig. 12 shows the distribution of current density, and Fig. 13 shows the distribution of conversion efficiency. The average open-circuit voltage in the plane was 0.788 V, the average current density was 26.3 mA, the average fill factor was 0.648, and the average conversion efficiency was 13.5%. Example 5
透明電極層と n型化合物半導体層との間に透明電極層および n型化合 物半導体層の構成元素からなる厚さ 1 0オングス トローム以上の混晶層 を有する太陽電池を以下のように作製した。  A solar cell having a mixed crystal layer having a thickness of 10 Å or more consisting of the constituent elements of the transparent electrode layer and the n-type compound semiconductor layer between the transparent electrode layer and the n-type compound semiconductor layer was manufactured as follows. .
本実施例では、 第 1金属酸化物層を形成した後、 n型化合物半導体層 と同時に、 第 1金属酸化物層よりも低い不純物濃度を有する第 2金属酸 化物層および混晶層を形成した。  In the present example, after forming the first metal oxide layer, simultaneously with the n-type compound semiconductor layer, a second metal oxide layer having a lower impurity concentration than the first metal oxide layer and a mixed crystal layer were formed. .
( i ) 第 1酸化物層の形成  (i) Formation of first oxide layer
硼珪酸ガラス基板 ( 6 0 0mmX 2 7 1 mmX 3 mm) 上に、 実施例 1の第 1酸化物層と同様の約 0. 4 mの厚さを有する酸化錫層を形成 した。  A tin oxide layer having a thickness of about 0.4 m similar to the first oxide layer of Example 1 was formed on a borosilicate glass substrate (600 mm × 271 mm × 3 mm).
(ii) 第 2酸化物層、 n型化合物半導体層および混晶層の形成  (ii) Formation of second oxide layer, n-type compound semiconductor layer and mixed crystal layer
第 2金属酸化物層の原料の雰囲気下で、 酸化錫層上に硫化力 ドミゥム 層を形成した。 具体的には、 二塩化ジメチル錫粉末 1 0 0 gを 3 6 0 c cの水に溶解させた原料液を周波数 1 MH zの超音波振動子を内蔵した 容器に入れ、 超音波振動子を稼動させ、 原料液を霧化させた。 そして、 霧化した原料液の微粒子をキヤリァガス導入管より導入した窒素ととも に、 微粒子噴出口から噴出させ、 微粒子導入管を通してマツフル炉内に 導入した。 Under the atmosphere of the raw material of the second metal oxide layer, a sulfurating layer was formed on the tin oxide layer. Specifically, a raw material solution obtained by dissolving 100 g of dimethyltin dichloride powder in 360 cc of water is placed in a container with a built-in ultrasonic oscillator at a frequency of 1 MHz, and the ultrasonic oscillator is operated. The raw material liquid was atomized. And Fine particles of the atomized raw material liquid were ejected from the fine particle outlet together with nitrogen introduced from the carrier gas inlet pipe, and introduced into the Matsufuru furnace through the fine particle inlet pipe.
次いで、 別の微粒子噴出口および微粒子導入管を通して、 ジェチルジ チォカルバミン酸カ ドミウムを トルエンに溶解させた原料液を二塩化ジ メチル錫の原料液と同様にしてマツフル炉内に導入した。 このときマツ フル炉内に導入された微粒子は、 炉内を移動する金属製搬送ベルトに載 置した酸化錫層を有する基板の表面に接触し、 熱分解して 0 . 0 8 // m 程度の厚さを有する硫化力 ドミゥム層を形成した。 ジェチルジチォカル バミン酸カ ドミゥムの原料液をマツフル炉内に導入してから 2 0秒後に マツフル炉内を排気した。 基板の表面温度はヒー夕により加熱された搬 送ベル卜からの伝熱とマツフル炉内の輻射熱により 4 4 0 °Cに保持した。 その後、 実施例 1 と同様に、 P型化合物半導体層および電極を形成し、 太陽電池を組み立てた。  Next, a raw material solution obtained by dissolving cadmium getyl dithiocarbamate in toluene was introduced into the Matsufuru furnace through another fine particle ejection port and a fine particle introduction tube in the same manner as the dimethyltin dichloride raw material liquid. At this time, the fine particles introduced into the Matsufur furnace come into contact with the surface of the substrate having a tin oxide layer placed on a metal conveyor belt moving in the furnace, and are thermally decomposed to about 0.08 // m. A sulphide dome layer having a thickness of 3 mm was formed. Twenty seconds after the cadmium cadmium bamate solution was introduced into the Matsufur furnace, the Matsufur furnace was evacuated. The surface temperature of the substrate was maintained at 44 ° C by the heat transfer from the transport belt heated by the heater and the radiant heat in the Matsufur furnace. Thereafter, a P-type compound semiconductor layer and an electrode were formed in the same manner as in Example 1, and a solar cell was assembled.
