JP2000044238A - Production of tin dioxide film and solar cell - Google Patents

Production of tin dioxide film and solar cell

Info

Publication number
JP2000044238A
JP2000044238A JP10206575A JP20657598A JP2000044238A JP 2000044238 A JP2000044238 A JP 2000044238A JP 10206575 A JP10206575 A JP 10206575A JP 20657598 A JP20657598 A JP 20657598A JP 2000044238 A JP2000044238 A JP 2000044238A
Authority
JP
Japan
Prior art keywords
film
tin dioxide
tin
sno
dioxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10206575A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Omura
邦嘉 尾村
Paraniapagounda Beruchaami
パラニアパゴウンダ ベルチャーミ
Miwa Tsuji
美輪 辻
Takeshi Nishio
剛 西尾
Takeshi Hibino
武司 日比野
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP10206575A priority Critical patent/JP2000044238A/en
Publication of JP2000044238A publication Critical patent/JP2000044238A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for inexpensively producing a tin dioxide film having uniform film quality, excellent in transparency, electrical conductivity and weather resistance and capable of enlarging the surface area. SOLUTION: The tin dioxide film is formed on a substrate by atomizing a mixed solution of a tin compound with a fluorine compound or an antimony compound with ultrasonic vibration or spraying and pyrolyzing the atomized particulate in the vicinity of the previously heated substrate 1 for film forming. Further the film obtained by this way is used as a transparent electrically conductive film 2 to constitute various solar cells such as a CdS/CdTe solar cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化錫膜の製造
方法、およびその二酸化錫膜を透明導電膜として用いた
太陽電池に関するものである。
The present invention relates to a method for producing a tin dioxide film and a solar cell using the tin dioxide film as a transparent conductive film.

【0002】[0002]

【従来の技術】二酸化錫(以下、SnO2という)膜
は、透明性と導電性を有する膜として、近年、各種太陽
電池の集電膜、液晶時計や携帯用電子計算器などの各種
電子機器の表示面、例えば、液晶パネル、プラズマディ
スプレイなどに広く用いられている。SnO2膜の製造
方法については、従来から、下記のような方法が提案あ
るいは実施されてきたが、いずれも一長一短があった。
SnO2膜を真空蒸着法やスパッタ法を用いて作製する
場合には、真空製膜なので作製装置費用が高く、特に作
製面積を1000cm2以上の大きな膜を作製するため
には装置が大型化し、高額な装置費用が必要となる。ま
た、高品質な膜を形成するには製膜速度を遅くする必要
があり、例えば1000オングストロームの膜厚を形成
するためには10〜30分間の製膜時間を必要とする。
さらに、膜の均質性と膜厚の均一性が悪く、30×30
cm基板での膜厚のバラツキが30〜40%と大きくな
る。
2. Description of the Related Art In recent years, tin dioxide (hereinafter referred to as SnO 2 ) films have become transparent and conductive films, and have recently been used as a current collecting film for various solar cells, various electronic devices such as liquid crystal clocks and portable electronic calculators. , Such as liquid crystal panels and plasma displays. As for the method of producing the SnO 2 film, the following methods have been conventionally proposed or implemented, but each has advantages and disadvantages.
When the SnO 2 film is formed by using a vacuum deposition method or a sputtering method, the cost of the manufacturing apparatus is high because the film is formed by vacuum, and the apparatus is particularly large in order to manufacture a large film having a manufacturing area of 1000 cm 2 or more. High equipment costs are required. Further, in order to form a high quality film, it is necessary to reduce the film forming speed. For example, in order to form a film having a thickness of 1000 Å, a film forming time of 10 to 30 minutes is required.
Further, the uniformity of the film and the uniformity of the film thickness are poor, and 30 × 30
The variation in the film thickness on the cm substrate is as large as 30 to 40%.

【0003】また、有機金属化合物などの金属化合物を
加熱容器に入れ、前記化合物を気化させることにより発
生させた蒸気の雰囲気中に膜形成用のガラス基板を設置
することにより、ガラス基板上にSnO2などの透明な
金属酸化膜を形成する方法も提案されている(例えば、
特公昭55−18785号公報)。この場合、SnO2
等の透明性を有する金属酸化膜は、元来高抵抗であるた
め、導電性を高めるために、フッ素やアンチモンなどを
製膜時に膜内にドープする必要がある。このため、Sn
2膜は、原材料の錫化合物にフッ化アンモニウム等の
ドープ材料を混合したものを気化させて製膜される。し
かし、上記方法では、前記原材料とドープ材料の混合モ
ル濃度を一定にしても、ソースガス中の両者の飽和蒸気
圧が製膜中に変化するので、ドープ原子の濃度を一定に
制御することが困難であった。これらを制御するには、
高精度の制御機器が必要となり、装置コストは高額とな
る。
In addition, a metal compound such as an organometallic compound is placed in a heating vessel, and a glass substrate for forming a film is placed in an atmosphere of vapor generated by vaporizing the compound, whereby SnO is placed on the glass substrate. A method of forming a transparent metal oxide film such as 2 has also been proposed (for example,
JP-B-55-18785). In this case, SnO 2
Since a transparent metal oxide film such as that described above originally has a high resistance, it is necessary to dope the film with fluorine, antimony, or the like at the time of film formation in order to increase conductivity. For this reason, Sn
The O 2 film is formed by evaporating a mixture of a dope material such as ammonium fluoride and a tin compound as a raw material. However, in the above method, even when the molar mixture of the raw material and the dope material is kept constant, the saturated vapor pressure of both in the source gas changes during film formation. It was difficult. To control these,
High-precision control equipment is required, and the equipment cost is high.

【0004】今一つの製膜方法として、有機錫化合物を
含むペーストを膜形成用基板上に塗布し、これを熱分解
させてSnO2膜を形成する方法があり、安価にしかも
大面積の膜を形成することができる。しかし、この方法
で作製した膜は、結晶性が悪く、分解し易いため、高温
多湿雰囲気中に長時間放置すると、抵抗値が20〜30
%増大するので、現在は殆ど使われていない。
As another film forming method, there is a method of applying a paste containing an organotin compound on a film forming substrate and thermally decomposing the paste to form a SnO 2 film. Can be formed. However, since the film produced by this method has poor crystallinity and is easily decomposed, when left in a high-temperature and high-humidity atmosphere for a long time, the resistance value becomes 20 to 30.
It is currently rarely used as it increases by a percentage.

