JP2001259494A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JP2001259494A
JP2001259494A JP2000076930A JP2000076930A JP2001259494A JP 2001259494 A JP2001259494 A JP 2001259494A JP 2000076930 A JP2000076930 A JP 2000076930A JP 2000076930 A JP2000076930 A JP 2000076930A JP 2001259494 A JP2001259494 A JP 2001259494A
Authority
JP
Japan
Prior art keywords
solution
thin film
container
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000076930A
Other languages
Japanese (ja)
Inventor
Takeshi Nishio
剛 西尾
Tetsuya Niimoto
哲也 新本
Hiroshi Higuchi
洋 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP2000076930A priority Critical patent/JP2001259494A/en
Publication of JP2001259494A publication Critical patent/JP2001259494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming a thin film having uniformalized film thickness in a method of forming the thin film of a metal sulfide or a metal oxide by blowing solution fine particles formed by atomizing a source material solution with an ultrasonic vibrator transducer on a heated substrate for film forming. SOLUTION: A liquid supply vessel and an atomizing vessel are connected to each other to keep the liquid level of the source material solution constant, the supply rate of the source material solution supplied from the solution supply vessel to an atomizing vessel is measured and the thin film is formed by controlling the output of the ultrasonic vibrator transducer or the flow rate of a carrier gas to attain the proper value of the supply rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電変換素子や表
示素子などに使用される金属酸化物および金属硫化物の
薄膜形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film of a metal oxide and a metal sulfide used for a photoelectric conversion element and a display element.

【0002】[0002]

【従来の技術】従来より、化合物半導体、特に金属酸化
物薄膜および金属硫化物薄膜は光電変換素子や表示素子
のソース材料として広く用いられてきた。そして、これ
らの化合物の多くは従来、スパッタリング法、蒸着法な
どによって製造されてきた。これらの手法によれば、所
望の膜質を有する薄膜を得られやすいが、大面積の均一
な薄膜形成や高速連続製膜が困難であったり、真空装置
を必要とするため装置が非常に高価になるなどの問題が
あった。
2. Description of the Related Art Conventionally, compound semiconductors, particularly metal oxide thin films and metal sulfide thin films, have been widely used as source materials for photoelectric conversion elements and display elements. Many of these compounds have been conventionally produced by a sputtering method, an evaporation method, or the like. According to these methods, it is easy to obtain a thin film having a desired film quality, but it is difficult to form a uniform thin film of a large area and to perform high-speed continuous film formation, or the apparatus is very expensive because a vacuum apparatus is required. There were problems such as becoming.

【0003】そこで、真空装置を必要とせず安価に金属
硫化物や金属酸化物の薄膜を形成する方法として、金属
化合物の熱分解法が検討されている。例えば、少なくと
も一つの金属−硫黄結合を有する有機金属化合物をソー
ス基板上で熱分解させて、対向する製膜用基板上に金属
硫化物薄膜を形成する方法(例えば、特開平8−316
247号公報)が提案されている。しかし、この方法
は、ソース材料層を形成させたソース基板の作製が必要
なことや、ソース基板と製膜用基板を一定の間隔で均一
に近接させるなどの工程の煩雑性、および大面積の薄膜
形成の困難性などに問題があった。
Therefore, as a method for forming a thin film of metal sulfide or metal oxide at low cost without requiring a vacuum device, a thermal decomposition method of a metal compound is being studied. For example, a method in which an organometallic compound having at least one metal-sulfur bond is thermally decomposed on a source substrate to form a metal sulfide thin film on the opposed film-forming substrate (for example, Japanese Patent Laid-Open No. 8-316)
247) has been proposed. However, this method requires the production of a source substrate on which a source material layer is formed, the complexity of steps such as uniformly bringing a source substrate and a film formation substrate into close proximity at regular intervals, and a large area. There was a problem in the difficulty of forming a thin film.

【0004】さらに、前記有機金属化合物の溶液を超音
波振動子により霧化させて微粒子化し、空気や窒素など
のキャリアガスとともに、予め加熱された製膜用基板上
に吹き付け、前記微粒子中の有機金属化合物を熱分解さ
せ、前記製膜用基板上に金属硫化物薄膜を形成する方法
(例えば、特開平11−87747号公報)が提案され
ている。しかし、上記のような金属化合物溶液の霧化に
よる熱分解法においては、前記溶液の温度変化に伴う粘
度の変化や超音波振動子の経時変化などにより、霧化さ
れる溶液微粒子の発生量が変化し、これを一定範囲に制
御するのが困難であった。そのため、均一な膜厚を備え
た金属硫化物や金属酸化物の薄膜を形成できないという
問題があった。
Further, the solution of the organometallic compound is atomized into fine particles by an ultrasonic vibrator, and is sprayed together with a carrier gas such as air or nitrogen onto a pre-heated film-forming substrate, thereby forming an organic compound in the fine particles. A method has been proposed in which a metal compound is thermally decomposed to form a metal sulfide thin film on the film-forming substrate (for example, JP-A-11-87747). However, in the thermal decomposition method by atomization of the metal compound solution as described above, the amount of solution particles to be atomized is reduced due to a change in viscosity due to a temperature change of the solution or a change with time of an ultrasonic vibrator. And it was difficult to control this within a certain range. Therefore, there is a problem that a thin film of metal sulfide or metal oxide having a uniform film thickness cannot be formed.

【0005】前記問題は、各種薄膜を形成する上におい
て共通の問題である。前記問題を有する金属硫化物薄膜
としては、例えば太陽電池や蛍光体などに用いられる硫
化カドミウム(CdS)、硫化亜鉛(ZnS)、CdS
とZnSとの混晶、および露出計などに用いられる硫化
鉛(PbS)などの薄膜がある。また、金属酸化物薄膜
としては、例えば、太陽電池や表示ディスプレイなどの
透明導電膜として用いられる二酸化錫(SnO2)、酸
化インジウム(In23)、酸化インジウム錫(SnO
2とIn23の混晶)および酸化亜鉛(ZnO)などの
薄膜がある。
The above problem is a common problem in forming various thin films. Examples of the metal sulfide thin film having the above problem include cadmium sulfide (CdS), zinc sulfide (ZnS), and CdS used for solar cells and phosphors.
There is a mixed crystal of ZnS and ZnS, and a thin film such as lead sulfide (PbS) used for an exposure meter or the like. Further, as the metal oxide thin film, for example, tin dioxide (SnO 2 ), indium oxide (In 2 O 3 ), indium tin oxide (SnO 2 ) used as a transparent conductive film of a solar cell, a display, or the like.
2 and In 2 O 3 ) and zinc oxide (ZnO).

【0006】[0006]

【発明が解決しようとする課題】本発明は、金属化合物
溶液を霧化させた微粒子を製膜用基板上に吹きつけて、
金属化合物を熱分解させ、前記製膜用基板上に金属硫化
物あるいは金属酸化物の薄膜を形成する薄膜形成法にお
ける上記問題点を解決し、真空装置などの高価な設備
や、煩雑な工程を必要とせずに、安価で均一な膜厚を備
えた薄膜を形成する方法を提供することを目的とする。
According to the present invention, fine particles obtained by atomizing a metal compound solution are sprayed on a film-forming substrate,
Solve the above problems in the thin film forming method of forming a thin film of metal sulfide or metal oxide on the film-forming substrate by thermally decomposing the metal compound, expensive equipment such as a vacuum apparatus, and complicated processes. It is an object of the present invention to provide a method for forming a thin film having a uniform thickness at a low cost without the necessity.

【0007】[0007]

【課題を解決するための手段】本発明の薄膜形成方法
は、熱分解により金属酸化物または金属硫化物を生成す
る金属化合物(以下、ソース材料という)の溶液(以
下、ソース材料溶液という)を供給する溶液供給容器、
前記溶液供給容器から供給されるソース材料溶液を収容
し、これを超音波振動子により霧化させる霧化容器、金
属酸化物または金属硫化物の薄膜を形成しようとする基
板(以下、製膜用基板という)を加熱状態に保持する支
持台、および前記霧化された溶液の微粒子(以下、溶液
微粒子という)をキャリアガスにより前記製膜用基板に
吹き付けるキャリアガス搬送手段を具備する装置を用
い、前記溶液微粒子中のソース材料を前記製膜用基板上
で熱分解させて製膜用基板上に金属酸化物または金属硫
化物の薄膜を形成する薄膜形成方法であって、前記溶液
供給容器と霧化容器とを、前記霧化容器内のソース材料
溶液の液面が一定に保たれるように結合し、かつ前記溶
液供給容器から霧化容器へ供給されるソース材料溶液の
供給速度を測定し、その供給速度が適正値となるように
前記超音波振動子の出力もしくは前記キャリアガスの流
量を制御することを特徴とするものである。
According to the thin film forming method of the present invention, a solution (hereinafter, referred to as a source material solution) of a metal compound (hereinafter, referred to as a source material) which forms a metal oxide or a metal sulfide by thermal decomposition is provided. Solution supply container to supply,
An atomization container for accommodating a source material solution supplied from the solution supply container and atomizing the source material solution by an ultrasonic vibrator, a substrate on which a thin film of metal oxide or metal sulfide is to be formed (hereinafter referred to as a film forming film) An apparatus comprising: a support for holding the substrate in a heated state; and carrier gas conveying means for spraying the atomized solution fine particles (hereinafter, referred to as solution fine particles) onto the film-forming substrate with a carrier gas. A method for forming a thin film of a metal oxide or a metal sulfide on a film-forming substrate by thermally decomposing a source material in the solution fine particles on the film-forming substrate, wherein the solution supply container is And the atomization container are connected such that the liquid level of the source material solution in the atomization container is kept constant, and the supply rate of the source material solution supplied from the solution supply container to the atomization container is measured. , It is characterized in that the feed rate of the controls the output or flow rate of the carrier gas of the ultrasonic vibrator so that the proper value.