( i i i ) 透明電極層および混晶層の分析  (ii) Analysis of transparent electrode layer and mixed crystal layer
X P Sにより、 透明電極層の分析を行ったところ、 n型化合物半導体 層付近の透明電極層では不純物であるフッ素は検出されなかった。  When the transparent electrode layer was analyzed by XPS, fluorine as an impurity was not detected in the transparent electrode layer near the n-type compound semiconductor layer.
また、 ォ一ジェ光電子分光法により、 透明電極層と n型化合物半導体 層との界面を分析したところ、 硫黄、 カ ドミウム、 錫および酸素からな り、 約 1 0オングス トロームの厚さを有する混晶層の存在が確認された。  When the interface between the transparent electrode layer and the n-type compound semiconductor layer was analyzed by Auger photoelectron spectroscopy, a mixed layer consisting of sulfur, cadmium, tin and oxygen and having a thickness of about 10 angstroms was obtained. The presence of a crystalline layer was confirmed.
( i v) 太陽電池の評価  (iv) Solar cell evaluation
得られた太陽電池を実施例 1 と同様に評価した。 面内の平均開放電圧 は 0 . 8 0 2 V、 平均の曲線因子は 0 . 6 6 0、 平均電流密度は 2 6 . 5 m A、 平均変換効率は 1 4 . 0であった。 比較例 金属酸化物層の還元雰囲気中での加熱処理を行わなかったこと以外、 実施例 3 と同様にして太陽電池を作製し、 評価した。 図 1 4に開放電圧 の分布、 図 1 5に曲線因子の分布、 図 1 6に電流密度の分布、 図 1 7に 変換効率の分布をそれぞれ示す。 面内の平均開放端電子は 0 . 5 9 2 V 平均電流密度は 2 4 . 9 m A、 平均の曲線因子は 0 . 5 2 9、 平均変換 効率は 7 . 9 2 %であった。 The obtained solar cell was evaluated in the same manner as in Example 1. The average in-plane open-circuit voltage was 0.802 V, the average fill factor was 0.60, the average current density was 26.5 mA, and the average conversion efficiency was 14.0. Comparative example A solar cell was fabricated and evaluated in the same manner as in Example 3, except that the heat treatment in the reducing atmosphere of the metal oxide layer was not performed. Figure 14 shows the distribution of open-circuit voltage, Figure 15 shows the distribution of fill factor, Figure 16 shows the distribution of current density, and Figure 17 shows the distribution of conversion efficiency. The average open-ended electrons in the plane were 0.592 V, the average current density was 24.9 mA, the average fill factor was 0.529, and the average conversion efficiency was 7.92%.