【0005】一般的に、太陽電池の透明導電膜として
は、ガラス基板などの透光性絶縁基板上にSnO2膜を
上記の真空蒸着法やスパッタ法により形成したものが用
いられる。例えば、これらの製法で前記基板上に形成さ
れたSnO2膜からなる透明導電膜上に、硫化カドミウ
ム(以下、CdSという)膜、テルル化カドミウム(以
下、CdTeという)膜を順次積層して構成されるCd
S/CdTe太陽電池の場合には、上記の透明導電膜は
低抵抗で高い光線透過率を備えているが、製造コストが
高いため、低コストの太陽電池を形成することが難しか
った。また、大面積になると膜質が不均一となり、膜抵
抗及び光線透過率のバラツキを生じるため太陽電池の特
性低下を生じ、10%以上の高い変換効率を得るのが困
難になる等の問題があった。
In general, a transparent conductive film of a solar cell is formed by forming a SnO 2 film on a light-transmitting insulating substrate such as a glass substrate by the above-described vacuum deposition method or sputtering method. For example, a cadmium sulfide (hereinafter, referred to as CdS) film and a cadmium telluride (hereinafter, referred to as CdTe) film are sequentially laminated on a transparent conductive film formed of an SnO 2 film formed on the substrate by these methods. Cd
In the case of an S / CdTe solar cell, the above-mentioned transparent conductive film has low resistance and high light transmittance, but it has been difficult to form a low-cost solar cell because of its high manufacturing cost. In addition, when the area is large, the film quality becomes non-uniform, and the film resistance and the light transmittance vary, so that the characteristics of the solar cell are deteriorated, and it is difficult to obtain a high conversion efficiency of 10% or more. Was.

【0006】さらに、銅インジウムセレン太陽電池(以
下、CIS太陽電池という)などの他の太陽電池の透明
導電膜として、上記の真空蒸着法やスパッタ法によるS
nO2膜を用いる場合についても、CdS/CdTe太
陽電池の場合と同様に製造コストや特性上の問題があっ
た。また、有機錫化合物の熱分解により形成したSnO
2膜を透明導電膜として用いて上記のいずれの太陽電池
を作製した場合にも、膜形成コストは低くなるが、屋外
で長期に使用した場合に膜の抵抗値が上昇し、変換効率
が低下するという問題があった。
Further, as a transparent conductive film of another solar cell such as a copper indium selenium solar cell (hereinafter referred to as a CIS solar cell), S is formed by the above-mentioned vacuum deposition method or sputtering method.
Also in the case of using the nO 2 film, there are problems in the manufacturing cost and the characteristics as in the case of the CdS / CdTe solar cell. In addition, SnO formed by thermal decomposition of an organotin compound is used.
2 When any of the above solar cells is manufactured using the film as a transparent conductive film, the film formation cost is low, but when used outdoors for a long time, the resistance value of the film increases and the conversion efficiency decreases. There was a problem of doing.

【0007】[0007]

【発明が解決しようとする課題】上記問題点に鑑み、本
発明は、導電性および透明性に優れた高品質のSnO2
膜を低コストで均質に、かつ大面積製膜できる製造方法
を提供することを目的とする。本発明は、また、前記の
方法により得られたSnO2膜を透明導電膜として用い
ることにより、高変換効率の太陽電池を安価で再現性よ
く提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a high quality SnO 2 having excellent conductivity and transparency.
An object of the present invention is to provide a manufacturing method capable of forming a film uniformly at a low cost and in a large area. Another object of the present invention is to provide an inexpensive and highly reproducible solar cell with high conversion efficiency by using the SnO 2 film obtained by the above method as a transparent conductive film.

【0008】[0008]

【課題を解決するための手段】本発明によるSnO2
の製造方法は、錫化合物とフッ素化合物またはアンチモ
ン化合物とを溶解させた溶液を霧化して微粒子化する工
程、および前記微粒子を加熱された基板に接触させ、前
記基板上にSnO2膜を形成する工程を有することを特
徴とする。これにより、簡易な装置を用いて、膜中にド
ープされる原子の濃度が一定に制御された均質なSnO
2膜を形成できる。そして、大面積の製膜を行った場合
でも、膜抵抗バラツキが少なく、透明性および導電性に
優れ、長期間の信頼性が高いSnO2膜を、安価に、し
かも短時間に得ることができる。また、上記の本発明に
より形成したSnO2膜を透明導電膜として用いること
により、低コストで高変換効率のCdS/CdTe太陽
電池、CIS太陽電池などの各種太陽電池を構成するこ
とができる。
According to the present invention, there is provided a method for producing a SnO 2 film, comprising the steps of atomizing a solution in which a tin compound and a fluorine compound or an antimony compound are dissolved, to form fine particles, and heating the fine particles. Forming a SnO 2 film on the substrate by contacting the substrate with the substrate. Thus, using a simple apparatus, a uniform SnO in which the concentration of the atoms doped in the film is controlled to be constant.
Two films can be formed. In addition, even when a large-area film is formed, a SnO 2 film with little variation in film resistance, excellent transparency and conductivity, and high long-term reliability can be obtained at low cost and in a short time. . In addition, by using the SnO 2 film formed according to the present invention as a transparent conductive film, various types of solar cells such as CdS / CdTe solar cells and CIS solar cells having low cost and high conversion efficiency can be formed.

【0009】[0009]

【発明の実施の形態】本発明は、錫化合物と、ドープ材
料としてのフッ素化合物またはアンチモン化合物とを溶
解させたソース溶液を霧化して微粒子化し、これをあら
かじめ加熱した膜形成用基板の表面に接触させることに
より、微粒子化された溶液中の化合物を基板表面または
基板近傍で熱分解し、基板表面にフッ素またはアンチモ
ンがドープされたSnO2膜を形成させるものである。
本発明では、ソース溶液中の錫化合物とドープ材料との
濃度を一定にすることにより、前記微粒子中の濃度を一
定に制御できるので、基板上に形成されたSnO2膜中
へのフッ素またはアンチモンのドープ量を一定に制御す
ることが可能となる。これにより、均一な透明性と導電
性を有するSnO2膜を形成できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is directed to a method in which a source solution in which a tin compound and a fluorine compound or an antimony compound as a dope material are dissolved is atomized into fine particles, and the fine particles are sprayed on the surface of a previously heated film-forming substrate. Upon contact, the finely divided compound in the solution is thermally decomposed on or near the substrate to form a SnO 2 film doped with fluorine or antimony on the substrate surface.
In the present invention, the concentration in the fine particles can be controlled to be constant by keeping the concentration of the tin compound and the dope material in the source solution constant, so that fluorine or antimony is added to the SnO 2 film formed on the substrate. Can be controlled to be constant. Thereby, a SnO 2 film having uniform transparency and conductivity can be formed.