【0008】さらに本発明の薄膜形成方法は、前記溶液
供給容器から霧化容器へ一定の供給速度で前記ソース材
料溶液を供給するとともに前記霧化容器内のソース材料
溶液の液面レベルを測定し、その液面レベルが適正な範
囲となるように前記超音波振動子の出力もしくは前記キ
ャリアガスの流量を制御することを特徴とするものであ
る。上記のように、前記超音波振動子の出力もしくは前
記キャリアガスの流量を制御することにより、ソース材
料溶液が霧化されて微粒子化する速度、および溶液微粒
子が製膜用基板上に輸送される速度が常に適正な一定範
囲内に制御される。これにより、均一な膜厚の金属酸化
物あるいは金属硫化物の薄膜を連続的に形成することが
できる。
Further, in the thin film forming method of the present invention, the source material solution is supplied from the solution supply container to the atomization container at a constant supply speed, and the liquid level of the source material solution in the atomization container is measured. The output of the ultrasonic vibrator or the flow rate of the carrier gas is controlled so that the liquid level is in an appropriate range. As described above, by controlling the output of the ultrasonic vibrator or the flow rate of the carrier gas, the speed at which the source material solution is atomized and atomized, and the solution particles are transported onto the film-forming substrate. The speed is always controlled within an appropriate constant range. Thereby, a thin film of metal oxide or metal sulfide having a uniform thickness can be continuously formed.

【0009】[0009]

【発明の実施の形態】超音波振動子は入力電圧が高いほ
ど高出力が得られ、一定の入力電圧によって一定の出力
が得られる基本的な特性を備えている。しかし、超音波
振動子を長時間に亘って作動させて薄膜形成を行う場合
には、一定の入力電圧を印加しても、その間の経時変化
により次第に出力が低下し、ソース材料溶液の霧化速度
が低下する傾向がある。また、超音波振動子を連続的に
長時間作動させると、時間の経過と共に霧化容器内のソ
ース材料溶液の温度が上昇し、粘度が低下して霧化され
やすい状態になる。また、薄膜形成時の周囲温度や霧化
容器内のソース材料溶液量の変化によっても霧化速度が
変動する。さらには、同一仕様の超音波振動子を使用し
て一定の入力電圧を印加した場合でも多少の特性バラツ
キがあり、個々の超音波振動子によって出力が若干異な
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic transducer has a basic characteristic that a higher output is obtained as the input voltage is higher, and a constant output is obtained with a constant input voltage. However, when a thin film is formed by operating the ultrasonic vibrator for a long time, even if a constant input voltage is applied, the output gradually decreases due to a change over time during the application, and the source material solution is atomized. Speed tends to decrease. In addition, when the ultrasonic vibrator is operated continuously for a long time, the temperature of the source material solution in the atomization container increases with the elapse of time, the viscosity decreases, and the atomization is easily performed. Further, the atomization speed also varies depending on the ambient temperature during the formation of the thin film and the amount of the source material solution in the atomization container. Furthermore, even when a constant input voltage is applied using ultrasonic transducers having the same specifications, there is some variation in characteristics, and the output differs slightly depending on each ultrasonic transducer.

【0010】上記の理由により、単に超音波振動子の入
力電圧を一定に設定するのみでは、超音波振動子の出力
やソース材料溶液の温度および霧化容器内のソース材料
溶液量が薄膜形成中に刻々変化するために、ソース材料
溶液の霧化速度が変動する。これに即応して製膜用基板
の表面への溶液微粒子の輸送速度が変動し、薄膜形成速
度が変動するので、形成された薄膜の膜厚バラツキが大
きくなる問題がある。本発明は上記の問題を解決したも
のであり、以下にその実施の形態を詳細に説明する。
[0010] For the above reasons, simply setting the input voltage of the ultrasonic vibrator to a constant value causes the output of the ultrasonic vibrator, the temperature of the source material solution, and the amount of the source material solution in the atomization container to be reduced during thin film formation. , The atomization rate of the source material solution fluctuates. In response to this, the transport speed of the solution fine particles to the surface of the film-forming substrate fluctuates, and the thin-film formation speed fluctuates. Therefore, there is a problem that the thickness variation of the formed thin film becomes large. The present invention has solved the above-mentioned problem, and embodiments thereof will be described in detail below.

【0011】まず本発明の第一の薄膜形成方法は、霧化
容器内のソース材料溶液量を一定に保ち、かつ霧化容器
内に供給されるソース材料溶液の供給速度を測定し、そ
の測定値が適正値になるように超音波振動子の出力を制
御しながら薄膜形成を行うものである。この場合、前記
供給速度は、薄膜形成の過程で単位時間当たりに溶液供
給容器から霧化容器に供給されるソース材料溶液の量
(重量または体積)を指す。従って、前記供給速度はソ
ース材料溶液が単位時間当たりに霧化される量(ソース
材料溶液の霧化速度)、および霧化された溶液微粒子が
製膜用基板の表面に単位時間当たりに輸送される量(溶
液微粒子の輸送速度)と対応する値となる。
First, in the first thin film forming method of the present invention, the source material solution amount in the atomization container is kept constant, and the supply rate of the source material solution supplied into the atomization container is measured. The thin film is formed while controlling the output of the ultrasonic transducer so that the value becomes an appropriate value. In this case, the supply speed refers to the amount (weight or volume) of the source material solution supplied from the solution supply container to the atomization container per unit time in the process of forming the thin film. Therefore, the supply speed is determined by the amount of the source material solution atomized per unit time (the atomization speed of the source material solution), and the atomized solution particles are transported to the surface of the film forming substrate per unit time. (The transport speed of the solution fine particles).

【0012】従って、上記の本発明の第一の薄膜形成方
法によって前記供給速度を測定し、この測定値が適正な
範囲の値になるように、超音波振動子への入力電圧を調
整して出力を制御することにより、前記ソース材料の霧
化速度および前記溶液微粒子の輸送速度の変動が抑制さ
れる。その結果、安定した速度で薄膜形成反応を進行さ
せることができ、連続的に薄膜形成した場合でも、形成
された薄膜の膜厚バラツキを効果的に縮小することがで
きる。
Therefore, the supply speed is measured by the above-mentioned first thin film forming method of the present invention, and the input voltage to the ultrasonic vibrator is adjusted so that the measured value falls within a proper range. By controlling the output, fluctuations in the atomization speed of the source material and the transport speed of the solution fine particles are suppressed. As a result, the thin film formation reaction can proceed at a stable speed, and even when the thin film is formed continuously, the thickness variation of the formed thin film can be effectively reduced.

【0013】本発明の第二の薄膜形成方法は、霧化容器
内のソース材料溶液量を一定に保ち、かつソース材料溶
液の前記供給速度を測定し、その測定値が適正値になる
ように前記キャリアガスの流量を制御するものである。
本発明により、超音波振動子への入力電圧を一定にして
薄膜形成した場合の前記の問題が解決され、連続的に薄
膜形成した場合でも、形成された薄膜の膜厚バラツキを
効果的に縮小することができる。
According to a second thin film forming method of the present invention, the supply rate of the source material solution is measured while keeping the amount of the source material solution in the atomization container constant, and the measured value is adjusted to an appropriate value. The flow rate of the carrier gas is controlled.
According to the present invention, the above-described problem in the case where a thin film is formed with a constant input voltage to the ultrasonic vibrator is solved, and even when a thin film is continuously formed, the thickness variation of the formed thin film is effectively reduced. can do.

【0014】即ち、前記ソース材料溶液の霧化速度と前
記溶液微粒子の輸送速度はキャリアガスの流量によって
も大きく影響を受け、キャリアガスの流量が多いほど前
記霧化速度および前記輸送速度が高くなるという対応関
係がある。従って、本発明によりキャリアガスの流量を
制御することにより、前記霧化速度および前記輸送速度
を適正な範囲内に制御することが可能となる。これによ
って、上記第一の薄膜形成方法の場合と同様の効果が得
られる。
That is, the atomization speed of the source material solution and the transport speed of the solution fine particles are greatly affected by the flow rate of the carrier gas. The greater the flow rate of the carrier gas, the higher the atomization speed and the transport speed. There is a corresponding relationship. Therefore, by controlling the flow rate of the carrier gas according to the present invention, it is possible to control the atomization speed and the transport speed within appropriate ranges. Thereby, the same effect as in the case of the first thin film forming method can be obtained.

【0015】上記本発明の第一および第二の薄膜形成方
法において、ソース材料溶液の供給速度を測定する方法
としては、前記溶液供給容器から霧化容器へ供給され
るソース材料溶液の流量を、例えば液体流量計により測
定する方法、前記溶液供給容器内のソース材料溶液の
重量変化を、例えは重量秤により測定する方法を採るこ
とが好ましい。ソース材料溶液の前記供給速度の各測定
方法(および)により測定された前記ソース材料溶
液の流量あるいは前記溶液供給容器内のソース材料溶液
の重量減少速度は、霧化容器内へのソース材料溶液の供
給速度と等しい。この際、供給速度はソース材料溶液の
霧化速度および溶液微粒子の輸送速度とが実質的に等し
い関係にあることが理想的である。実際には、前記供給
速度はソース材料溶液の瞬間的な供給速度よりは、むし
ろ所定時間毎、例えば一分間毎の平均的な供給速度の測
定値が、その間の前記霧化速度および輸送速度をより正
確に反映している場合が多い。このような場合には、薄
膜形成装置や形成条件に応じて上記所定時間を適宜設定
してその間の平均的な供給速度を測定することが好まし
い。
In the first and second thin film forming methods of the present invention, as a method for measuring the supply speed of the source material solution, the flow rate of the source material solution supplied from the solution supply container to the atomization container is determined by: For example, it is preferable to adopt a method of measuring with a liquid flow meter, or a method of measuring a change in weight of the source material solution in the solution supply container with, for example, a weight scale. The flow rate of the source material solution or the weight reduction rate of the source material solution in the solution supply container measured by each of the measurement methods (and) of the supply speed of the source material solution is determined by the amount of the source material solution into the atomization container. Equal to the feed rate. At this time, it is ideal that the supply speed is substantially equal to the atomization speed of the source material solution and the transport speed of the solution fine particles. In practice, the feed rate is not an instantaneous feed rate of the source material solution, but rather a measurement of the average feed rate every predetermined time, for example every minute, determines the atomization rate and the transport rate during that time. Often it reflects more accurately. In such a case, it is preferable to set the above-mentioned predetermined time appropriately according to the thin film forming apparatus and the forming conditions, and measure the average supply speed during the predetermined time.