以上より、 実施例の太陽電池は、 比較例の太陽電池に比べると、 顕著 に諸性能が向上していることがわかる。 また、 実施例の太陽電池は、 セ ル間でのばらつきが少ないことがわかる。 産業上の利用の可能性  From the above, it can be seen that the solar cells of the examples are significantly improved in various performances as compared with the solar cells of the comparative examples. Further, it can be seen that the solar cells of the examples have little variation among cells. Industrial applicability
本発明によれば、 結晶性が高く、 強固な n型化合物半導体層を透明電 極層上に形成することができる。 従って、 n型化合物半導体層が p型化 合物半導体層と反応して侵食されることがない。 また、 n型化合物半導 体層の電気特性も向上する。 その結果、 高い電流密度および変換効率を 有する太陽電池を得ることができる。  According to the present invention, a strong n-type compound semiconductor layer having high crystallinity can be formed on the transparent electrode layer. Therefore, the n-type compound semiconductor layer does not react with the p-type compound semiconductor layer and is not eroded. In addition, the electrical characteristics of the n-type compound semiconductor layer are improved. As a result, a solar cell having high current density and high conversion efficiency can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 透明基板、 前記透明基板上に形成された不純物を含む金属酸化物か らなる透明電極層、 前記透明電極層上に形成された n型化合物半導体層 および前記 n型化合物半導体層上に形成された p型化合物半導体層から なる化合物半導体太陽電池であって、 1. A transparent substrate, a transparent electrode layer made of a metal oxide containing impurities formed on the transparent substrate, an n-type compound semiconductor layer formed on the transparent electrode layer, and formed on the n-type compound semiconductor layer A compound semiconductor solar cell comprising a p-type compound semiconductor layer,
前記透明電極層における不純物濃度が、 前記透明基板側で高く、 前記 n型化合物半導体層側で低いことを特徴とする化合物半導体太陽電池。 A compound semiconductor solar cell, wherein an impurity concentration in the transparent electrode layer is high on the transparent substrate side and low on the n-type compound semiconductor layer side.
2 . 前記透明電極層が、 不純物としてハロゲン元素を含む錫酸化物から なる請求の範囲第 1項記載の化合物半導体太陽電池。 2. The compound semiconductor solar cell according to claim 1, wherein the transparent electrode layer is made of tin oxide containing a halogen element as an impurity.
3 . 前記透明電極層が、 前記透明基板側の第 1金属酸化物層および前記 n型化合物半導体層側の第 2金属酸化物層からなり、 前記第 1金属酸化 物層における不純物濃度が、 前記第 2金属酸化物層における不純物濃度 より高い請求の範囲第 1項記載の化合物半導体太陽電池。  3. The transparent electrode layer comprises a first metal oxide layer on the transparent substrate side and a second metal oxide layer on the n-type compound semiconductor layer side, and the impurity concentration in the first metal oxide layer is 2. The compound semiconductor solar cell according to claim 1, wherein the concentration is higher than an impurity concentration in the second metal oxide layer.
4 . 前記第 1金属酸化物層の厚さに対する前記第 2金属酸化物層の厚さ の比が 0 . 0 2〜 0 . 7であり、 前記第 1金属酸化物層における不純物 濃度に対する前記第 2金属酸化物層における不純物濃度の比が 0 . 5以 下である請求の範囲第 3項記載の化合物半導体太陽電池。  4. The ratio of the thickness of the second metal oxide layer to the thickness of the first metal oxide layer is 0.02 to 0.7, and the ratio of the second metal oxide layer to the impurity concentration in the first metal oxide layer is 4. The compound semiconductor solar cell according to claim 3, wherein the ratio of the impurity concentration in the two metal oxide layers is 0.5 or less.
5 . 前記透明電極層と前記 n型化合物半導体層との間に、 1 0オングス トローム以上の厚さを有し、 前記透明電極層および前記 n型化合物半導 体層の構成元素からなる混晶層を有する請求の範囲第 1項記載の化合物 半導体太陽電池。  5. A mixed crystal having a thickness of 10 angstroms or more between the transparent electrode layer and the n-type compound semiconductor layer and comprising a constituent element of the transparent electrode layer and the n-type compound semiconductor layer 2. The compound semiconductor solar cell according to claim 1, comprising a layer.