【0010】ソース溶液を微粒子化させる方法として
は、超音波振動を用いる方法が有効であり、超音波振動
のエネルギ−量を調整することにより微粒子の粒径を自
由に制御することができる。これにより微粒子が所定の
温度に加熱された基板の表面に到達する時に、微粒子中
の溶媒が気化し、さらに微粒子中の錫化合物とドープ材
料も気化するように粒子径を制御することができる。こ
れにより、錫化合物とドープ材料の熱分解反応を均一に
生じさせることができ、基板上に均一で良質なSnO2
膜を大面積に形成させることが可能となる。しかも、超
音波振動という簡便な方法を用いるので、こうした高品
質のSnO2膜を低価格で形成できる。より均一で良質
なSnO2膜を低コストで得るためには、超音波振動の
周波数が10kHz〜3MHzの超音波振動子を用いる
ことが好ましい。周波数がこの範囲内であれば、SnO
2膜の形成速度を速くし、膜質の安定化を図ることがで
きる。超音波振動の周波数が3MHzを越える場合、微
粒子の粒径は小さくなるが、超音波振動子に高出力のも
のがないため、ソース溶液を微粒子化できる量が不足
し、SnO2膜の製膜速度が遅くなる。また、超音波振
動の周波数が、10kHz未満の場合、微粒子の粒径が
過度に大きくなるため、基板表面での錫化合物の分解反
応が不均一となり、形成されたSnO2錫の膜質均一性
が低下する傾向がある。
As a method of forming the source solution into fine particles, a method using ultrasonic vibration is effective. The particle size of the fine particles can be freely controlled by adjusting the energy of the ultrasonic vibration. Thus, when the fine particles reach the surface of the substrate heated to a predetermined temperature, the particle diameter can be controlled such that the solvent in the fine particles is vaporized, and further, the tin compound and the doped material in the fine particles are also vaporized. As a result, a thermal decomposition reaction between the tin compound and the dope material can be uniformly generated, and uniform and high-quality SnO 2
The film can be formed over a large area. Moreover, since a simple method called ultrasonic vibration is used, such a high-quality SnO 2 film can be formed at low cost. In order to obtain a more uniform and high-quality SnO 2 film at low cost, it is preferable to use an ultrasonic oscillator having an ultrasonic vibration frequency of 10 kHz to 3 MHz. If the frequency is within this range, SnO
(2) The film formation speed can be increased and the film quality can be stabilized. If the frequency of the ultrasonic vibration exceeds 3 MHz, the particle size of the fine particles becomes small, but since there is no ultrasonic vibrator having a high output, the amount of the source solution that can be made fine is insufficient, and the SnO 2 film is formed. Speed slows down. Further, when the frequency of the ultrasonic vibration is less than 10 kHz, the particle size of the fine particles becomes excessively large, so that the decomposition reaction of the tin compound on the substrate surface becomes non-uniform, and the film quality uniformity of the formed SnO 2 tin is reduced. Tends to decrease.

【0011】また、上記の超音波振動による霧化の代わ
りに、スプレー噴射による方法を用いた場合には、空気
などのキャリアガス中の微粒子密度が小さくなる傾向が
あり、製膜速度が超音波振動による霧化方式より若干遅
くなるが、より低価格の装置で超音波振動による方法と
同様に、優れたSnO2の製膜ができる。上記のいずれ
の方法でソース溶液を微粒子化する場合でも、微粒子の
中心粒径(粒径分布範囲の中心値)は1〜20μmであ
ることが好ましく、この範囲内であれば、均質なSnO
2膜を形成することが可能である。中心粒径が1μmよ
りも小さいと、基板表面に錫化合物が達する前に熱分解
反応が生じ易く、SnO2膜を収率良く形成することが
困難になる。また、中心粒径が20μmよりも大きい
と、基板表面での錫化合物の分解反応が不均一となり、
形成されたSnO2膜の膜質の均質性が低下する傾向が
ある。
[0011] Further, when a spray injection method is used instead of the above-described atomization by ultrasonic vibration, the density of fine particles in a carrier gas such as air tends to decrease, and the film forming speed is reduced by the ultrasonic wave. Although it is slightly slower than the atomization method by vibration, an excellent SnO 2 film can be formed with a lower-cost apparatus as in the method by ultrasonic vibration. In any case where the source solution is made into fine particles by any of the above methods, the center particle diameter of the fine particles (the center value of the particle size distribution range) is preferably 1 to 20 μm.
It is possible to form two films. If the center particle diameter is smaller than 1 μm, a thermal decomposition reaction is likely to occur before the tin compound reaches the substrate surface, and it is difficult to form a SnO 2 film with a high yield. When the center particle diameter is larger than 20 μm, the decomposition reaction of the tin compound on the substrate surface becomes non-uniform,
The uniformity of the quality of the formed SnO 2 film tends to decrease.

【0012】ソース材料としての錫化合物には、二塩化
ジメチル錫、トリメチル塩化錫等の錫のハロゲン化アル
キル化合物、錫のカルボン酸塩、錫のβ−ジケトン錯
体、錫のアルコキシドハロゲン化アルキル化合物、四塩
化錫等の錫のハロゲン化物などを用いることができる
が、特に二塩化ジメチル錫を用いることが好ましい。二
塩化ジメチル錫は、空気や水分に対する化学的安定性が
高く、保存中や作業中に変質しないこと、人体への悪影
響が少なく、入手が容易なこと、安価で安全性が高い溶
媒である水への溶解度が高いことなどから、これを用い
ることにより、良質なSnO2膜を高速で安全に低コス
トで製膜できる利点がある。
Examples of the tin compound as a source material include tin halide alkyl compounds such as dimethyltin dichloride and trimethyltin chloride, tin carboxylate, tin β-diketone complex, and tin alkoxide alkyl halide compound. Although tin halides such as tin tetrachloride can be used, it is particularly preferable to use dimethyltin dichloride. Dimethyltin dichloride has high chemical stability to air and moisture, does not deteriorate during storage or work, has little adverse effect on the human body, is easily available, and is a solvent that is inexpensive and highly safe. By using this, there is an advantage that a high-quality SnO 2 film can be formed at high speed, safely and at low cost because of its high solubility in water.

【0013】上記の錫化合物は、すべて600℃以下の
低温で熱分解するので、膜形成基板の表面温度は、錫化
合物の熱分解温度以上、600℃以下とすることによ
り、緻密で光線透過率の高い、低抵抗のSnO2 膜を形
成することができる。錫化合物として二塩化ジエチル錫
を用いた場合には、400〜600℃の温度範囲で良質
なSnO2 膜を形成することができ、特に480〜58
0℃の温度範囲で、より光線透過率の高いSnO2 膜を
収率良く形成することができる。これらの錫化合物を溶
解する溶媒としては、水または水で希釈した有機溶媒、
さらにはOH基を有するアルコール系溶媒を単独で用い
ることができる。特に、錫化合物として二塩化ジメチル
錫を用いる場合には、前記の理由により溶媒として水を
用いることが好ましい。SnO2 膜へのドープ材料とし
ては、例えば、フッ化アンモニウム、フッ化ナトリウム
などのフッ素化合物、塩化アンチモン(SbCl3、S
bCl5)などのアンチモン化合物を用いることができ
る。これらのうち、膜抵抗の低減、光透過性の向上のた
めには、フッ素化合物を用いることがより効果的であ
る。
Since all of the above-mentioned tin compounds are thermally decomposed at a low temperature of 600 ° C. or less, the surface temperature of the film-forming substrate is set to be higher than the thermal decomposition temperature of the tin compound and 600 ° C. or less, thereby achieving a dense and light transmittance. , A low resistance SnO 2 film can be formed. When diethyltin dichloride is used as the tin compound, a high-quality SnO 2 film can be formed in a temperature range of 400 to 600 ° C., and particularly 480 to 58.
In a temperature range of 0 ° C., a SnO 2 film having a higher light transmittance can be formed with a high yield. As a solvent for dissolving these tin compounds, water or an organic solvent diluted with water,
Further, an alcoholic solvent having an OH group can be used alone. In particular, when dimethyltin dichloride is used as the tin compound, it is preferable to use water as the solvent for the above-described reason. Examples of the doping material for the SnO 2 film include fluorine compounds such as ammonium fluoride and sodium fluoride, and antimony chloride (SbCl 3 , SbCl 2) .
An antimony compound such as bCl 5 ) can be used. Of these, the use of a fluorine compound is more effective for reducing the film resistance and improving the light transmittance.