【0016】本発明の第三の薄膜形成方法は、前記溶液
供給容器から前記霧化容器に一定速度で前記ソース材料
溶液を供給するとともに前記霧化容器内の前記ソース材
料溶液の液面レベルを測定し、その液面レベルが適正な
範囲となるように前記超音波振動子の出力を制御しなが
ら前記薄膜を形成するものである。また、本発明の第四
の薄膜形成方法は、前記溶液供給容器から前記霧化容器
に一定速度で前記ソース材料溶液を供給するとともに前
記霧化容器内の前記ソース材料溶液の液面レベルを測定
し、その液面レベルが適正な範囲となるように前記キャ
リアガスの流量を制御しながら前記薄膜を形成するもの
である。
According to a third thin film forming method of the present invention, the source material solution is supplied from the solution supply container to the atomization container at a constant speed, and the liquid level of the source material solution in the atomization container is adjusted. The thin film is formed while measuring and controlling the output of the ultrasonic vibrator so that the liquid level is in an appropriate range. Further, in the fourth thin film forming method of the present invention, the source material solution is supplied at a constant speed from the solution supply container to the atomization container, and a liquid level of the source material solution in the atomization container is measured. Then, the thin film is formed while controlling the flow rate of the carrier gas so that the liquid level is in an appropriate range.

【0017】前記本発明の第三および第四の薄膜形成方
法において測定する霧化容器内のソース材料溶液の液面
レベルは、一定速度で供給されて霧化容器内に収容され
ているソース材料溶液の量に対応するものであり、霧化
されたソース材料溶液の量の変化に即応して変化する。
従って、霧化容器内のソース材料溶液の液面レベルが上
昇した場合、即ち霧化速度が低下した場合には超音波振
動子の出力あるいはキャリアガスの流量を高め、その逆
の場合には超音波振動子の出力あるいはキャリアガスの
流量を低くすることにより、ソース材料の霧化速度およ
び溶液微粒子の輸送速度を一定範囲内に制御することが
できる。霧化容器内のソース材料溶液の液面レベルは、
例えば液面レベルセンサーにより測定できる。これらの
方法を用いて薄膜形成を行う場合には、許容される適正
な液面レベル範囲を設定し、この範囲内に液面レベルが
常に維持されるように、超音波振動子の出力あるいはキ
ャリアガスの流量を制御すれば良い。
The liquid level of the source material solution in the atomization container measured in the third and fourth thin film forming methods of the present invention is supplied at a constant rate and is stored in the atomization container. It corresponds to the volume of the solution and changes in response to a change in the volume of the atomized source material solution.
Therefore, when the liquid level of the source material solution in the atomization container rises, that is, when the atomization speed decreases, the output of the ultrasonic transducer or the flow rate of the carrier gas is increased, and vice versa. By reducing the output of the sonic transducer or the flow rate of the carrier gas, the atomization rate of the source material and the transport rate of the solution fine particles can be controlled within a certain range. The level of the source material solution in the atomization vessel is
For example, it can be measured by a liquid level sensor. When a thin film is formed by using these methods, an appropriate allowable liquid level range is set, and the output of the ultrasonic transducer or the carrier is set so that the liquid level is always maintained within this range. What is necessary is just to control the gas flow rate.

【0018】上記の本発明による各薄膜形成方法により
形成する金属硫化物あるいは金属酸化物の薄膜には、前
に例示したように種々のものがあるが、それらのソース
材料として用いる金属化合物を以下に例示する。金属硫
化物の内、例えばCdSの薄膜形成にはジブチルジチオ
カルバミン酸カドミウムを主に用いるが、ジエチルジチ
オカルバミン酸カドミウムなどを用いることもできる。
また、ZnSの薄膜形成にはジブチルジチオカルバミン
酸亜鉛、CdSとZnSの混晶薄膜の形成にはジブチル
ジチオカルバミン酸カドミウムとジブチルジチオカルバ
ミン酸亜鉛の混合物、PbSの薄膜形成にはジエチルジ
チオカルバミン酸鉛などを用いることができる。
There are various types of metal sulfide or metal oxide thin films formed by each of the above-described thin film forming methods according to the present invention, as exemplified above. An example is shown below. Among metal sulfides, for example, cadmium dibutyldithiocarbamate is mainly used for forming a thin film of CdS, but cadmium diethyldithiocarbamate can also be used.
In addition, zinc dibutyldithiocarbamate is used to form a thin film of ZnS, a mixture of cadmium dibutyldithiocarbamate and zinc dibutyldithiocarbamate is used to form a mixed crystal thin film of CdS and ZnS, and lead diethyldithiocarbamate is used to form a thin film of PbS. Can be.

【0019】また、金属酸化物の内、SnO2などの錫
酸化物の薄膜形成には二塩化ジメチル錫を主に用いる
が、トリメチル塩化錫などを用いることができる。ま
た、In 23の薄膜形成には硫酸インジウム、ITOの
薄膜形成には硫酸インジウムと硫酸錫の混合物、ZnO
の薄膜形成には酢酸亜鉛などの金属化合物を用いること
ができる。そして、これらのソース材料をトルエンなど
の有機溶剤や水などの溶媒に溶解した溶液をソース材料
溶液として用いる。
In addition, among the metal oxides, SnOTwoSuch as tin
Dimethyltin dichloride is mainly used for oxide thin film formation
However, trimethyl tin chloride or the like can be used. Ma
In TwoOThreeIndium sulfate, ITO
For forming a thin film, a mixture of indium sulfate and tin sulfate, ZnO
Use metal compounds such as zinc acetate for thin film formation
Can be. And these source materials such as toluene
Solution dissolved in a solvent such as organic solvent or water
Use as a solution.

【0020】製膜用基板としては、形成する薄膜の使用
目的に応じて、ガラスなどの透光性基板や金属、セラミ
ックなどの耐熱性基板、あるいはこれらの基板に予め透
明導電性膜などの下地膜が形成されたものを用いること
ができる。またキャリアガスとしては、金属硫化物薄膜
を形成する場合には窒素などの不活性ガス、金属酸化物
薄膜を形成する場合には空気などの酸素を含むガスを用
いる。
Depending on the intended use of the thin film to be formed, a film-forming substrate may be a light-transmitting substrate such as glass, a heat-resistant substrate such as metal or ceramic, or a transparent conductive film such as a transparent conductive film. One on which a ground film is formed can be used. As the carrier gas, an inert gas such as nitrogen is used for forming a metal sulfide thin film, and a gas containing oxygen such as air is used for forming a metal oxide thin film.

【0021】これらの方法により得られる薄膜は、前記
のように太陽電池などの光電変換素子や表示ディスプレ
イなどに広く用いられるが、特に、本発明により形成さ
れるSnO2薄膜などの錫酸化物薄膜を、例えば太陽電
池の透明導電膜として用いることにより、透明導電膜の
抵抗値が均一化されるので、太陽電池の曲線因子が一定
化し、変換効率のバラツキが少なく高品質の太陽電池を
作製することがでる。また、上記の錫酸化物薄膜を透明
電極として用いることにより、高品質の液晶やタッチパ
ネルを構成することができる。
The thin films obtained by these methods are widely used for photoelectric conversion elements such as solar cells and display displays as described above. In particular, tin oxide thin films such as SnO 2 thin films formed by the present invention are used. Is used as a transparent conductive film of a solar cell, for example, so that the resistance value of the transparent conductive film is uniformed, so that the fill factor of the solar cell is constant, and a high-quality solar cell with less variation in conversion efficiency is produced. I can do it. In addition, by using the tin oxide thin film as a transparent electrode, a high-quality liquid crystal or touch panel can be formed.

【0022】さらに、本発明により得られるCdS薄
膜、ZnS薄膜、あるいはこれらの混晶膜をCdTe系
太陽電池のn型半導体膜として用いることが特に有効で
ある。CdTe系太陽電池のCdS膜などのn型半導体
膜は、膜厚が薄すぎる場合は太陽電池の開放電圧と変換
効率が低下し、膜厚が厚すぎる場合は短絡電流が低下し
て変換効率が低下する。従って、本発明により形成され
た膜厚が均一な前記n型半導体の薄膜をこれらの太陽電
池に用いることにより、変換効率を高レベルに安定化す
ることが可能となる。
Further, it is particularly effective to use a CdS thin film, a ZnS thin film, or a mixed crystal film thereof obtained by the present invention as an n-type semiconductor film of a CdTe solar cell. When the n-type semiconductor film such as the CdS film of the CdTe solar cell is too thin, the open-circuit voltage and the conversion efficiency of the solar cell decrease. When the film thickness is too thick, the short-circuit current decreases and the conversion efficiency decreases. descend. Therefore, the conversion efficiency can be stabilized at a high level by using the n-type semiconductor thin film having a uniform film thickness formed according to the present invention for these solar cells.