6 . 前記透明電極層が不純物としてハロゲン元素を含む錫酸化物からな り、 前記 n型化合物半導体層がカ ドミウム硫化物からなり、 前記混晶層 が錫、 カ ドミウム、 硫黄および酸素からなる請求の範囲第 5項記載の化 合物半導体太陽電池。 6. The transparent electrode layer is made of tin oxide containing a halogen element as an impurity, the n-type compound semiconductor layer is made of cadmium sulfide, and the mixed crystal layer is made of tin, cadmium, sulfur and oxygen. 6. The compound semiconductor solar cell according to item 5, wherein
7 . 前記混晶層が、 塩素を含有する請求の範囲第 6項記載の化合物半導 体太陽電池。 · 7. The compound semiconductor solar cell according to claim 6, wherein the mixed crystal layer contains chlorine. ·
8 . 透明基板上に不純物を含む金属酸化物層を形成する工程、 前記金属 酸化物層を還元雰囲気中で加熱する工程、 その後前記金属酸化物層上に n型化合物半導体層を形成する工程を有する請求の範囲第 1項記載の化 合物半導体太陽電池の製造方法。  8. A step of forming a metal oxide layer containing impurities on a transparent substrate, a step of heating the metal oxide layer in a reducing atmosphere, and a step of subsequently forming an n-type compound semiconductor layer on the metal oxide layer. 2. The method for producing a compound semiconductor solar cell according to claim 1, comprising:
9 . 透明基板上に不純物を含む第 1金属酸化物層を形成する工程、 前記 第 1金属酸化物層上に前記第 1金属酸化物層より も低濃度の不純物を含 む第 2金属酸化物層を形成する工程を有する請求の範囲第 3項記載の化 合物半導体太陽電池の製造方法。  9. A step of forming a first metal oxide layer containing impurities on a transparent substrate, a second metal oxide containing impurities on the first metal oxide layer at a lower concentration than the first metal oxide layer. 4. The method for producing a compound semiconductor solar cell according to claim 3, comprising a step of forming a layer.
1 0 . 前記第 1金属酸化物層の形成後、 前記第 2金属酸化物層の形成前 に、 前記透明基板の温度を一旦室温に下げる請求の範囲第 9項記載の化 合物半導体太陽電池の製造方法。  10. The compound semiconductor solar cell according to claim 9, wherein after the formation of the first metal oxide layer and before the formation of the second metal oxide layer, the temperature of the transparent substrate is temporarily lowered to room temperature. Manufacturing method.
1 1 . 前記第 1金属酸化物層の形成後、 前記透明基板の温度を下げずに 前記第 2金属酸化物層を形成する請求の範囲第 9項記載の化合物半導体 太陽電池の製造方法。  11. The method for manufacturing a compound semiconductor solar cell according to claim 9, wherein after forming the first metal oxide layer, the second metal oxide layer is formed without lowering the temperature of the transparent substrate.
1 2 . 透明基板上に不純物を含む金属酸化物層を形成する工程、 前記金 属酸化物の原料を含む雰囲気中で前記金属酸化物層上に n型化合物半導 体層を形成する工程を有する請求の範囲第 5項記載の化合物半導体太陽 電池の製造方法。  12. A step of forming a metal oxide layer containing impurities on a transparent substrate, and a step of forming an n-type compound semiconductor layer on the metal oxide layer in an atmosphere containing a raw material of the metal oxide. 6. The method for producing a compound semiconductor solar cell according to claim 5, comprising:
1 3 . 前記金属酸化物の原料と溶媒または分散媒とからなる液を気化ま たは霧化することにより、 前記雰囲気を得る請求の範囲第 1 2項記載の 化合物半導体太陽電池の製造方法。  13. The method for manufacturing a compound semiconductor solar cell according to claim 12, wherein the atmosphere is obtained by vaporizing or atomizing a liquid comprising the metal oxide raw material and a solvent or a dispersion medium.