【0014】上記の本発明の方法により透光性絶縁基板
上に形成したSnO2膜からなる透明導電膜は、導電性
と光透過率が高く、しかも均質で大面積化が可能なこと
から、この透明導電膜上に半導体層を形成して太陽電池
を構成することによって、変換効率が高く、安定した特
性を備えた太陽電池が得られる。また、これ以外にも、
前記の各種電子機器の表示面の製造に本発明を適用する
ことにより、これらを高性能化、低コスト化することが
できる。太陽電池の場合には、例えば、ガラス基板など
の透光性絶縁基板上に本発明によるSnO2膜を透明導
電膜として形成し、この膜上に硫黄を含む有機カドミウ
ム化合物の熱分解などによりCdS膜をn型半導体の窓
層として形成し、さらにこの膜上にp型半導体層として
CdTe膜を近接昇華法などにより形成し、このp型半
導体膜上にカーボン膜を形成して、CdS/CdTe太
陽電池素子を構成することができる。さらに、これらの
素子を銀電極あるいは銀インジウム電極で接続して、高
効率の単セルあるいは単セル群が直列に接続された太陽
電池モジュールを構成できる。
The transparent conductive film made of the SnO 2 film formed on the light-transmitting insulating substrate by the above-described method of the present invention has high conductivity and light transmittance and is uniform and can have a large area. By forming a solar cell by forming a semiconductor layer on the transparent conductive film, a solar cell having high conversion efficiency and stable characteristics can be obtained. Also, besides this,
By applying the present invention to the manufacture of the display surfaces of the various electronic devices described above, these can be improved in performance and reduced in cost. In the case of a solar cell, for example, an SnO 2 film according to the present invention is formed as a transparent conductive film on a light-transmitting insulating substrate such as a glass substrate, and CdS is formed on this film by thermal decomposition of an organic cadmium compound containing sulfur. A film is formed as an n-type semiconductor window layer, and a CdTe film is formed on this film as a p-type semiconductor layer by proximity sublimation or the like, and a carbon film is formed on the p-type semiconductor film to form CdS / CdTe. A solar cell element can be configured. Further, by connecting these elements with silver electrodes or silver indium electrodes, it is possible to configure a solar cell module in which high efficiency single cells or single cell groups are connected in series.

【0015】また、導電性と耐熱性を有する基板上の+
側電極上に形成されたCdTe膜または銅・インジウム
・セレン化合物膜からなるp型半導体膜、この膜上に形
成されたn型半導体の窓層としてのCdS膜、およびこ
の膜上に形成された透明導電膜からなる−側電極を備え
たCIS太陽電池において、前記透明導電膜として本発
明による方法でSnO2膜を形成することもできる。
Further, + on a substrate having conductivity and heat resistance
A p-type semiconductor film made of a CdTe film or a copper-indium-selenium compound film formed on the side electrode, a CdS film as a window layer of an n-type semiconductor formed on this film, and a p-type semiconductor film formed on this film In a CIS solar cell having a negative electrode made of a transparent conductive film, an SnO 2 film may be formed as the transparent conductive film by the method according to the present invention.

【0016】[0016]

【実施例】以下に、具体的な実施例を挙げて本発明をよ
り詳細に説明する。 《実施例1》錫化合物として二塩化ジメチル錫を用い
て、図1に示す二酸化錫膜の製膜装置により、膜形成用
基板1上にSnO2膜2を形成した。二塩化ジメチル錫
粉末100gとフッ化アンモニウム粉末4gを360c
cの水に溶解させて調製したソース溶液8をソース容器
3に入れ、周波数1MHzの超音波振動子4を稼働さ
せ、ソース溶液8を中心粒径が10μmの微粒子7に霧
化させた。この霧化微粒子7を、キャリアガス導入管6
から導入したキャリアガスとしての空気とともに、微粒
子噴出口5から噴出させ、これらを微粒子導入管10を
経てマッフル炉11内に導入した。マッフル炉11内に
導入された霧化微粒子7をマッフル炉11中を移動する
金属製搬送ベルト12上に載置したガラス製の膜形成用
基板1の表面に接触させてSnO2膜2を形成させた。
The present invention will be described below in more detail with reference to specific examples. Example 1 An SnO 2 film 2 was formed on a film-forming substrate 1 by using a tin dioxide film forming apparatus shown in FIG. 1 using dimethyltin dichloride as a tin compound. 100 g of dimethyltin dichloride powder and 4 g of ammonium fluoride powder are applied for 360 c.
The source solution 8 prepared by dissolving in water c was placed in the source container 3, and the ultrasonic vibrator 4 having a frequency of 1 MHz was operated to atomize the source solution 8 into fine particles 7 having a center particle diameter of 10 μm. The atomized fine particles 7 are supplied to a carrier gas introduction pipe 6.
The particles were ejected from the fine particle outlet 5 together with air as a carrier gas introduced from the reactor, and were introduced into the muffle furnace 11 through the fine particle introduction tube 10. The atomized fine particles 7 introduced into the muffle furnace 11 are brought into contact with the surface of a glass film-forming substrate 1 placed on a metal conveyor belt 12 moving in the muffle furnace 11 to form an SnO 2 film 2. I let it.

【0017】膜形成用基板1は、ヒータ9により加熱さ
れる搬送ベルト12からの伝熱とマッフル炉11内から
の輻射熱により表面温度を550℃に保持した。製膜に
利用されなかった霧化微粒子7や気化した錫化合物、フ
ッ素化合物および水は、廃ガス排出管13を通して排出
させた。製膜時間は30秒間とし、30×30cmの膜
形成用基板上に形成されたSnO2膜2の膜厚は400
0オングストロームであった。
The surface temperature of the film forming substrate 1 was maintained at 550 ° C. by the heat transfer from the conveyor belt 12 heated by the heater 9 and the radiant heat from the inside of the muffle furnace 11. The atomized fine particles 7 and the vaporized tin compound, fluorine compound and water not used for film formation were discharged through the waste gas discharge pipe 13. The film formation time was 30 seconds, and the thickness of the SnO 2 film 2 formed on the film forming substrate of 30 × 30 cm was 400 seconds.
It was 0 angstroms.