【0023】[0023]

【実施例】以下に、本発明を具体的な実施例を挙げてよ
り詳細に説明する。図1および7は、本発明の下記の実
施例1および2において実施した各々の薄膜形成方法を
説明するための薄膜形成装置の概念図である。まず、図
1および7において共通する部分について説明する。溶
液供給容器1中のソース材料溶液3aを霧化容器2に供
給し、霧化容器2内に収容されたソース材料溶液3bを
超音波振動子4により霧化する。霧化された溶液微粒子
5を、キャリアガス導入管6から霧化容器2内に導入さ
れたキャリアガス7中に混合して吹き付け用ガス8とす
る。支持台14上に固定され、ヒーター15により予め
加熱された加熱板16上に製膜用基板17を載置する。
この製膜用基板17上に、輸送管9により輸送された吹
き付け用ガス8を吹き付け、前記製膜用基板17の表面
で前記溶液微粒子5中のソース材料を熱分解させて金属
酸化物あるいは金属硫化物の薄膜18を形成する。尚、
上記の内容は下記の各実施例および各比較例において共
通して実施したので、以下の個別の説明ではこれを省略
する。
The present invention will be described below in more detail with reference to specific examples. 1 and 7 are conceptual diagrams of a thin film forming apparatus for explaining respective thin film forming methods performed in the following first and second embodiments of the present invention. First, common parts in FIGS. 1 and 7 will be described. The source material solution 3 a in the solution supply container 1 is supplied to the atomization container 2, and the source material solution 3 b stored in the atomization container 2 is atomized by the ultrasonic vibrator 4. The atomized solution particles 5 are mixed into a carrier gas 7 introduced into the atomization container 2 from a carrier gas introduction pipe 6 to form a blowing gas 8. A film-forming substrate 17 is placed on a heating plate 16 fixed on a support 14 and preheated by a heater 15.
The blowing gas 8 transported by the transport pipe 9 is blown onto the film-forming substrate 17 to thermally decompose the source material in the solution fine particles 5 on the surface of the film-forming substrate 17, thereby forming a metal oxide or metal. A sulfide thin film 18 is formed. still,
The above contents were implemented in common in each of the following Examples and Comparative Examples, and thus will not be described in the following individual description.

【0024】《実施例1》溶液供給容器と霧化容器と
を、溶液供給容器内のソース材料溶液の液面が一定に保
たれるように結合した図1の装置を用い、かつ溶液供給
容器から霧化容器に供給されるソース材料溶液の供給速
度を測定し、その供給速度が適正値になるように超音波
振動子の出力を制御してSnO2薄膜の形成を行った。
溶液供給容器1はソース材料溶液3aで満たした後に気
密状態に密封し、溶液供給容器1と霧化容器2を気密に
連結する溶液供給管20を通して霧化容器2内にソース
材料溶液3bを流入させた。この際、ソース材料溶液3
bはその液面が溶液供給管20の先端部と一致するまで
霧化容器2内に導入される。このようにして、一定量の
ソース材料溶液3bを霧化容器2内に導入した後、薄膜
形成を開始した。
Embodiment 1 A solution supply container and an atomization container are connected by using the apparatus shown in FIG. 1 in which the level of the source material solution in the solution supply container is kept constant. The supply rate of the source material solution supplied to the atomization container from was measured, and the output of the ultrasonic vibrator was controlled so that the supply rate became an appropriate value to form a SnO 2 thin film.
The solution supply container 1 is filled with the source material solution 3a and then hermetically sealed, and the source material solution 3b flows into the atomization container 2 through the solution supply pipe 20 which connects the solution supply container 1 and the atomization container 2 in an airtight manner. I let it. At this time, the source material solution 3
b is introduced into the atomization container 2 until the liquid level coincides with the tip of the solution supply pipe 20. In this way, after a certain amount of the source material solution 3b was introduced into the atomization container 2, thin film formation was started.

【0025】薄膜形成開始後にソース材料溶液3bが霧
化されると、ソース材料溶液3bの液面が低下し、この
液面と溶液供給管20の先端部との間に空隙が生じる。
少しでもこの空隙が生じると、溶液供給管20を通して
霧化容器2内の気体と溶液供給容器1内のソース材料溶
液3aが置換し、前記空隙が塞がるまで、霧化容器2内
にソース材料溶液3bが供給される。薄膜形成中には上
記の置換により、ソース材料溶液3bの供給が5〜10
秒間の周期で絶え間なく継続して行われたので、霧化容
器2内のソース材料溶液3bの液面(液量)は常にほぼ
一定に保たれた。
When the source material solution 3b is atomized after the start of the formation of the thin film, the liquid level of the source material solution 3b drops, and a gap is formed between the liquid level and the tip of the solution supply pipe 20.
If this gap is formed even a little, the gas in the atomization container 2 is replaced with the source material solution 3a in the solution supply container 1 through the solution supply pipe 20, and the source material solution is stored in the atomization container 2 until the gap is closed. 3b is supplied. During the formation of the thin film, the supply of the source material solution 3b is reduced by 5 to 10
The liquid level (liquid volume) of the source material solution 3b in the atomization container 2 was always kept almost constant, since it was continuously performed in a cycle of seconds.

【0026】溶液供給容器1より霧化容器2へ供給され
るソース材料溶液3aの流量は液体流量計11によって
常時計測した。そしてソース材料溶液3bの供給が前記
のような周期で行われることを考慮して、前記流量計測
値の一分間毎の平均値をその間の供給速度として求め
た。このようにして求めた供給速度はその間の前記ソー
ス材料溶液の平均的霧化速度とほぼ等しい関係を示し
た。この供給速度を一分間毎に超音波振動子4の出力コ
ントローラー10にフィードバックし、前記供給速度が
後記の設定範囲の値になるように超音波振動子4の入力
電圧を増減させて出力を制御しながら薄膜形成を行っ
た。
The flow rate of the source material solution 3a supplied from the solution supply container 1 to the atomization container 2 was constantly measured by the liquid flow meter 11. In consideration of the fact that the supply of the source material solution 3b is performed in the above-described cycle, the average value of the flow rate measured value per minute was determined as the supply speed during the period. The feed rate determined in this way showed a relationship approximately equal to the average atomization rate of the source material solution during that time. This supply speed is fed back to the output controller 10 of the ultrasonic vibrator 4 every minute, and the output is controlled by increasing or decreasing the input voltage of the ultrasonic vibrator 4 so that the supply speed becomes a value within a set range described later. The thin film formation was performed while performing.

【0027】ソース材料溶液として、二塩化ジメチル錫
100gを水360gに溶解させた溶液、発振周波数1
MHzの超音波振動子4、および製膜用基板17として
100mm角のガラス基板を用い、製膜用基板17の加
熱温度を550℃、一枚当たりの製膜時間を100秒間
とした。また、キャリアガス7には露点−50℃のドラ
イエアーを用い、流量を20リットル/分とした。一枚
の製膜用基板17の製膜を終了後、直ちに後続の製膜用
基板を供給して37枚の薄膜形成を連続的に行った。こ
のようにして形成されたSnO2薄膜18の標準的な膜
厚は約500nmであった。
As a source material solution, a solution prepared by dissolving 100 g of dimethyltin dichloride in 360 g of water.
A 100-mm square glass substrate was used as the ultrasonic oscillator 4 of MHz and the film-forming substrate 17, the heating temperature of the film-forming substrate 17 was 550 ° C., and the film-forming time per sheet was 100 seconds. Dry air having a dew point of −50 ° C. was used as the carrier gas 7, and the flow rate was 20 liters / minute. Immediately after the formation of one film-forming substrate 17 was completed, the subsequent film-forming substrate was supplied to continuously form 37 thin films. The standard thickness of the SnO 2 thin film 18 thus formed was about 500 nm.

【0028】このように薄膜形成の間は、前記のように
霧化容器2内のソース材料溶液3bの液面レベルが一定
に保たれるように、溶液供給容器1からソース材料溶液
3aを供給したので、液体流量計11で計測された流量
の平均値から求めたソース材料溶液3bの供給速度は、
ソース材料溶液3bの霧化速度および霧化された溶液微
粒子5が製膜用基板17に輸送される速度とほぼ等しい
値となる。本実施例では、薄膜形成のための適正なソー
ス材料溶液3bの供給速度を8.3〜8.7ミリリット
ル/分と設定し、この設定範囲が維持できるように超音
波振動子4の入力電圧を増減させて出力を制御しながら
薄膜形成を行った。また、薄膜形成開始時のソース材料
溶液3bの温度を25℃とした。
During the formation of the thin film, the source material solution 3a is supplied from the solution supply container 1 so that the liquid level of the source material solution 3b in the atomization container 2 is kept constant as described above. Therefore, the supply speed of the source material solution 3b obtained from the average value of the flow rates measured by the liquid flow meter 11 is:
The atomization speed of the source material solution 3b and the speed at which the atomized solution particles 5 are transported to the film forming substrate 17 are substantially equal to each other. In this embodiment, an appropriate supply rate of the source material solution 3b for forming a thin film is set to 8.3 to 8.7 ml / min, and the input voltage of the ultrasonic vibrator 4 is maintained so as to maintain this set range. The thin film was formed while controlling the output by increasing or decreasing the number of the layers. Further, the temperature of the source material solution 3b at the start of the thin film formation was set to 25 ° C.

【0029】図2にソース材料溶液3bの温度が25℃
の場合の薄膜形成開始前の超音波振動子4の入力電圧と
ソース材料溶液3bの霧化速度との対応関係を示す。図
2から、適正なソース材料溶液供給速度(8.3〜8.
7ミリリットル/分)に対応する霧化速度を得るための
超音波振動子4への入力電圧は39.5〜40Vであ
り、本実施例では薄膜形成開始時の入力電圧を40Vと
した。しかし、超音波振動子4の入力電圧が一定であっ
ても、前記のように薄膜形成中には超音波振動子4の作
動や周囲温度の変化などによるソース材料溶液3bの温
度変化、超音波振動子4の出力特性の経時変化などが起
こり、図2のような定量的対応関係が薄膜形成の間に刻
々変化するのを避けられない。
FIG. 2 shows that the temperature of the source material solution 3b is 25 ° C.
4 shows the correspondence between the input voltage of the ultrasonic vibrator 4 and the atomization speed of the source material solution 3b before the start of the thin film formation in the case of FIG. From FIG. 2, it can be seen that the appropriate source material solution supply rate (8.3 to 8.
The input voltage to the ultrasonic vibrator 4 for obtaining the atomization speed corresponding to 7 ml / min) was 39.5 to 40 V, and in this embodiment, the input voltage at the start of the thin film formation was 40 V. However, even if the input voltage of the ultrasonic vibrator 4 is constant, the temperature change of the source material solution 3b due to the operation of the ultrasonic vibrator 4 and the change of the ambient temperature during the formation of the thin film as described above, It is inevitable that the output characteristics of the vibrator 4 change with time and the quantitative correspondence as shown in FIG. 2 changes every moment during the formation of the thin film.

【0030】例えば図3に示すように、ソース材料溶液
3bの温度が変化すると霧化速度が著しく変化する。従
って、仮に薄膜形成開始時に設定した超音波振動子4へ
の入力電圧(40V)を薄膜形成中に一定に維持した場
合には、前記温度が25℃から20℃に低下した時には
霧化速度が8.1ミリリットル/分と減少し、30℃に
上昇した時には9.2ミリリットル/分と増加して、前
記適正値の範囲(8.3〜8.7ミリリットル/分)か
ら外れて変動することになる。その結果、製膜速度が不
安定となり、一定膜厚の均質な薄膜を形成することがで
きない。そのため、上記の薄膜形成開始時に設定した入
力電圧を固定して連続的に薄膜形成を継続した場合に
は、薄膜形成時間の経過に伴って前記ソース材料溶液3
bの霧化速度を前記適正値範囲に維持できなくなる。
For example, as shown in FIG. 3, when the temperature of the source material solution 3b changes, the atomization speed changes remarkably. Therefore, if the input voltage (40 V) to the ultrasonic vibrator 4 set at the start of the thin film formation is kept constant during the formation of the thin film, the atomization rate will be reduced when the temperature drops from 25 ° C. to 20 ° C. Decreases to 8.1 ml / min, increases to 9.2 ml / min when the temperature rises to 30 ° C., and fluctuates out of the appropriate range (8.3 to 8.7 ml / min). become. As a result, the film forming speed becomes unstable, and a uniform thin film having a constant film thickness cannot be formed. Therefore, when the input voltage set at the start of the thin film formation described above is fixed and the thin film formation is continuously performed, the source material solution 3 is not removed as the thin film formation time elapses.
The atomization speed b cannot be maintained in the above-mentioned appropriate value range.

【0031】本実施例では上記のような問題を解決する
ため、薄膜形成中に溶液供給容器1から霧化容器2に供
給されるソース材料溶液3bの流量を液体流量計11で
常時計測して一分間毎の平均的な供給速度を測定し、そ
の供給速度が設定値より低くなる以前に超音波振動子4
への入力電圧を高め、設定値より高くなる以前に入力電
圧を低く調整して超音波振動子4の出力を制御しなが
ら、同一の超音波振動子4を連続して使用して薄膜形成
を行った。その間にソース材料溶液3bの温度が約20
〜30℃の範囲で変化したが、前記供給速度の測定値に
即応させて前記入力電圧を約38〜42Vの範囲で変化
させて前記出力を制御した。
In this embodiment, in order to solve the above-described problem, the flow rate of the source material solution 3b supplied from the solution supply container 1 to the atomization container 2 during the formation of the thin film is constantly measured by the liquid flow meter 11. The average supply speed per minute is measured, and before the supply speed becomes lower than the set value, the ultrasonic vibrator 4
While the input voltage to the ultrasonic transducer 4 is increased and the output voltage of the ultrasonic transducer 4 is controlled by lowering the input voltage before the input voltage becomes higher than the set value, the same ultrasonic transducer 4 is continuously used to form a thin film. went. In the meantime, the temperature of the source material solution 3b is about 20
The output was controlled by changing the input voltage in the range of about 38 to 42 V in response to the measured value of the supply speed, although the temperature varied in the range of 3030 ° C.

【0032】《比較例1》超音波振動子4への入力電圧
を40Vに固定した以外は、実施例1と同様にして37
枚のSnO2薄膜18を形成した。
<< Comparative Example 1 >> Except that the input voltage to the ultrasonic transducer 4 was fixed at 40 V, the same as in Example 1 was repeated.
One SnO 2 thin film 18 was formed.

【0033】次に、実施例1および比較例1で形成した
各々37枚宛のSnO2薄膜の試料について面抵抗を測
定した。図4に実施例1のSnO2薄膜の面抵抗の分
布、図5に比較例1のSnO2薄膜の面抵抗の分布を示
す。図4および5から、実施例1の場合の面抵抗のバラ
ツキ幅は10〜14Ω/□であり、比較例1の場合の9
〜15Ω/□に較べてバラツキ幅が縮小されており、実
施例1により安定した特性のSnO2薄膜が得られたこ
とが確認された。また同時に、前記面抵抗とSnO2
膜の膜厚とは図6のような対応関係にあることから、実
施例1では膜厚のバラツキ幅が効果的に縮小されている
ことが確認された。
Next, the sheet resistance of each of the 37 SnO 2 thin film samples formed in Example 1 and Comparative Example 1 was measured. 4 to SnO 2 thin film distribution of surface resistance of Example 1 shows the distribution of the surface resistance of the SnO 2 film of Comparative Example 1 in FIG. 4 and 5, the variation width of the sheet resistance in the case of Example 1 is 10 to 14Ω / □, and the variation width of 9 in the case of Comparative Example 1.
The variation width was reduced as compared with 〜15 Ω / □, and it was confirmed that the SnO 2 thin film having stable characteristics was obtained in Example 1. At the same time, since the sheet resistance and the thickness of the SnO 2 thin film correspond to each other as shown in FIG. 6, it was confirmed that in Example 1, the variation width of the film thickness was effectively reduced.

【0034】《実施例2》溶液供給容器から霧化容器へ
一定の供給速度でソース材料溶液を供給するとともに霧
化容器内のソース材料溶液の液面レベルを液面レベルセ
ンサーにより測定し、その液面レベルが適正な範囲とな
るようにキャリアガスの流量を制御する薄膜形成方法に
より、図7の装置を用いてCdS薄膜を形成した。溶液
供給容器1にソース材料溶液3aを満たした後、溶液供
給管20を通して霧化容器2内にソース材料溶液3bを
流入させ、その液面レベルが所定の値(35mm)に達
した時点から薄膜形成を開始した。溶液供給管20には
液体流量計11を備え、且つ流量調整弁の開閉度合いを
制御できる液体流量制御器19を取り付け、薄膜形成中
のソース材料溶液3aの流量を一定量に制御しながら、
薄膜形成を行った。
Embodiment 2 A source material solution is supplied from a solution supply container to an atomization container at a constant supply rate, and the liquid level of the source material solution in the atomization container is measured by a liquid level sensor. A CdS thin film was formed using the apparatus shown in FIG. 7 by a thin film forming method for controlling the flow rate of the carrier gas so that the liquid level was in an appropriate range. After the solution supply container 1 is filled with the source material solution 3a, the source material solution 3b flows into the atomization container 2 through the solution supply pipe 20, and from the time when the liquid level reaches a predetermined value (35 mm), the thin film is formed. Formation started. The solution supply pipe 20 is provided with the liquid flow meter 11 and a liquid flow controller 19 capable of controlling the degree of opening and closing of the flow control valve. The flow rate of the source material solution 3a during the formation of the thin film is controlled to be constant.
A thin film was formed.

【0035】ソース材料溶液3aとしてジブチルジチオ
カルバミン酸カドミウム20gをトルエン80gに溶解
させた溶液、発振周波数1MHzの超音波振動子4、お
よび100mm角のガラス基板上に実施例1の方法でS
nO2薄膜を形成した製膜用基板17を用い、製膜用基
板17の加熱温度を450℃、一枚当たりの製膜時間を
60秒間とした。また、キャリアガス7には窒素ガスを
用いた。一枚の製膜用基板17の製膜を終了後、直ちに
後続の製膜用基板を供給して49枚の製膜を連続的に行
った。超音波振動子4への入力電圧を40Vに固定し、
薄膜形成開始時のソース材料溶液3bの温度を25℃、
薄膜形成開始時のキャリアガス7の流量を10リットル
/分とした。
As a source material solution 3a, a solution prepared by dissolving 20 g of cadmium dibutyldithiocarbamate in 80 g of toluene, an ultrasonic vibrator 4 having an oscillation frequency of 1 MHz, and a glass substrate of 100 mm square by the method of Example 1
Using the film-forming substrate 17 having the nO 2 thin film formed thereon, the heating temperature of the film-forming substrate 17 was 450 ° C., and the film forming time per sheet was 60 seconds. Nitrogen gas was used as the carrier gas 7. Immediately after the formation of one film-forming substrate 17, 49 films were continuously formed by supplying the subsequent film-forming substrate. The input voltage to the ultrasonic transducer 4 is fixed at 40 V,
The temperature of the source material solution 3b at the start of the thin film formation is 25 ° C.
The flow rate of the carrier gas 7 at the start of the thin film formation was 10 liter / min.

【0036】薄膜形成中は、霧化容器2に取り付けた液
面レベルセンサー12によって霧化容器2内のソース材
料溶液3bの液面レベルを常時測定し、その測定値を気
体流量制御器13にフィードバックし、前記液面レベル
が34〜36mmの範囲内の値になるようにキャリアガ
ス7の流量を制御しながら薄膜形成を行った。尚、溶液
供給容器1から霧化容器2へのソース材料溶液3bの供
給速度は8.3ミリリットル/分の一定量に設定した。
また、上記34〜36mmの液面レベルの範囲は、霧化
容器2内で霧化された溶液微粒子5が製膜用基板17上
に輸送される適正な速度(8.1〜8.4ミリリットル
/分)に対応させて設定した。
During the formation of the thin film, the liquid level of the source material solution 3b in the atomizing container 2 is constantly measured by the liquid level sensor 12 attached to the atomizing container 2, and the measured value is sent to the gas flow controller 13. The thin film was formed while controlling the flow rate of the carrier gas 7 so that the liquid level was in the range of 34 to 36 mm. The supply rate of the source material solution 3b from the solution supply container 1 to the atomization container 2 was set to a fixed amount of 8.3 ml / min.
Further, the range of the liquid level of 34 to 36 mm is set to a proper speed (8.1 to 8.4 ml) at which the solution fine particles 5 atomized in the atomization container 2 are transported onto the film forming substrate 17. / Min).

【0037】図8にソース材料溶液3bの温度を25
℃、超音波振動子4への入力電圧を40Vに維持した場
合の霧化開始時および経過時間毎のキャリアガス7の流
量と霧化されたソース材料溶液の溶液微粒子5が単位時
間あたり輸送管9を通過する量(輸送速度)との対応関
係を示す。図8からキャリアガス7の流量が多いほど溶
液微粒子5の製膜用基板17表面への輸送速度が多くな
ることが分かる。本実施例の薄膜形成のための最適な前
記溶液微粒子5の輸送速度(8.1〜8.4ミリリット
ル/分)に適合させるため、図8の霧化開始時における
前記対応関係から、薄膜形成開始時におけるキャリアガ
ス7の流量を10リットル/分とした。
FIG. 8 shows that the temperature of the source material solution 3b is 25.
° C, when the input voltage to the ultrasonic vibrator 4 is maintained at 40 V, the flow rate of the carrier gas 7 at the start of atomization and at each elapsed time and the solution fine particles 5 of the atomized source material solution are transported per unit time. 9 shows a correspondence relationship with the amount passing through No. 9 (transport speed). From FIG. 8, it can be seen that as the flow rate of the carrier gas 7 increases, the transport speed of the solution fine particles 5 to the surface of the film forming substrate 17 increases. In order to adapt to the optimum transport speed of the solution microparticles 5 (8.1 to 8.4 ml / min) for forming the thin film of the present embodiment, the thin film formation is performed based on the correspondence at the start of atomization in FIG. At the start, the flow rate of the carrier gas 7 was 10 liter / min.

【0038】しかし、図8から分かるように、薄膜形成
中には薄膜形成開始時における定量的関係は維持され
ず、時間経過に伴って溶液微粒子5の輸送速度とキャリ
アガス7の流量との関係は刻々変化する。これらはソ−
ス材料溶液3bの温度低下、あるいは超音波振動子4の
出力劣化などにより低下し、ソ−ス材料溶液3bの温度
の上昇などにより高くなる。この他、超音波振動子4の
特性バラツキも溶液微粒子5の輸送速度と霧化速度を変
動させる大きな要因の一つである。従って、上記の薄膜
形成開始時のキャリアガス7の流量と超音波振動子4の
入力電圧を固定して薄膜形成を継続した場合には、溶液
微粒子5が輸送管9を通過し、薄膜形成のために輸送さ
れる速度を前記適正値の範囲に維持できない。
However, as can be seen from FIG. 8, the quantitative relationship at the beginning of the thin film formation is not maintained during the formation of the thin film, and the relationship between the transport speed of the solution fine particles 5 and the flow rate of the carrier gas 7 with time. Changes every moment. These are source
The temperature of the source material solution 3b decreases or the output of the ultrasonic vibrator 4 deteriorates. The temperature of the source material solution 3b increases. In addition, the characteristic variation of the ultrasonic vibrator 4 is also one of the major factors that fluctuate the transport speed and the atomization speed of the solution fine particles 5. Therefore, when the thin film formation is continued while fixing the flow rate of the carrier gas 7 and the input voltage of the ultrasonic vibrator 4 at the start of the thin film formation, the solution fine particles 5 pass through the transport pipe 9 and the thin film formation is started. Therefore, the transportation speed cannot be maintained in the above-mentioned appropriate value range.

【0039】図8から、超音波振動子4への入力電圧を
40Vに固定し、キャリアガス流量を10リットル/分
として薄膜形成を継続した場合、前記溶液微粒子5の輸
送速度は、例えば150時間経過後には8ミリリットル
/分、300時間経過後には7.7ミリリットル/分に
低下することが分かる。従って、例えば150時間経過
後の溶液微粒子5の輸送速度を設定値の範囲に維持する
ためには、キャリアガス流量を約11リットル/分にま
で増大させることが必要となる。
FIG. 8 shows that when the input voltage to the ultrasonic vibrator 4 is fixed at 40 V and the flow rate of the carrier gas is set to 10 liter / min and the thin film formation is continued, the transport speed of the solution fine particles 5 is, for example, 150 hours. It can be seen that it drops to 8 ml / min after elapse and to 7.7 ml / min after 300 hours. Therefore, for example, in order to maintain the transport speed of the solution fine particles 5 after the elapse of 150 hours within the set value range, it is necessary to increase the flow rate of the carrier gas to about 11 liter / minute.

【0040】このため、本実施例では霧化容器に一定速
度(8ミリリットル/分)でソース材料溶液3bを供給
し、霧化容器内のソース材料溶液3bの液面レベルを常
時計測し、その計測値が適正な液面レベル(34〜36
mm)より低くなる以前にキャリアガス7の流量を減少
させ、前記計測値が適正値より高くなる以前にキャリア
ガス7の流量を増大させるように制御して、前記ソース
材料溶液3bの液面レベルを適正値範囲に維持しながら
CdS薄膜を形成した。
For this reason, in this embodiment, the source material solution 3b is supplied to the atomizing container at a constant speed (8 ml / min), and the level of the source material solution 3b in the atomizing container is constantly measured. Measured value is appropriate liquid level (34 ~ 36
mm), the flow rate of the carrier gas 7 is decreased before the measured value becomes higher than the appropriate value, and the flow rate of the carrier gas 7 is increased before the measured value becomes higher than the appropriate value. Was maintained in an appropriate value range to form a CdS thin film.

【0041】《比較例2》キャリアガス7の流量を10
リットル/分に固定した以外は、実施例2と同様にして
49枚のCdS薄膜を形成した。
<< Comparative Example 2 >> The flow rate of the carrier gas 7 was set to 10
Except for fixing at liter / min, 49 CdS thin films were formed in the same manner as in Example 2.

【0042】次に、実施例2および比較例2で形成した
各々49枚宛のCdS薄膜の試料について、波長470
nmでの光透過率を測定した。図9に実施例2の試料の
光透過率の分布、図10に比較例2の試料の光透過率の
分布を示す。実施例2の場合の光透過率のバラツキ幅は
24〜28%であり、比較例2の場合の18〜32%に
較べてバラツキ幅が小さいことから、実施例2では安定
した特性のCdS薄膜が得られたことが確認された。ま
た、CdS薄膜の膜厚と光透過率とは図11に示すよう
な対応関係があることから、実施例2では膜厚のバラツ
キ幅も同時に効果的に縮小されていることが分かる。
Next, with respect to the CdS thin film samples of 49 sheets each formed in Example 2 and Comparative Example 2, a wavelength of 470
The light transmittance in nm was measured. FIG. 9 shows the light transmittance distribution of the sample of Example 2, and FIG. 10 shows the light transmittance distribution of the sample of Comparative Example 2. The variation width of the light transmittance in the case of Example 2 was 24 to 28%, and the variation width was smaller than that of 18 to 32% in the case of Comparative Example 2. Therefore, the CdS thin film having stable characteristics in Example 2 Was obtained. Further, since there is a correspondence relationship between the film thickness of the CdS thin film and the light transmittance as shown in FIG. 11, it can be seen that the variation width of the film thickness is effectively reduced in Example 2 at the same time.

【0043】なお、上記の実施例2では金属硫化物薄膜
のうちCdS薄膜の形成について詳細に説明したが、上
記以外にZnS薄膜、CdSとZnSの混晶薄膜の形成
についても実施例2と同様の実験を行い、本発明による
同様の効果が確認された。これらの場合に、ZnS薄膜
の形成にはジブチルジチオカルバミン酸亜鉛20gをト
ルエン80gに溶解したソース材料溶液を用い、CdS
とZnSの混晶薄膜の形成にはジブチルジチオカルバミ
ン酸カドミウム10.5gとジブチルジチオカルバミン
酸亜鉛9.5gをトルエン80gに溶解したソース材料
溶液を用いた。
In the second embodiment, the formation of the CdS thin film among the metal sulfide thin films has been described in detail. In addition to the above, the formation of the ZnS thin film and the mixed crystal thin film of CdS and ZnS is the same as in the second embodiment. The same effect according to the present invention was confirmed. In these cases, a ZnS thin film was formed using a source material solution obtained by dissolving 20 g of zinc dibutyldithiocarbamate in 80 g of toluene.
A source material solution in which 10.5 g of cadmium dibutyldithiocarbamate and 9.5 g of zinc dibutyldithiocarbamate were dissolved in 80 g of toluene was used to form a mixed crystal thin film of ZnS and ZnS.

【0044】[0044]

【発明の効果】以上のように、溶液供給容器と霧化容器
とを、前記霧化容器内のソース材料溶液の液面が一定に
保たれるように結合し、かつ前記溶液供給容器から霧化
容器へ供給されるソース材料溶液の供給速度を測定し、
その供給速度が適正値となるように前記超音波振動子の
出力もしくはキャリアガスの流量を制御することによ
り、形成される金属酸化物や金属硫化物の薄膜の膜厚を
均一化し、特性を安定化させることができる。また、前
記溶液供給容器から霧化容器へ一定の供給速度で前記ソ
ース材料溶液を供給するとともに前記霧化容器内のソー
ス材料溶液の液面レベルを測定し、その液面レベルが適
正な範囲となるように前記超音波振動子の出力もしくは
キャリアガス流量を制御することにより、同様の効果が
得られる。
As described above, the solution supply container and the atomization container are connected so that the liquid level of the source material solution in the atomization container is kept constant, and the solution supply container is atomized from the solution supply container. Measuring the supply rate of the source material solution supplied to the
By controlling the output of the ultrasonic vibrator or the flow rate of the carrier gas so that the supply speed becomes an appropriate value, the thickness of the formed metal oxide or metal sulfide thin film is made uniform, and the characteristics are stabilized. Can be changed. In addition, the source material solution is supplied at a constant supply rate from the solution supply container to the atomization container, and the liquid level of the source material solution in the atomization container is measured. By controlling the output of the ultrasonic vibrator or the flow rate of the carrier gas as described above, the same effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の実験に用いた薄膜形成装置の
構成を示す概念図である。
FIG. 1 is a conceptual diagram showing a configuration of a thin film forming apparatus used in an experiment of an embodiment of the present invention.

【図2】超音波振動子の入力電圧とソース材料溶液の霧
化速度との25℃における関係を示す図である。
FIG. 2 is a diagram showing a relationship at 25 ° C. between an input voltage of an ultrasonic transducer and an atomization rate of a source material solution.

【図3】超音波振動子への入力電圧とソース材料溶液の
霧化速度との各温度における関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between an input voltage to an ultrasonic transducer and an atomization speed of a source material solution at each temperature.

【図4】本発明の実施例による二酸化錫薄膜の面抵抗の
分布図である。
FIG. 4 is a distribution diagram of sheet resistance of a tin dioxide thin film according to an embodiment of the present invention.

【図5】比較例の二酸化錫薄膜の面抵抗の分布図であ
る。
FIG. 5 is a distribution diagram of sheet resistance of a tin dioxide thin film of a comparative example.

【図6】二酸化錫薄膜の面抵抗と膜厚の関係を示す図で
ある。
FIG. 6 is a diagram showing a relationship between sheet resistance and film thickness of a tin dioxide thin film.

【図7】本発明の他の実施例の実験に用いた薄膜形成装
置の構成を示す概念図である。
FIG. 7 is a conceptual diagram showing a configuration of a thin film forming apparatus used in an experiment of another embodiment of the present invention.

【図8】霧化開始時および経過時間毎のキャリアガス流
量と溶液微粒子の輸送速度との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the carrier gas flow rate at the start of atomization and for each elapsed time and the transport speed of the solution fine particles.

【図9】本発明の実施例による硫化カドミウム薄膜の光
透過率の分布図である。
FIG. 9 is a distribution diagram of light transmittance of a cadmium sulfide thin film according to an example of the present invention.

【図10】比較例の硫化カドミウム薄膜の光透過率の分
布図である。
FIG. 10 is a distribution diagram of light transmittance of a cadmium sulfide thin film of a comparative example.

【図11】硫化カドミウム薄膜の膜厚と光透過率との関
係を示す図である。
FIG. 11 is a diagram showing the relationship between the thickness of a cadmium sulfide thin film and light transmittance.

【符号の説明】[Explanation of symbols]

1 溶液供給容器 2 霧化容器 3a 溶液供給容器内のソース材料溶液 3b 霧化容器内のソース材料溶液 4 超音波振動子 5 溶液微粒子 6 キャリアガス導入管 7 キャリアガス 8 吹き付け用ガス 9 輸送管 10 超音波発振子出力コントローラー 11 液体流量計 12 液面レベルセンサー 13 気体流量制御器 14 支持台 15 ヒーター 16 加熱板 17 製膜用基板 18 薄膜 19 液体流量制御器 20 溶液供給管 DESCRIPTION OF SYMBOLS 1 Solution supply container 2 Atomization container 3a Source material solution in a solution supply container 3b Source material solution in an atomization container 4 Ultrasonic vibrator 5 Solution fine particles 6 Carrier gas introduction pipe 7 Carrier gas 8 Blowing gas 9 Transport pipe 10 Ultrasonic oscillator output controller 11 Liquid flow meter 12 Liquid level sensor 13 Gas flow controller 14 Support base 15 Heater 16 Heating plate 17 Film forming substrate 18 Thin film 19 Liquid flow controller 20 Solution supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 洋 大阪府守口市松下町1番1号 松下電池工 業株式会社内 Fターム(参考) 4D074 AA01 BB05 DD03 DD09 DD14 DD17 DD64 DD65 4D075 AA01 AA82 AA83 AA87 BB23Y BB28Z CA22 CA48 DA06 DB01 DB13 DB14 DC21 DC24 EA06 EA07 EC01 EC08 4G075 AA24 BA05 BC01 BC02 BD14 CA02 CA23 CA80 FB01 FB11 5F053 AA21 AA48 DD20 HH05 LL05 RR01 RR13  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroshi Higuchi 1-1, Matsushita-cho, Moriguchi-shi, Osaka F-term in Matsushita Battery Industry Co., Ltd. (Reference) 4D074 AA01 BB05 DD03 DD09 DD14 DD17 DD64 DD65 4D075 AA01 AA82 AA83 AA87 BB23Y BB28Z CA22 CA48 DA06 DB01 DB13 DB14 DC21 DC24 EA06 EA07 EC01 EC08 4G075 AA24 BA05 BC01 BC02 BD14 CA02 CA23 CA80 FB01 FB11 5F053 AA21 AA48 DD20 HH05 LL05 RR01 RR13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱分解により金属酸化物または金属硫化
物を生成する金属化合物の溶液を供給する溶液供給容
器、前記溶液供給容器から供給される溶液を収容し、こ
れを超音波振動子により霧化させる霧化容器、金属酸化
物または金属硫化物の薄膜を形成しようとする基板を加
熱状態に保持する支持台、および前記霧化された溶液の
微粒子をキャリアガスにより前記基板に吹き付けるキャ
リアガス搬送手段を具備する装置を用い、前記微粒子中
の金属化合物を前記基板上で熱分解させて基板上に金属
酸化物または金属硫化物の薄膜を形成する薄膜形成方法
であって、前記溶液供給容器と霧化容器とを、前記霧化
容器内の溶液の液面が一定に保たれるように結合し、か
つ前記溶液供給容器から霧化容器へ供給される溶液の供
給速度を測定し、その供給速度が適正値となるように前
記超音波振動子の出力を制御することを特徴とする薄膜
形成方法。
1. A solution supply container for supplying a solution of a metal compound which produces a metal oxide or a metal sulfide by thermal decomposition, and a solution supplied from the solution supply container, which is atomized by an ultrasonic vibrator. Atomizing container, a support for holding a substrate on which a thin film of metal oxide or metal sulfide is to be formed in a heated state, and a carrier gas carrier for spraying fine particles of the atomized solution onto the substrate with a carrier gas A thin film forming method for forming a thin film of a metal oxide or a metal sulfide on a substrate by thermally decomposing a metal compound in the fine particles on the substrate using an apparatus having means, wherein the solution supply container and Atomizing container, and coupled so that the liquid level of the solution in the atomizing container is kept constant, and measuring the supply speed of the solution supplied from the solution supply container to the atomizing container, A method for forming a thin film, comprising: controlling an output of the ultrasonic vibrator so that a supply speed becomes an appropriate value.
【請求項2】 熱分解により金属酸化物または金属硫化
物を生成する金属化合物の溶液を供給する溶液供給容
器、前記溶液供給容器から供給される溶液を収容し、こ
れを超音波振動子により霧化させる霧化容器、金属酸化
物または金属硫化物の薄膜を形成しようとする基板を加
熱状態に保持する支持台、および前記霧化された溶液の
微粒子をキャリアガスにより前記基板に吹き付けるキャ
リアガス搬送手段を具備する装置を用い、前記微粒子中
の金属化合物を前記基板上で熱分解させて基板上に金属
酸化物または金属硫化物の薄膜を形成する薄膜形成方法
であって、前記溶液供給容器と霧化容器とを、前記霧化
容器内の溶液の液面が一定に保たれるように結合し、か
つ前記溶液供給容器から霧化容器へ供給される溶液の供
給速度を測定し、その供給速度が適正値となるように前
記キャリアガスの流量を制御することを特徴とする薄膜
形成方法。
2. A solution supply container for supplying a solution of a metal compound which forms a metal oxide or a metal sulfide by thermal decomposition, and a solution supplied from the solution supply container. Atomizing container, a support for holding a substrate on which a thin film of metal oxide or metal sulfide is to be formed in a heated state, and a carrier gas carrier for spraying fine particles of the atomized solution onto the substrate with a carrier gas A thin film forming method for forming a thin film of a metal oxide or a metal sulfide on a substrate by thermally decomposing a metal compound in the fine particles on the substrate using an apparatus having means, wherein the solution supply container and Atomizing container, and coupled so that the liquid level of the solution in the atomizing container is kept constant, and measuring the supply speed of the solution supplied from the solution supply container to the atomizing container, A method for forming a thin film, comprising: controlling a flow rate of the carrier gas so that a supply speed becomes an appropriate value.
【請求項3】 前記溶液の供給速度を前記溶液供給容器
から霧化容器へ供給される溶液の流量により測定するこ
とを特徴とする請求項1または2に記載の薄膜形成方
法。
3. The thin film forming method according to claim 1, wherein the supply speed of the solution is measured by a flow rate of the solution supplied from the solution supply container to the atomization container.
【請求項4】 前記溶液の供給速度を前記溶液供給容器
内の溶液の重量減により測定することを特徴とする請求
項1または2に記載の薄膜形成方法。
4. The method according to claim 1, wherein the supply speed of the solution is measured by reducing the weight of the solution in the solution supply container.
【請求項5】 熱分解により金属酸化物または金属硫化
物を生成する金属化合物の溶液を供給する溶液供給容
器、前記溶液供給容器から供給される溶液を収容し、こ
れを超音波振動子により霧化させる霧化容器、金属酸化
物または金属硫化物の薄膜を形成しようとする基板を加
熱状態に保持する支持台、および前記霧化された溶液の
微粒子をキャリアガスにより前記基板に吹き付けるキャ
リアガス搬送手段を具備する装置を用い、前記微粒子中
の金属化合物を前記基板上で熱分解させて基板上に金属
酸化物または金属硫化物の薄膜を形成する薄膜形成方法
であって、前記溶液供給容器から霧化容器へ一定の供給
速度で前記溶液を供給するとともに前記霧化容器内の溶
液の液面レベルを測定し、その液面レベルが適正な範囲
となるように前記超音波振動子の出力を制御することを
特徴とする薄膜形成方法。
5. A solution supply container for supplying a solution of a metal compound which produces a metal oxide or metal sulfide by thermal decomposition, and a solution supplied from the solution supply container, which is atomized by an ultrasonic vibrator. Atomizing container, a support for holding a substrate on which a thin film of metal oxide or metal sulfide is to be formed in a heated state, and a carrier gas carrier for spraying fine particles of the atomized solution onto the substrate with a carrier gas A method for forming a thin film of a metal oxide or a metal sulfide on a substrate by thermally decomposing a metal compound in the fine particles on the substrate, using an apparatus having a means, the method comprising: The solution is supplied to the atomization container at a constant supply speed, and the liquid level of the solution in the atomization container is measured, and the ultrasonic level is adjusted so that the liquid level is in an appropriate range. A method for forming a thin film, comprising controlling an output of a wave oscillator.
【請求項6】 熱分解により金属酸化物または金属硫化
物を生成する金属化合物の溶液を供給する溶液供給容
器、前記溶液供給容器から供給される溶液を収容し、こ
れを超音波振動子により霧化させる霧化容器、金属酸化
物または金属硫化物の薄膜を形成しようとする基板を加
熱状態に保持する支持台、および前記霧化された溶液の
微粒子をキャリアガスにより前記基板に吹き付けるキャ
リアガス搬送手段を具備する装置を用い、前記微粒子中
の金属化合物を前記基板上で熱分解させて基板上に金属
酸化物または金属硫化物の薄膜を形成する薄膜形成方法
であって、前記溶液供給容器から霧化容器へ一定の供給
速度で前記溶液を供給するとともに前記霧化容器内の溶
液の液面レベルを測定し、その液面レベルが適正な範囲
となるように前記キャリアガスの流量を制御することを
特徴とする薄膜形成方法。
6. A solution supply container for supplying a solution of a metal compound that produces a metal oxide or metal sulfide by thermal decomposition, and a solution supplied from the solution supply container, which is atomized by an ultrasonic vibrator. Atomizing container, a support for holding a substrate on which a thin film of metal oxide or metal sulfide is to be formed in a heated state, and a carrier gas carrier for spraying fine particles of the atomized solution onto the substrate with a carrier gas A method for forming a thin film of a metal oxide or a metal sulfide on a substrate by thermally decomposing a metal compound in the fine particles on the substrate, using an apparatus having a means, the method comprising: The solution is supplied to the atomization container at a constant supply speed, and the level of the solution in the atomization container is measured, and the level of the solution is adjusted so that the level is within an appropriate range. A method of forming a thin film, comprising controlling a flow rate of a rear gas.
【請求項7】 前記金属酸化物が錫酸化物である請求項
1〜6のいずれかに記載の薄膜形成方法。
7. The method according to claim 1, wherein the metal oxide is tin oxide.
【請求項8】 前記金属硫化物が硫化カドミウム、硫化
亜鉛、または硫化カドミウムと硫化亜鉛の混晶物である
請求項1〜6のいずれかに記載の薄膜形成方法。
8. The method according to claim 1, wherein the metal sulfide is cadmium sulfide, zinc sulfide, or a mixed crystal of cadmium sulfide and zinc sulfide.
JP2000076930A 2000-03-17 2000-03-17 Thin film forming device Pending JP2001259494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000076930A JP2001259494A (en) 2000-03-17 2000-03-17 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000076930A JP2001259494A (en) 2000-03-17 2000-03-17 Thin film forming device

Publications (1)

Publication Number Publication Date
JP2001259494A true JP2001259494A (en) 2001-09-25

Family

ID=18594587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000076930A Pending JP2001259494A (en) 2000-03-17 2000-03-17 Thin film forming device

Country Status (1)

Country Link
JP (1) JP2001259494A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015332A (en) * 2004-06-03 2006-01-19 Canon Inc Film forming method and production method for spacer and thin type flat panel display using the same
JP2007238393A (en) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd Method and apparatus for producing metal oxide film
JP2008536669A (en) * 2005-04-22 2008-09-11 シュミット テクノロジー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for applying an even thin liquid layer to a substrate
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
JP2012129413A (en) * 2010-12-16 2012-07-05 Micronics Japan Co Ltd Wiring formation device
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
WO2015064438A1 (en) * 2013-10-30 2015-05-07 株式会社ニコン Thin film production method and transparent conductive film
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
JP2016190173A (en) * 2015-03-30 2016-11-10 株式会社Flosfia Atomizer and deposition system
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
WO2017098651A1 (en) * 2015-12-11 2017-06-15 東芝三菱電機産業システム株式会社 Mist applying film forming device and mist applying film forming method
JP2018178229A (en) * 2017-04-19 2018-11-15 株式会社Flosfia Processing apparatus and processing method
TWI651132B (en) * 2017-05-31 2019-02-21 日商東芝三菱電機產業系統股份有限公司 Coating head of spray coating film forming device and maintenance method thereof
CN110320014A (en) * 2019-06-25 2019-10-11 中科美菱低温科技股份有限公司 A kind of atomizer quality automatic checkout system and method
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341807A (en) * 1976-09-29 1978-04-15 Tdk Electronics Co Ltd Ultrasonic liquid atomizers
JPS5515652A (en) * 1978-07-19 1980-02-02 Matsushita Electric Ind Co Ltd Ultrasonic liquid atomizer
JPH1187747A (en) * 1997-09-05 1999-03-30 Matsushita Denchi Kogyo Kk Manufacture of compound semiconductor film and solar cell
JPH11111644A (en) * 1997-09-30 1999-04-23 Japan Pionics Co Ltd Vaporization supplying equipment
JP2000044238A (en) * 1998-07-22 2000-02-15 Matsushita Battery Industrial Co Ltd Production of tin dioxide film and solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341807A (en) * 1976-09-29 1978-04-15 Tdk Electronics Co Ltd Ultrasonic liquid atomizers
JPS5515652A (en) * 1978-07-19 1980-02-02 Matsushita Electric Ind Co Ltd Ultrasonic liquid atomizer
JPH1187747A (en) * 1997-09-05 1999-03-30 Matsushita Denchi Kogyo Kk Manufacture of compound semiconductor film and solar cell
JPH11111644A (en) * 1997-09-30 1999-04-23 Japan Pionics Co Ltd Vaporization supplying equipment
JP2000044238A (en) * 1998-07-22 2000-02-15 Matsushita Battery Industrial Co Ltd Production of tin dioxide film and solar cell

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
JP2006015332A (en) * 2004-06-03 2006-01-19 Canon Inc Film forming method and production method for spacer and thin type flat panel display using the same
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
JP2008536669A (en) * 2005-04-22 2008-09-11 シュミット テクノロジー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for applying an even thin liquid layer to a substrate
JP2007238393A (en) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd Method and apparatus for producing metal oxide film
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
JP2012129413A (en) * 2010-12-16 2012-07-05 Micronics Japan Co Ltd Wiring formation device
CN102573311A (en) * 2010-12-16 2012-07-11 日本麦可罗尼克斯股份有限公司 Wire forming device
JPWO2015064438A1 (en) * 2013-10-30 2017-03-09 株式会社ニコン Thin film manufacturing method, transparent conductive film
WO2015064438A1 (en) * 2013-10-30 2015-05-07 株式会社ニコン Thin film production method and transparent conductive film
US10328453B2 (en) 2013-10-30 2019-06-25 Nikon Corporation Thin film production method and transparent conductive film
US10702887B2 (en) 2013-10-30 2020-07-07 Nikon Corporation Thin film forming apparatus and transparent conductive film
JP2016190173A (en) * 2015-03-30 2016-11-10 株式会社Flosfia Atomizer and deposition system
WO2017098651A1 (en) * 2015-12-11 2017-06-15 東芝三菱電機産業システム株式会社 Mist applying film forming device and mist applying film forming method
JPWO2017098651A1 (en) * 2015-12-11 2018-04-26 東芝三菱電機産業システム株式会社 Mist coating film forming apparatus and mist coating film forming method
JP2018178229A (en) * 2017-04-19 2018-11-15 株式会社Flosfia Processing apparatus and processing method
JP7358714B2 (en) 2017-04-19 2023-10-11 株式会社Flosfia Film-forming equipment and film-forming method
TWI651132B (en) * 2017-05-31 2019-02-21 日商東芝三菱電機產業系統股份有限公司 Coating head of spray coating film forming device and maintenance method thereof
CN110320014A (en) * 2019-06-25 2019-10-11 中科美菱低温科技股份有限公司 A kind of atomizer quality automatic checkout system and method

Similar Documents

Publication Publication Date Title
JP2001259494A (en) Thin film forming device
JP3386756B2 (en) Thin film forming method and thin film forming apparatus
CN101203948B (en) Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis
US5346853A (en) Microwave energized deposition process with substrate temperature control for the fabrication of P-I-N photovoltaic devices
AU2009250961A1 (en) Film forming apparatus and method of film formation
EP1033763A1 (en) Method of manufacturing a compound semiconductor thin film and a solar cell using the thin film
JP4233455B2 (en) Thin film formation method
JP2017022118A (en) Laminated body and method for producing the same
JPH02258691A (en) Production of metal oxide film
JP2000044238A (en) Production of tin dioxide film and solar cell
CN102447005A (en) Manufacturing method of film formed substrate, film formed substrate, and film forming apparatus
JPH0737818A (en) Method and device for plasma cvd film formation
JPS62211378A (en) Sputtering device
JPH0779003A (en) Manufacture of semiconductor element
JP3101962B2 (en) Semiconductor element manufacturing method
TW201504464A (en) Vapor dispensing apparatus and method for forming solar panel
JPH104206A (en) Compound semiconductor thin film forming method and optoelectric transducer using the thin film
JPH01189815A (en) Manufacture of transparent conductive film
JP2001011653A (en) Formation of thin film and thin film forming device
US4931308A (en) Process for the preparation of functional tin oxide thin films
JPH0645885B2 (en) Deposited film formation method
JP2004075427A (en) Process for forming ito film containing corundum-type crystal phase and ito film for transparent electrode formed through the process
JPS6296675A (en) Formation of deposited film
Volintiru Remote plasma deposition of metal oxides: routes for controlling the film growth
JPH10312965A (en) Plasma chemical deposition system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050407