1 4 . 前記金属酸化物の原料が、 少なく とも錫または亜鉛を含むハロゲ ン化物からなる請求の範囲第 1 2項記載の化合物半導体太陽電池の製造 方法。 14. The method for producing a compound semiconductor solar cell according to claim 12, wherein the raw material of the metal oxide comprises a halide containing at least tin or zinc.
1 5 . 前記ハロゲン化物が、 二塩化ジメチル錫またはメチル塩化亜鉛で ある請求の範囲第 1 4項記載の化合物半導体太陽電池の製造方法。15. The method for producing a compound semiconductor solar cell according to claim 14, wherein said halide is dimethyltin dichloride or methyl zinc chloride.
1 6 . 透明基板上に不純物を含む金属酸化物層を形成する工程、 前記金 属酸化物層上に前記金属酸化物の原料を塗布する工程、 その後前記金属 酸化物層上に n型化合物半導体層を形成する工程を有する請求の範囲第16. A step of forming a metal oxide layer containing impurities on a transparent substrate, a step of applying a material of the metal oxide on the metal oxide layer, and thereafter, an n-type compound semiconductor on the metal oxide layer Claims having a step of forming a layer
5項記載の化合物半導体太陽電池の製造方法。 6. The method for producing a compound semiconductor solar cell according to item 5.
1 7 . 前記金属酸化物の原料が、 少なく とも錫または亜鉛を含むハロゲ ン化物からなる請求の範囲第 1 6項記載の化合物半導体太陽電池の製造 方法。  17. The method for producing a compound semiconductor solar cell according to claim 16, wherein the raw material of the metal oxide comprises a halide containing at least tin or zinc.
1 8 . 透明基板上に不純物を含む金属酸化物層を形成する工程、 前記金 属酸化物の原料および n型化合物半導体の原料からなる混合物を用いて 前記金属酸化物層上に n型化合物半導体層を形成する工程を有する請求 の範囲第 5項記載の化合物半導体太陽電池の製造方法。  18. A step of forming a metal oxide layer containing impurities on a transparent substrate, using a mixture of the metal oxide raw material and the n-type compound semiconductor raw material on the n-type compound semiconductor on the metal oxide layer The method for producing a compound semiconductor solar cell according to claim 5, further comprising a step of forming a layer.
1 9 . 前記金属酸化物の原料が、 少なく とも錫または亜鉛を含むハロゲ ン化物からなる請求の範囲第 1 8項記載の化合物半導体太陽電池の製造 方法。  19. The method for manufacturing a compound semiconductor solar cell according to claim 18, wherein the raw material of the metal oxide comprises a halide containing at least tin or zinc.
PCT/JP2000/006932 1999-10-05 2000-10-04 Compound semiconductor solar cell and method of manufacture thereof WO2001026161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28374899 1999-10-05
JP11/283748 1999-10-05

Publications (1)

Publication Number Publication Date
WO2001026161A1 true WO2001026161A1 (en) 2001-04-12

Family

ID=17669609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006932 WO2001026161A1 (en) 1999-10-05 2000-10-04 Compound semiconductor solar cell and method of manufacture thereof

Country Status (1)

Country Link
WO (1) WO2001026161A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069588A (en) * 2010-07-02 2017-04-06 サンパワー コーポレイション Method of manufacturing solar cell with tunnel dielectric layer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211966A (en) * 1986-03-12 1987-09-17 Nippon Sheet Glass Co Ltd Transparent conductive film
JPH01149485A (en) * 1987-12-04 1989-06-12 Sanyo Electric Co Ltd Photovolatic device
JPH01205474A (en) * 1988-02-10 1989-08-17 Sanyo Electric Co Ltd Photoelectric conversion device
JPH0273674A (en) * 1988-09-08 1990-03-13 Fuji Electric Co Ltd Photoelectromotive force device
JPH02210715A (en) * 1989-02-08 1990-08-22 Nippon Sheet Glass Co Ltd Transparent conductive base member with two-layer structure
JPH05290635A (en) * 1992-04-15 1993-11-05 Fuji Xerox Co Ltd Transparent conductive electrode and manufacture thereof
JPH06232436A (en) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd Solar cell and manufacture thereof
JPH11186580A (en) * 1997-12-24 1999-07-09 Nippon Sheet Glass Co Ltd Photoelectric conversion element