【0018】この際、膜形成用基板の温度は、熱せられ
た膜形成用基板付近で霧化微粒子が蒸発し、さらに、霧
化微粒子中の二塩化ジメチル錫とフッ化アンモニウムが
気化して、熱分解によりSnO2 膜を形成するための適
切な温度に設定する必要がある。この温度は、ソース材
料として用いる錫化合物の種類に適した温度で処理する
必要があり、二塩化ジエチル錫を用いた場合の温度条件
を詳細に検討した。その結果、400〜600℃の温度
範囲では、収率(SnO2 膜の成分として二塩化ジメチ
ル錫が利用される率)が10%以上で製膜できることが
確認された。そのなかでも、480〜580℃の温度範
囲では、光波長400nm〜800nmの可視領域にお
ける光線透過率が50〜95%、体積抵抗が1×10-6
Ω・cm〜1×10-2Ω・cmという透明導電膜として
要求される電気的、光学的特性を満たす、白濁の無いS
nO2 膜が40%以上の収率で得られた。本実施例で
は、そのうち、この良質な膜が最も高収率で得られた5
50℃に膜形成用基板の表面温度を設定した。
At this time, the temperature of the film-forming substrate is adjusted such that the atomized fine particles evaporate in the vicinity of the heated film-formed substrate, and the dimethyltin dichloride and ammonium fluoride in the atomized fine particles are vaporized. It is necessary to set an appropriate temperature for forming a SnO 2 film by thermal decomposition. This temperature needs to be treated at a temperature suitable for the type of tin compound used as the source material, and the temperature conditions when diethyltin dichloride was used were studied in detail. As a result, it was confirmed that in a temperature range of 400 to 600 ° C., a film could be formed with a yield (a ratio of dimethyltin dichloride used as a component of the SnO 2 film) of 10% or more. Among them, in the temperature range of 480 to 580 ° C., the light transmittance in the visible region of the light wavelength of 400 nm to 800 nm is 50 to 95%, and the volume resistance is 1 × 10 −6.
S that satisfies the electrical and optical characteristics required of a transparent conductive film of Ω · cm to 1 × 10 -2 Ω · cm and is free from cloudiness
An nO 2 film was obtained with a yield of 40% or more. In this example, among these, this high-quality film was obtained with the highest yield.
The surface temperature of the film-forming substrate was set to 50 ° C.

【0019】なお、膜形成用基板の表面温度が400℃
未満であると、二塩化ジメチル錫の熱分解速度が急速に
低下するため、SnO2膜の形成速度が大きく低下し、
膜質が悪化し膜抵抗が増大した。また、600℃を越え
る温度に加熱するとガラス製の膜形成用基板が変形し、
またSnO2膜の形成が急速に起こり、SnO2の結晶粒
子径が大きくなり、膜表面の凹凸による入射光の散乱に
より、膜が曇る現象が生じた。また、形成用基板上に形
成されるSnO2膜2の膜厚も不均一であった。
The surface temperature of the film forming substrate is 400 ° C.
If it is less than 1, the rate of thermal decomposition of dimethyltin dichloride decreases rapidly, so that the rate of formation of the SnO 2 film greatly decreases,
The film quality deteriorated and the film resistance increased. Also, when heated to a temperature exceeding 600 ° C., the glass film forming substrate is deformed,
Further, the formation of the SnO 2 film rapidly occurred, the crystal particle diameter of SnO 2 became large, and the film became cloudy due to scattering of incident light due to unevenness of the film surface. Further, the thickness of the SnO 2 film 2 formed on the formation substrate was also uneven.

【0020】《比較例1》従来の真空蒸着法でSnO2
膜を作製した。すなわち、1torrの減圧下で酸化錫
をターゲットにして、30cm×30cmのガラス基板
上にSnO2膜を形成した。製膜速度は200オングス
トローム/分で20分間製膜した。
<< Comparative Example 1 >> SnO 2 was formed by a conventional vacuum deposition method.
A film was prepared. That is, an SnO 2 film was formed on a 30 cm × 30 cm glass substrate using tin oxide as a target under a reduced pressure of 1 torr. The film was formed at a rate of 200 Å / min for 20 minutes.

【0021】このようにして形成した実施例1および比
較例1のSnO2膜について、それぞれ図2および3に
示すような30箇所の表面抵抗率を測定し、その分布を
調べた。その結果、図2に示したように、実施例1では
5.1Ω/□〜5.4Ω/□(体積抵抗換算:2.04
×10-4〜2.16×10-4Ω・cm)であり、バラツ
キは6%以内であった。一方、比較例1の表面抵抗率の
分布は、図3に示したように、20Ω/□〜28Ω/□
(体積抵抗換算:8.0×10-4〜1.12×10-3Ω
・cm)であり、40%という大きなバラツキが観測さ
れた。また、100cm×30cmの大面積のSnO2
膜を実施例1と同様の方法で製膜したところ、膜の表面
抵抗率のバラツキは10%以内であり、大面積での製膜
が極めて安定してできることが確認された。また、この
ようにして作製したSnO2膜の光線透過率は、波長が
450nmで80〜95%の光線透過率を有することが
確認された。
With respect to the thus formed SnO 2 films of Example 1 and Comparative Example 1, the surface resistivity was measured at 30 places as shown in FIGS. 2 and 3, and the distribution was examined. As a result, as shown in FIG. 2, in Example 1, 5.1 Ω / □ to 5.4 Ω / □ (in terms of volume resistance: 2.04
× 10 −4 to 2.16 × 10 −4 Ω · cm), and the variation was within 6%. On the other hand, as shown in FIG. 3, the distribution of the surface resistivity of Comparative Example 1 was 20Ω / □ to 28Ω / □.
(Volume resistance conversion: 8.0 × 10 -4 to 1.12 × 10 -3 Ω
Cm), and a large variation of 40% was observed. Also, a large area SnO 2 of 100 cm × 30 cm is used.
When the film was formed in the same manner as in Example 1, the variation in the surface resistivity of the film was within 10%, and it was confirmed that the film could be formed in a large area extremely stably. In addition, it was confirmed that the light transmittance of the SnO 2 film thus produced had a light transmittance of 80 to 95% at a wavelength of 450 nm.

【0022】《比較例2》従来の塗布印刷法でSnO2
膜を作製した。すなわち、トルイル酸錫を含むペースト
を30cm×30cmのガラス基板上にスクリーン印刷
により塗布し、これを500〜550℃で熱処理し、熱
分解させて約4000オングストロームの膜厚のSnO
2膜を形成した。実施例1および比較例2のSnO2膜に
ついて、60℃、95%RHの高温高湿度試験における
表面抵抗率の変化を測定した結果をそれぞれ表1および
表2に示す。表1の実施例1の場合は、2000時間経
過後の表面抵抗率の増大は5%以内と安定していた。一
方、表2の比較例2の場合は、2000時間経過後に2
0%と大きく増大していることが観測された。
<< Comparative Example 2 >> SnO 2 by a conventional coating printing method
A film was prepared. That is, a paste containing tin toluate is applied on a 30 cm × 30 cm glass substrate by screen printing, and this is heat-treated at 500 to 550 ° C. and thermally decomposed to form a SnO film having a thickness of about 4000 Å.
Two films were formed. Tables 1 and 2 show the results of measuring the change in the surface resistivity of the SnO 2 films of Example 1 and Comparative Example 2 in a high temperature and high humidity test at 60 ° C. and 95% RH, respectively. In the case of Example 1 in Table 1, the increase in surface resistivity after 2000 hours was stable within 5%. On the other hand, in the case of Comparative Example 2 in Table 2,
A large increase of 0% was observed.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】《実施例2》図4に、本実施例で作製した
太陽電池の断面構造図を示す。1cm角のガラス基板2
1上に実施例1と同様の方法でSnO2膜22を形成
し、この膜22上に、CdS膜23を有機カドミウム化
合物の熱分解法で形成し、さらにCdS膜23上に近接
昇華法によりCdTe膜24を形成し、CdTe膜24
上にカーボン膜25を形成した。さらに、カーボン膜2
5上とSnO2膜22上にAgIn電極26を形成して
化合物半導体太陽電池素子を構成した。
Embodiment 2 FIG. 4 shows a sectional structural view of a solar cell manufactured in this embodiment. 1cm square glass substrate 2
1, a SnO 2 film 22 is formed in the same manner as in Example 1, a CdS film 23 is formed on this film 22 by a thermal decomposition method of an organic cadmium compound, and further a proximity sublimation method is formed on the CdS film 23. A CdTe film 24 is formed, and a CdTe film 24 is formed.
A carbon film 25 was formed thereon. Further, the carbon film 2
An AgIn electrode 26 was formed on the sample No. 5 and the SnO 2 film 22 to form a compound semiconductor solar cell device.

【0026】CdS膜23は、ジメチルジチオカルバミ
ン酸カドミウム錯体を加熱して気化させた蒸気中に、S
nO2膜22を形成したガラス基板21を450℃に加
熱して設置し、SnO2膜22の表面でジメチルジチオ
カルバミン酸カドミウム錯体の蒸気を熱分解させ、Sn
2膜22を形成した。また、CdTe膜24は、Cd
Teソースが収納された容器中にSnO2膜22とCd
S膜23が積層されたガラス基板21を設置し、容器内
を1torrに減圧し、CdTeソ−スを640℃、前
記ガラス基板21を600℃に設定して、2分間保持
し、CdS膜23上に形成した。さらに、CdS膜23
とCdTe膜24とを、レーザ光をガラス基板21側か
ら照射することにより同時に部分的に除去して、その部
分のSnO2膜22を露出させてマイナス側電極とし
た。CdTe膜24上にはカーボンペーストを塗布し、
乾燥してプラス側電極としてのカーボン膜25を形成し
た。
The CdS film 23 is formed by heating the cadmium dimethyldithiocarbamate complex to vaporize the cadmium complex.
The glass substrate 21 on which the nO 2 film 22 is formed is heated and placed at 450 ° C., and the vapor of the cadmium dimethyldithiocarbamate complex is thermally decomposed on the surface of the SnO 2 film 22 to form a Sn substrate.
An O 2 film 22 was formed. The CdTe film 24 is made of Cd
The SnO 2 film 22 and Cd are contained in a container containing Te source.
The glass substrate 21 on which the S film 23 is laminated is placed, the pressure in the container is reduced to 1 torr, the CdTe source is set to 640 ° C., and the glass substrate 21 is set to 600 ° C., and is held for 2 minutes. Formed on top. Further, the CdS film 23
The CdTe film 24 and the CdTe film 24 were simultaneously partially removed by irradiating a laser beam from the glass substrate 21 side, and the SnO 2 film 22 in that portion was exposed to form a negative electrode. A carbon paste is applied on the CdTe film 24,
After drying, a carbon film 25 as a positive electrode was formed.

【0027】《比較例3》1cm角のガラス基板上に、
比較例1と同様の方法で4000オングストロームのS
nO2膜を形成したものを用いた以外は、実施例2と同
様にして、CdS/CdTe太陽電池素子を作製した。
<< Comparative Example 3 >> On a 1 cm square glass substrate,
In the same manner as in Comparative Example 1, 4000 angstroms of S
A CdS / CdTe solar cell element was produced in the same manner as in Example 2 except that the element formed with the nO 2 film was used.

【0028】これらの太陽電池素子の光電特性を、ソー
ラーシュミレータを用い、25℃、AM1.5、100
mW/cm2の条件下で測定した。その結果、実施例2
では、Jsc=24mA/cm2、Voc=0.84
V、FF=72.1%で変換効率が14.5%であっ
た。一方、比較例3では、Jsc=22mA/cm2
Voc=0.74V、FF=60.2%で変換効率が
9.8%であり、各特性とも実施例2がより優れた値を
示した。
The photovoltaic characteristics of these solar cell elements were measured using a solar simulator at 25.degree.
It was measured under the condition of mW / cm 2 . As a result, Example 2
Then, Jsc = 24 mA / cm 2 , Voc = 0.84
The conversion efficiency was 14.5% at V, FF = 72.1%. On the other hand, in Comparative Example 3, Jsc = 22 mA / cm 2 ,
The conversion efficiency was 9.8% at Voc = 0.74V and FF = 60.2%, and Example 2 showed more excellent values for each characteristic.

【0029】《実施例3》次に、太陽電池モジュールを
作製して特性を評価した。まず、30×30cmのガラ
ス基板上に、実施例2と同様の方法でSnO2膜を形成
した後、レーザスクライブによりパターニングを行い、
その上に実施例2と同じ方法で形成したCdS膜とCd
Te膜を同時にレーザスクライブして単セル単位の膜に
28分割した。各CdTe膜上にカーボン膜を形成し、
これらの各カーボン膜表面と隣接セルのSnO2膜の露
出面とを銀電極で接続して、28セルを直列に接続して
太陽電池モジュールを作製した。
Example 3 Next, a solar cell module was manufactured and its characteristics were evaluated. First, an SnO 2 film was formed on a 30 × 30 cm glass substrate in the same manner as in Example 2, and then patterned by laser scribe.
A CdS film and Cd formed thereon in the same manner as in Example 2
The Te film was laser-scribed at the same time and divided into 28 films of a single cell unit. Forming a carbon film on each CdTe film,
The surface of each carbon film and the exposed surface of the SnO 2 film of the adjacent cell were connected by a silver electrode, and 28 cells were connected in series to produce a solar cell module.

【0030】《比較例4》30cm角のガラス基板を用
いて比較例1で作製した4000オングストロームのS
nO2膜を用いた以外は、実施例3と同様にして太陽電
池モジュールを作製した。
<< Comparative Example 4 >> A 4000 Å S film prepared in Comparative Example 1 using a 30 cm square glass substrate.
A solar cell module was manufactured in the same manner as in Example 3 except that the nO 2 film was used.

【0031】これらの太陽電池モジュール中の全セル
(28セル)の各特性を、実施例2の太陽電池素子の場
合と同様の方法で測定した。その結果、各特性とも、比
較例4では22%と大きなバラツキを示したのに対し、
実施例3では10%以下のバラツキに止まり、安定した
良好な特性を示した。
The characteristics of all the cells (28 cells) in these solar cell modules were measured in the same manner as in the case of the solar cell element of Example 2. As a result, for each characteristic, Comparative Example 4 showed a large variation of 22%, whereas
In Example 3, the variation was 10% or less, and stable and good characteristics were exhibited.

【0032】[0032]

【発明の効果】本発明によれば、簡単な製造装置を用い
て、導電性、光透過性および耐候性に優れ、大面積でも
均一な膜質のSnO2膜を製膜することができる。ま
た、前記SnO2膜を透明導電膜として用いることによ
り、変換効率の良好なCdS/CdTe太陽電池、CI
S太陽電池などの各種太陽電池を安価に提供することが
できる。また、本発明により得られるSnO2膜を各種
電子機器などの表示面などに用いることにより、これら
を低コスト化、高性能化することができる。
According to the present invention, it is possible to form a SnO 2 film having excellent conductivity, light transmittance and weather resistance and uniform film quality even in a large area by using a simple manufacturing apparatus. Further, by using the SnO 2 film as a transparent conductive film, a CdS / CdTe solar cell having good conversion efficiency, CI
Various solar cells such as S solar cells can be provided at low cost. In addition, by using the SnO 2 film obtained by the present invention for a display surface of various electronic devices and the like, the cost and performance thereof can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における製膜装置を示す縦断面
略図である。
FIG. 1 is a schematic longitudinal sectional view showing a film forming apparatus according to an embodiment of the present invention.

【図2】本発明の実施例により得た二酸化錫膜の表面抵
抗率の分布を示す図である。
FIG. 2 is a diagram showing a distribution of surface resistivity of a tin dioxide film obtained according to an example of the present invention.

【図3】従来の製造方法により得た二酸化錫膜の表面抵
抗率の分布を示す図である。
FIG. 3 is a view showing a distribution of surface resistivity of a tin dioxide film obtained by a conventional manufacturing method.

【図4】本発明の実施例におけるCdS/CdTe太陽
電池素子の縦断面略図である。
FIG. 4 is a schematic vertical sectional view of a CdS / CdTe solar cell element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 膜形成用基板 2 透明導電膜 3 ソース容器 4 超音波振動子 5 微粒子噴出口 6 キャリアガス導入管 7 霧化微粒子 8 ソース溶液 9 ヒ−タ 10 微粒子導入管 11 マッフル炉 12 搬送ベルト 13 ガス排出管 21 ガラス基板 22 二酸化錫膜 23 CdS膜 24 CdTe膜 25 カーボン膜 26 AgIn電極 DESCRIPTION OF SYMBOLS 1 Film-forming substrate 2 Transparent conductive film 3 Source container 4 Ultrasonic oscillator 5 Fine particle ejection port 6 Carrier gas introduction pipe 7 Atomized fine particles 8 Source solution 9 Heater 10 Fine particle introduction pipe 11 Muffle furnace 12 Transport belt 13 Gas discharge Tube 21 glass substrate 22 tin dioxide film 23 CdS film 24 CdTe film 25 carbon film 26 AgIn electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 美輪 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 西尾 剛 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 日比野 武司 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 室園 幹夫 大阪府守口市松下町1番1号 松下電池工 業株式会社内 Fターム(参考) 5F051 AA09 AA10 BA04 BA05 CB11 CB27 FA03 FA08 FA24 GA03 5F103 AA01 BB01 BB27 DD21 DD30 HH04 KK10 LL20 NN01 PP11 RR03 RR08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Miwa Tsuji 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industry Co., Ltd. (72) Inventor Go Nishio 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery (72) Inventor Takeshi Hibino 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industrial Co., Ltd. (72) Mikio Murono 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery F term (reference) in the company 5F051 AA09 AA10 BA04 BA05 CB11 CB27 FA03 FA08 FA24 GA03 5F103 AA01 BB01 BB27 DD21 DD30 HH04 KK10 LL20 NN01 PP11 RR03 RR08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 錫化合物とフッ素化合物またはアンチモ
ン化合物とを溶解した溶液を霧化して微粒子化する工
程、および前記微粒子を加熱された基板に接触させ、前
記基板上に二酸化錫膜を形成する工程を有することを特
徴とする二酸化錫膜の製造方法。
1. A step of atomizing a solution in which a tin compound and a fluorine compound or an antimony compound are dissolved to form fine particles, and a step of contacting the fine particles with a heated substrate to form a tin dioxide film on the substrate. A method for producing a tin dioxide film, comprising:
【請求項2】 前記溶液を霧化して微粒子化する工程
が、超音波振動により前記溶液を霧化して微粒子化する
工程である請求項1に記載の二酸化錫膜の製造方法。
2. The method for producing a tin dioxide film according to claim 1, wherein the step of atomizing the solution to form fine particles is a step of atomizing the solution by ultrasonic vibration to form fine particles.
【請求項3】 前記超音波振動の周波数が、10kHz
以上、3MHz以下である請求項2に記載の二酸化錫膜
の製造方法。
3. The ultrasonic vibration frequency is 10 kHz.
The method for producing a tin dioxide film according to claim 2, wherein the frequency is 3 MHz or less.
【請求項4】 前記溶液を微粒子化する工程が、スプレ
ー噴射により溶液を霧化して微粒子化する工程である請
求項1に記載の二酸化錫膜の製造方法。
4. The method for producing a tin dioxide film according to claim 1, wherein the step of atomizing the solution is a step of atomizing the solution by spraying to atomize the solution.
【請求項5】 前記微粒子の粒径分布範囲の中心値が1
μm以上、20μm以下である請求項1〜4のいずれか
に記載の二酸化錫膜の製造方法
5. The method according to claim 1, wherein the center value of the particle size distribution range of the fine particles is 1
The method for producing a tin dioxide film according to any one of claims 1 to 4, wherein the thickness is not less than 20 µm and not more than 20 µm.
【請求項6】 前記錫化合物が二塩化ジメチル錫である
請求項1〜5のいずれかに記載の二酸化錫膜の製造方
法。
6. The method for producing a tin dioxide film according to claim 1, wherein said tin compound is dimethyltin dichloride.
【請求項7】 前記錫化合物が二塩化ジメチル錫であ
り、前記加熱された基板の表面の温度範囲が400℃以
上、600℃以下である請求項1〜6のいずれかに記載
の二酸化錫膜の製造方法。
7. The tin dioxide film according to claim 1, wherein the tin compound is dimethyltin dichloride, and a temperature range of the surface of the heated substrate is 400 ° C. or more and 600 ° C. or less. Manufacturing method.
【請求項8】 透光性絶縁基板上に形成された二酸化錫
膜からなる透明導電膜、前記透明導電膜上に形成された
硫化カドミウム膜、および前記硫化カドミウム膜上に形
成されたテルル化カドミウム膜を具備し、前記透明導電
膜が、請求項1〜7のいずれかに記載の方法で形成され
た二酸化錫膜である太陽電池。
8. A transparent conductive film made of a tin dioxide film formed on a light-transmitting insulating substrate, a cadmium sulfide film formed on the transparent conductive film, and cadmium telluride formed on the cadmium sulfide film. A solar cell comprising a film, wherein the transparent conductive film is a tin dioxide film formed by the method according to claim 1.
【請求項9】 前記硫化カドミウム膜が、有機カドミウ
ム錯体の熱分解により形成された硫化カドミウム膜であ
る請求項8に記載の太陽電池。
9. The solar cell according to claim 8, wherein the cadmium sulfide film is a cadmium sulfide film formed by thermal decomposition of an organic cadmium complex.
【請求項10】 前記テルル化カドミウム膜が、近接昇
華法により形成されたテルル化カドミウム膜である請求
項8に記載の太陽電池。
10. The solar cell according to claim 8, wherein the cadmium telluride film is a cadmium telluride film formed by a proximity sublimation method.
JP10206575A 1998-07-22 1998-07-22 Production of tin dioxide film and solar cell Pending JP2000044238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10206575A JP2000044238A (en) 1998-07-22 1998-07-22 Production of tin dioxide film and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10206575A JP2000044238A (en) 1998-07-22 1998-07-22 Production of tin dioxide film and solar cell

Publications (1)

Publication Number Publication Date
JP2000044238A true JP2000044238A (en) 2000-02-15

Family

ID=16525681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10206575A Pending JP2000044238A (en) 1998-07-22 1998-07-22 Production of tin dioxide film and solar cell

Country Status (1)

Country Link
JP (1) JP2000044238A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259494A (en) * 2000-03-17 2001-09-25 Matsushita Battery Industrial Co Ltd Thin film forming device
KR100590258B1 (en) * 2002-10-08 2006-06-15 삼성에스디아이 주식회사 Method for fabricating solar cell using spray
CN100346457C (en) * 2006-01-17 2007-10-31 湖南师范大学 Production and producer for cadmium sulfide
JP2008536669A (en) * 2005-04-22 2008-09-11 シュミット テクノロジー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for applying an even thin liquid layer to a substrate
WO2008117605A1 (en) * 2007-03-23 2008-10-02 Hamamatsu Foundation For Science And Technology Promotion Large-area transparent electroconductive film and process for producing the same
JP2011178635A (en) * 2010-03-03 2011-09-15 Tokyo Electron Ltd Film deposition apparatus, system and film deposition method
CN102284393A (en) * 2010-06-17 2011-12-21 海洋王照明科技股份有限公司 Fluorescent powder coating device and coating method utilizing same
WO2012147219A1 (en) * 2011-04-25 2012-11-01 シャープ株式会社 Transparent conductive film and method for forming same
WO2013077008A1 (en) * 2011-11-24 2013-05-30 シャープ株式会社 Film-forming apparatus and film-forming method
WO2015177899A1 (en) * 2014-05-22 2015-11-26 東芝三菱電機産業システム株式会社 Buffer layer film-forming method and buffer layer
JP2018019052A (en) * 2016-07-30 2018-02-01 株式会社Flosfia Method for manufacturing inductor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259494A (en) * 2000-03-17 2001-09-25 Matsushita Battery Industrial Co Ltd Thin film forming device
KR100590258B1 (en) * 2002-10-08 2006-06-15 삼성에스디아이 주식회사 Method for fabricating solar cell using spray
JP2008536669A (en) * 2005-04-22 2008-09-11 シュミット テクノロジー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for applying an even thin liquid layer to a substrate
CN100346457C (en) * 2006-01-17 2007-10-31 湖南师范大学 Production and producer for cadmium sulfide
WO2008117605A1 (en) * 2007-03-23 2008-10-02 Hamamatsu Foundation For Science And Technology Promotion Large-area transparent electroconductive film and process for producing the same
JP2011178635A (en) * 2010-03-03 2011-09-15 Tokyo Electron Ltd Film deposition apparatus, system and film deposition method
CN102284393A (en) * 2010-06-17 2011-12-21 海洋王照明科技股份有限公司 Fluorescent powder coating device and coating method utilizing same
CN102284393B (en) * 2010-06-17 2014-04-02 海洋王照明科技股份有限公司 Fluorescent powder coating device and coating method utilizing same
JP2012230776A (en) * 2011-04-25 2012-11-22 Sharp Corp Deposition method of transparent conductive film
WO2012147219A1 (en) * 2011-04-25 2012-11-01 シャープ株式会社 Transparent conductive film and method for forming same
WO2013077008A1 (en) * 2011-11-24 2013-05-30 シャープ株式会社 Film-forming apparatus and film-forming method
JP2013108155A (en) * 2011-11-24 2013-06-06 Sharp Corp Film deposition apparatus and film deposition method
WO2015177899A1 (en) * 2014-05-22 2015-11-26 東芝三菱電機産業システム株式会社 Buffer layer film-forming method and buffer layer
TWI550892B (en) * 2014-05-22 2016-09-21 東芝三菱電機產業系統股份有限公司 Method for forming a film of buffer layer and the buffer layer
CN106062971A (en) * 2014-05-22 2016-10-26 东芝三菱电机产业系统株式会社 Buffer layer film-forming method and buffer layer
JPWO2015177899A1 (en) * 2014-05-22 2017-04-20 東芝三菱電機産業システム株式会社 Method for forming buffer layer and buffer layer
US11075318B2 (en) 2014-05-22 2021-07-27 Toshiba Mitsubishi-Electric Industrial Systems Corporation Buffer layer film-forming method and buffer layer
JP2018019052A (en) * 2016-07-30 2018-02-01 株式会社Flosfia Method for manufacturing inductor

Similar Documents

Publication Publication Date Title
CN102892923A (en) Conductive metal oxide films and photovoltaic devices
US6211043B1 (en) Method of manufacturing a compound semiconductor thin film on a substrate
US8932495B1 (en) Transparent conductor materials and processes for forming such materials
US6504139B1 (en) Substrate for photoelectric conversion device, method of manufacturing the same, and photoelectric conversion device using the same
JPH07297421A (en) Manufacture of thin film semiconductor solar battery
US4224355A (en) Method for quality film formation
WO1990011247A1 (en) Zinc oxyfluoride transparent conductor
JP2000044238A (en) Production of tin dioxide film and solar cell
US4307681A (en) Apparatus for quality film formation
KR20110089354A (en) Conductive film formation on glass
US4239809A (en) Method for quality film formation
WO2006098185A1 (en) Process for producing substrate for thin-film photoelectric transducer, and thin-film photoelectric transducer
US20100288348A1 (en) Solar cell device and method for fabricating the same
Lee et al. Fabrication of high transmittance and low sheet resistance dual ion doped tin oxide films and their application in dye-sensitized solar cells
JP4377003B2 (en) Method for adjusting sheet resistance value of transparent conductive film and method for forming transparent conductive film
US4193821A (en) Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer
JP2005116391A (en) Apparatus of manufacturing substrate for transparent electrode
CN110993799A (en) Tunable infrared transparent conductive film with photovoltaic function and preparation method thereof
JP2000156514A (en) Transparent conductive film for solar battery and the solar battery
JPH1131830A (en) Method for depositing metal oxide and compound semiconductor solar battery
JP2726323B2 (en) Thin-film solar cell fabrication method
KR20190084454A (en) Method for Forming Insulating Layer on Stainless Steel Sheet for Flexible Solar Cell and Solar Cell Manufactured Using same
KR101967275B1 (en) Method for Supplying Sodium for Flexible Solar Cell and Solar Cell Manufactured Using same
WO2001026161A1 (en) Compound semiconductor solar cell and method of manufacture thereof
WO2012098731A1 (en) Transparent conductive film and film formation method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050217