EP0969518A2 (en) * 1998-06-30 2000-01-05 Canon Kabushiki Kaisha Photovoltaic element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211966A (en) * 1986-03-12 1987-09-17 Nippon Sheet Glass Co Ltd Transparent conductive film
JPH01149485A (en) * 1987-12-04 1989-06-12 Sanyo Electric Co Ltd Photovolatic device
JPH01205474A (en) * 1988-02-10 1989-08-17 Sanyo Electric Co Ltd Photoelectric conversion device
JPH0273674A (en) * 1988-09-08 1990-03-13 Fuji Electric Co Ltd Photoelectromotive force device
JPH02210715A (en) * 1989-02-08 1990-08-22 Nippon Sheet Glass Co Ltd Transparent conductive base member with two-layer structure
JPH05290635A (en) * 1992-04-15 1993-11-05 Fuji Xerox Co Ltd Transparent conductive electrode and manufacture thereof
JPH06232436A (en) * 1993-02-04 1994-08-19 Matsushita Electric Ind Co Ltd Solar cell and manufacture thereof
JPH11186580A (en) * 1997-12-24 1999-07-09 Nippon Sheet Glass Co Ltd Photoelectric conversion element
EP0969518A2 (en) * 1998-06-30 2000-01-05 Canon Kabushiki Kaisha Photovoltaic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069588A (en) * 2010-07-02 2017-04-06 サンパワー コーポレイション Method of manufacturing solar cell with tunnel dielectric layer

Similar Documents

Publication Publication Date Title
US5920798A (en) Method of preparing a semiconductor layer for an optical transforming device
CN1230917C (en) Photovoltaic element and photovoltaic device
US6211043B1 (en) Method of manufacturing a compound semiconductor thin film on a substrate
JPH0613638A (en) Photovoltaic device
JPH05121338A (en) Method and apparatus for forming deposited film
JPH07297421A (en) Manufacture of thin film semiconductor solar battery
US20120061235A1 (en) Mixed sputtering target of cadmium sulfide and cadmium telluride and methods of their use
EP2383363B1 (en) Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and method of their manufacture
EP1686595A1 (en) Transparent base with transparent conductive film, method for producing same, and photoelectric converter comprising such base
Gunavathy et al. Investigations on copper zinc tin sulfide thin films grown through nebulizer assisted spray pyrolysis technique
CN106867305B (en) The CeO that a kind of surface is modified2Nano material and product
EP2530726A2 (en) Multi-layer n-type stack for cadmium telluride based thin film photovoltaic devices and methods of making
CN111348682A (en) Method for preparing antimony sulfide film by low-temperature plasma vulcanization
Lee et al. Fabrication of high transmittance and low sheet resistance dual ion doped tin oxide films and their application in dye-sensitized solar cells
JP2000044238A (en) Production of tin dioxide film and solar cell
JP3519543B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
US20050147780A1 (en) Porous electroconductive material having light transmitting property
JP2001274176A (en) Method of manufacturing compound semiconductor film
WO2001026161A1 (en) Compound semiconductor solar cell and method of manufacture thereof
US8188562B2 (en) Multi-layer N-type stack for cadmium telluride based thin film photovoltaic devices and methods of making
Diso Research and development of CdTe based thin film PV solar cells
JPH104206A (en) Compound semiconductor thin film forming method and optoelectric transducer using the thin film
Singh et al. SnO2: F/n-Si and In2O3: Sn/n-Si semiconductor/insulator/semiconductor solar cells
Briggs et al. Industrial hygiene characterization of the photovoltaic solar cell industry
JP2001060703A (en) Substrate for photoelectric transfer device, method of its manufacture and photoelectric transfer device using substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP