JPS6296675A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS6296675A
JPS6296675A JP60237006A JP23700685A JPS6296675A JP S6296675 A JPS6296675 A JP S6296675A JP 60237006 A JP60237006 A JP 60237006A JP 23700685 A JP23700685 A JP 23700685A JP S6296675 A JPS6296675 A JP S6296675A
Authority
JP
Japan
Prior art keywords
deposited film
film
gas
film forming
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60237006A
Other languages
Japanese (ja)
Other versions
JPH0645882B2 (en
Inventor
Shunichi Ishihara
俊一 石原
Junichi Hanna
純一 半那
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60237006A priority Critical patent/JPH0645882B2/en
Priority to CA000521129A priority patent/CA1315614C/en
Priority to CN86107141.7A priority patent/CN1015008B/en
Priority to AU64269/86A priority patent/AU595251B2/en
Priority to US06/921,462 priority patent/US4818564A/en
Priority to AT86308271T priority patent/ATE68530T1/en
Priority to EP86308271A priority patent/EP0234094B1/en
Priority to DE8686308271T priority patent/DE3682054D1/en
Publication of JPS6296675A publication Critical patent/JPS6296675A/en
Publication of JPH0645882B2 publication Critical patent/JPH0645882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To easily obtain a uniform deposited film having high quality by forming a deposited film on a substrate with a precursor produced from a gaseous starting material and a gaseous oxidizing agent contg. halogen as a source for feeding a film forming element so as to simplify the control of the quality of a film. CONSTITUTION:A gaseous starting material (a chain silane compound) and a gaseous oxidizing agent contg. halogen and having oxidizing action on the starting material are introduced into a reaction space, where they are brought into chemical contact with each other to produce plural kinds of precursors including an excited precursor. A deposited film is formed on a substrate with one or more kinds of such precursors as sources for feeding a deposited film forming element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性膜、殊に半導体デバイス、電子写真用
の感光デバイス、光学的画像入力装置用の先入力センサ
−デバイス等の電子デバイスの用途に有用な機能性堆積
膜の形成法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to functional films, particularly electronic devices such as semiconductor devices, photosensitive devices for electrophotography, and pre-input sensor devices for optical image input devices. The present invention relates to a method for forming a functional deposited film useful for applications.

〔従来の技術〕[Conventional technology]

従来、半導体膜、絶縁膜、光導電膜、磁性膜或いは金属
膜等の非晶質乃至多結晶質の機能性膜は、所望される物
理的特性や用途等の観点から個々に適した成膜方法が採
用されている。
Conventionally, amorphous or polycrystalline functional films such as semiconductor films, insulating films, photoconductive films, magnetic films, or metal films have been formed by forming films that are individually suited from the viewpoint of desired physical properties and applications. method has been adopted.

例えば、必要に応じて、水素原子(H)やハロゲン原子
(X)等の補償剤で不対電子が補償された非晶質や多結
品質の非単結晶シリコン(以後rNON−5t (H、
X) J ト略記し、その中でも殊に非晶質シリコンを
示す場合にはrA−S i  (H、X) J 、多結
品質シリコンを示す場合にはrpo文”l−S i (
H、X) Jと記す)膜等のシリコン堆積膜(尚、俗に
言う微結晶シリコンは、A−5i(H,X)の範鴎には
いることは断るまでもない)の形成には、真空法着法、
プラズマCVD法、熱CVD法9反応スパッタリング法
、イオンブレーティング法、光CVD法などが試みられ
ており、一般的には、プラズマCVD法が広く用いられ
、企業化されている。
For example, if necessary, amorphous or polycrystalline non-single crystal silicon (rNON-5t (H,
X) J is abbreviated as rA-S i (H,
For the formation of silicon deposited films such as H, , vacuum method,
Plasma CVD methods, thermal CVD methods, 9 reactive sputtering methods, ion blating methods, optical CVD methods, and the like have been tried, and in general, plasma CVD methods are widely used and commercialized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

面乍ら、従来から一般化されているプラズマCVD法に
よるシリコン塩JAMの形成に於ての反応プロセスは、
従来のCVD法に比較してかなり複雑であり、その反応
機構も不明な点が少なくない、又、その堆積膜の形成パ
ラメーターも多く(例えば、基体温度、導入ガスの流量
と比、形成時の圧力、高周波電力、電極構造9反応容器
の構造、排気の速度、プラズマ発生方式など)これらの
多くのパラメータの組み合せによるため、時にはプラズ
マが不安定な状態になり、形成された堆積膜に著しい悪
影響を与えることが少なくなかった。そのうえ、装置特
有のパラメータを装置ごとに選定しなければならず、し
かだって製造条件を一般化することがむずかしいという
のが実状であった。
However, the reaction process in forming silicon salt JAM by the conventionally popular plasma CVD method is as follows.
It is considerably more complicated than the conventional CVD method, and its reaction mechanism has many unknown points, and there are many parameters for forming the deposited film (e.g., substrate temperature, flow rate and ratio of introduced gas, formation time, etc.). Due to the combination of these many parameters (pressure, high-frequency power, electrode structure, structure of the reaction vessel, pumping speed, plasma generation method, etc.), the plasma can sometimes become unstable and have a significant negative impact on the deposited film formed. It was not uncommon to give Moreover, parameters unique to each device must be selected for each device, making it difficult to generalize manufacturing conditions.

他方、シリコン堆積膜として、電気的、光学的特性を各
用途毎に十分に満足させ得るものを発現させるためには
、現状ではプラズマCVD法によって形成することが最
良とされてる。
On the other hand, in order to develop a silicon deposited film that satisfies the electrical and optical characteristics for each application, it is currently considered best to form it by plasma CVD.

面乍ら、シリコン堆積膜の応用用途によっては、大面積
化、膜厚均一性、 II!2品質の均一性を十分満足さ
せて再現性のある量産化を図らねばならないため、プラ
ズマCVD法によるシリコン堆結膜の形成においては、
量産装置に多大な設備投資が必要となり、またその量産
の為の管理項目も複雑になり、管理許容幅も狭く、装置
の調整も微妙であることから、これらのことが、今後改
善すべき問題点として指摘されている。
However, depending on the application of the silicon deposited film, it is necessary to increase the area, uniformity of the film thickness, etc. II! 2.In forming silicon deposited films by plasma CVD method, it is necessary to fully satisfy the uniformity of quality and achieve mass production with reproducibility.
Mass production equipment requires a large capital investment, the management items for mass production are complicated, the management tolerance is narrow, and equipment adjustments are delicate, so these are issues that need to be improved in the future. This is pointed out as a point.

又、プラズマCVD法の場合には、成膜される基体の配
されている成膜空間に於いて高周波或いはマイクロ波等
によって直接プラズマを生成している為に1発生する電
子や多数のイオン種が成膜過程に於いて膜にダメージを
与え膜品質の低下、膜品質の不均一化の要因となってい
る。
In addition, in the case of the plasma CVD method, since plasma is directly generated by high frequency waves or microwaves in the film forming space where the substrate to be filmed is placed, electrons and many ion species are generated. This causes damage to the film during the film formation process, causing deterioration of film quality and non-uniformity of film quality.

この点の改良として提案されている方法には1間接プラ
ズマCVD法がある。
One indirect plasma CVD method has been proposed as an improvement on this point.

該間接プラズマCVD法は、成膜空間から離れた上流位
置にてマイクロ波等によってプラズマを生成し、該プラ
ズマを成膜空間ま〒輸送することで、成膜に有効な化学
種を選択的に使用出来る様に計ったものである。
In the indirect plasma CVD method, plasma is generated using microwaves or the like at an upstream location away from the film-forming space, and the plasma is transported to the film-forming space to selectively select chemical species that are effective for film-forming. It was designed to be usable.

面乍ら、斯かるプラズマCVD法でも、プラズマの輸送
が必須であることから、成膜に有効な化学種の寿命が長
くなればならず、自ずと、使用するガス種が制限され2
種々の堆積膜が得られないこと、及びプラズマを発生す
る為に多大なエネルギーを要すること、成膜に有効な化
学種の生成及び量が簡便な管理下に木質的に置かれない
こと等の問題点は桟積している。
However, since the plasma CVD method also requires plasma transport, the lifetime of the chemical species effective for film formation must be extended, which naturally limits the types of gases that can be used.
These problems include the inability to obtain various deposited films, the need for a large amount of energy to generate plasma, and the fact that the production and amount of chemical species effective for film formation cannot be easily controlled. The problems are stacked.

プラズマCVD法に対して、光CVD法は。The photo CVD method is different from the plasma CVD method.

成膜時とH,〜賀にダメージを与えるイオン種や電子が
発生しないという点で有利ではあるが、光源にそれ程多
くの種類がないこと、光源の波長も紫外に片寄っている
こと、工業化する場合には大型の光源とその電源を要す
ること、光源からの光を成膜空間に導入する窓が成膜時
に被膜されて仕舞う為に成膜中に光量の低下、強いては
、光源からの光が成膜空間に入射されなくなるという問
題点がある。
Although it is advantageous in that it does not generate ion species or electrons that can damage H and H during film formation, it is difficult to industrialize because there are not so many types of light sources, and the wavelength of the light source is biased toward the ultraviolet. In some cases, a large light source and its power source are required, and the window that introduces the light from the light source into the deposition space is covered with a film during deposition, resulting in a decrease in light intensity during deposition, and in some cases, the light from the light source decreases. There is a problem that the film is no longer incident on the film forming space.

上述の如く、シリコン堆積膜の形成に於ては、解決され
るべき点は、まだまだ残っており。
As mentioned above, there are still many issues to be solved regarding the formation of silicon deposited films.

その実用可能な特性、均一性を維持させながら低コスト
な装置で省エネルギー化を計って量産化できる形成方法
を開発することが切望されている。これ等のことは、他
の機能性膜、例えば窒化シリコン膜、炭化シリコン膜、
酸化シリコン膜に於ても各々同様の解決されるべき問題
として挙げることが出来る。
There is a strong desire to develop a forming method that can be mass-produced using low-cost equipment and energy saving while maintaining its practically usable characteristics and uniformity. These can be applied to other functional films, such as silicon nitride films, silicon carbide films,
Similar problems to be solved can also be raised for silicon oxide films.

〔目的〕〔the purpose〕

本発明の目的は、上述した堆積膜形成法の欠点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成法を提供するものである。
An object of the present invention is to eliminate the drawbacks of the above-mentioned method for forming a deposited film, and at the same time to provide a new method for forming a deposited film that does not rely on conventional methods.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成法を提1      供t64(7
)ei6゜:       本発明の更に別の目的は、
生産性、量産性に□ 優れ、高品質で電気的、光学的、半導体的等の物理特性
に優れた膜が簡便に得られる堆積膜形成法を提供するこ
とでもある。
Another object of the present invention is to provide a method for forming a deposited film that saves energy, allows easy control of film quality, and provides a deposited film with uniform characteristics over a large area.
)ei6゜: Yet another object of the present invention is to
Another object of the present invention is to provide a method for forming a deposited film that is excellent in productivity and mass production, and can easily produce a film of high quality and excellent physical properties such as electrical, optical, and semiconductor properties.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する本発明の堆積膜形成法は、堆積膜形
成法の気体状原料物質と、該原料物質に酸化作用をする
性質を有する気体状ハロゲン系酸化剤と、を反応空間内
に導入して化学的に接触させることで励起状態の前駆体
を生成し、該前駆体を堆積膜構成要素の供給源とじて成
膜空間内にある基体上に堆積膜を形成することを特徴と
する。
The deposited film forming method of the present invention which achieves the above object introduces into a reaction space a gaseous raw material for the deposited film forming method and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material. The method is characterized in that a precursor in an excited state is generated by chemically contacting the deposited film, and the precursor is used as a source of a deposited film component to form a deposited film on a substrate located in a deposition space. .

〔作用〕[Effect]

上記の本発明の堆積膜形成法によれば、省エネルギー化
と同時に大面積化、膜厚均一性、膜品質の均一性を十分
満足させて管理の簡素化と量産化を図り、量産装置に多
大な設備投資も必要とせず、またその量産の為の管理項
目も明確になり、管理許容幅も広く、装置の調整も簡単
になる。
According to the deposited film forming method of the present invention described above, it is possible to save energy, increase the area, uniformity of film thickness, and uniformity of film quality, simplify management and mass production, and save a lot of money on mass production equipment. It does not require major capital investment, the control items for mass production become clear, the control tolerance is wide, and equipment adjustment becomes easy.

本発明の堆積膜形成法に於いて、使用される堆積膜形成
用の気体状原料物質は、気体状ハロゲン系M化剤との化
学的接触により酸化作用をうけるものであり、目的とす
る堆積膜の種類。
In the deposited film forming method of the present invention, the gaseous raw material used for forming the deposited film is oxidized by chemical contact with the gaseous halogen-based M-forming agent. Type of membrane.

特性、用途等によって所望に従って適宜選枳される。木
F6明に於いては、上記の気体状原料物質及び気体状ハ
ロゲン系酸化剤は、化学的接触をする際に気体状とされ
るものであれば良く。
They are appropriately selected depending on characteristics, uses, etc. as desired. In the wood F6 light, the above-mentioned gaseous raw material and gaseous halogen-based oxidizing agent may be any material as long as it is in a gaseous state upon chemical contact.

通常の場合は、気体でも液体でも固体であっても差支え
ない。
In normal cases, it may be gas, liquid, or solid.

堆積膜形成用の原料物質あるいはノ\ロゲン系酸化剤が
液体又は固体である場合には、Ar。
When the raw material for forming the deposited film or the halogen-based oxidizing agent is liquid or solid, Ar.

He、N2.)(2等のキャリアーガスを使用し、必要
に応じては熱も加えながらバブリングを行なって反応空
間に堆積膜形成用の原料物質及びハロゲン系酸化剤を気
体状として導入する。
He, N2. ) (Using a carrier gas such as No. 2, bubbling is performed while adding heat if necessary, and a raw material for forming a deposited film and a halogen-based oxidizing agent are introduced in gaseous form into the reaction space.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キャリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidizing agent can be adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidizing agent. Set.

本発明に於いて使用される堆積膜形成用の原料物質とし
ては、例えば、半導体性或いは電気的絶縁性のシリコン
堆a膜やゲルマニウム堆積膜等のテトラヘドラル系の堆
積膜を得るのであれば、直鎖状、及び分岐状の鎖状シラ
ン化合物、 IM状ジシラン化合物鎖状ゲルマニウム化
合物等が有効なものとして挙げることが出来る。
As the raw material for forming the deposited film used in the present invention, for example, if a tetrahedral deposited film such as a semiconducting or electrically insulating silicon deposited film or germanium deposited film is to be obtained, it can be directly used. Effective examples include chain and branched chain silane compounds, IM disilane compounds, and chain germanium compounds.

具体的には、直鎖状シラン化合物としてはSinH2n
+2   (n=1,2,3,4,5゜6.7.8)、
分岐状鎖状シラン化合物としては、S 1H3S i 
H(SiH3)S 1H2s iH3,鎖状ゲルマン化
合物としては、Gem82m+2 (m=1.2,3.
4.5)等が挙げられる。この他、例えばスズの堆積膜
を作成するのであればSnH4等の水素化スズを有効な
原料物質として挙げることが出来る。
Specifically, the linear silane compound is SinH2n.
+2 (n=1,2,3,4,5゜6.7.8),
As the branched chain silane compound, S 1H3S i
H(SiH3)S 1H2s iH3, as a chain germane compound, Gem82m+2 (m=1.2, 3.
4.5) etc. In addition, for example, if a deposited film of tin is to be created, tin hydride such as SnH4 can be used as an effective raw material.

勿論、これ等の原料物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, these raw materials can be used not only alone, but also as a mixture of two or more.

本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内に導入される際気体状とされ、同時に反応空間内に
導入される堆積膜形成用の気体状原料物質に化学的接触
だけで効果的に酸化作用をする性質を有するもので、F
2゜C12,Br2.I2等のハロゲンガス、発生期状
態の弗素、塩素、臭素等が有効なものとして挙げること
が出来る。
The halogen-based oxidizing agent used in the present invention is in a gaseous state when introduced into the reaction space, and is simultaneously introduced into the reaction space through chemical contact with the gaseous raw material for forming a deposited film. It has the property of effectively oxidizing, and F
2°C12, Br2. Effective examples include halogen gas such as I2, nascent fluorine, chlorine, and bromine.

これ等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望のEf、−1iと供給
圧を与えられて反応空間内に導入されてiff記原料物
質と混合衝突することで化学的接触をし、前記原料物質
に酸化作用をして励起状y島の前駆体を含む複数種の前
駆体を効率的に生成する。生成される励起状態の前駆体
及び他の前駆体は、少なくともそのいずれか1つが形成
される堆積膜の構成要素の供給源として働く。
These halogen-based oxidizing agents are in a gaseous state, and are introduced into the reaction space together with the gas of the raw material material for forming the deposited film, given a supply pressure of the desired Ef, -1i, and mixed with the raw material material indicated by if. The collision causes chemical contact and oxidizes the raw material to efficiently generate a plurality of types of precursors including excited Y-island precursors. The excited state precursors and other precursors that are generated serve as a source of components for the deposited film in which at least one of them is formed.

生成される前駆体は分解して又は反応して別□ :      の励起状態の前駆体又は別の励起状態に
ある前駆体になって、或いは必要に応じてエネルギーを
放出はするがそのままの形態で成膜空間に配設された基
体表面に触れることで三次元ネットワーク構造の堆積膜
が作成される。
The precursors produced can be decomposed or reacted to become a precursor in an excited state or a precursor in another excited state, or they can remain in their original form, though they release energy as needed. A deposited film having a three-dimensional network structure is created by touching the surface of the substrate disposed in the film-forming space.

励起されるエネルギーレベルとしては、前記励起状態の
前駆体がより低いエネルギーレベルにエネルギー遷移す
る、又は別の化学種に変化する過程に於いて発光を伴う
エネルギーレベルであることが好ましい、1IJTかる
エネルギーの遷移に発光を伴なう励起状態の前駆体を含
め活性化された前駆体が形成されることで本発明の堆積
膜形成プロセスは、より効率良く、より省エネルギーで
進行し、膜全面に亘って均一でより良好な物理特性を有
する堆a膜が形成される。
The excited energy level is preferably an energy level that accompanies luminescence in the process of energy transition of the excited state precursor to a lower energy level or change into another chemical species, such as 1IJT energy. The deposited film forming process of the present invention proceeds more efficiently and with less energy by forming activated precursors including excited state precursors that are accompanied by light emission during the transition of As a result, a deposited film that is uniform and has better physical properties is formed.

本発明に於いては、堆積膜形成プロセスが円滑に進行し
、高品質で所望の物理特性を有する膜が形成される可く
、成膜因子としての、原料物質及びハロゲン系酸化剤の
種類と組み合せ、これ等の混合比、混合時の圧力、流量
、成膜空間内圧、ガスの波型、成膜温度(基体温度及び
雰囲気温度)が所望に応じて適宜選択される。
In the present invention, the type and type of raw material and halogen-based oxidizing agent are selected as film-forming factors so that the deposited film forming process can proceed smoothly and a film with high quality and desired physical properties can be formed. The combination, their mixing ratio, the pressure during mixing, the flow rate, the internal pressure of the film forming space, the waveform of the gas, and the film forming temperature (substrate temperature and ambient temperature) are appropriately selected as desired.

これ等の成膜因子は有機的に関連し、単独で決定される
ものではなく相互関連の下に夫々に応じて決定される0
本発明に於いて、反応空間に導入される堆積膜形成用の
気体状原料物質と気体状ハロゲン系酸化剤との量の割合
は、上記成膜因子の中間速する成膜因子との関係に於い
て適宜所望に従って決められるが、導入流量比で、好ま
しくは、l/100〜100/1が適当であり、より好
ましくは1150〜50/1とされるのが望ましい。
These film formation factors are organically related and are not determined independently, but are determined according to each other in mutual relationship.
In the present invention, the ratio of the amounts of the gaseous raw material for forming a deposited film and the gaseous halogen-based oxidizing agent introduced into the reaction space is determined based on the relationship between the film-forming factors and the intermediate speed of the above-mentioned film-forming factors. Although it can be determined as desired, the introduction flow rate ratio is preferably 1/100 to 100/1, more preferably 1150 to 50/1.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ハロゲン系酸化剤との化学的
接触を確率的により高める為には、より高い方が良いが
、反応性を考慮して適宜所望に応じて最適値を決定する
のが良い。
The pressure at the time of mixing when introduced into the reaction space is preferably higher in order to increase the probability of chemical contact between the gaseous raw material and the gaseous halogen-based oxidizing agent. It is preferable to determine the optimum value as desired by considering the following.

前記混合時の圧力としては、上記の様にして決められる
が、夫々の導入時の圧力として、好ましくはlXl0−
7気圧〜10気圧、より好ましくはIXIQ−6気圧〜
3気圧とされるのが望ましい。
The pressure at the time of mixing is determined as described above, but the pressure at the time of each introduction is preferably lXl0-
7 atm to 10 atm, more preferably IXIQ-6 atm to
It is desirable that the pressure be 3 atm.

成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(D)が成膜に効果
的に寄与する様に適宜所望に応じて設定される。
The pressure in the film-forming space, that is, the pressure in the space where the substrate on which the film is to be formed is disposed, is the pressure of the excited state precursor (E) generated in the reaction space and, if necessary, the precursor. The precursor (D) derived from the precursor (E) is appropriately set as desired so as to effectively contribute to film formation.

成膜空間の内圧力は、成膜空間が反応空間と開放的に連
続している場合には、堆積膜形成用の基体状原料物質と
気体状ハロゲン系酸化剤との反応空間での導入圧及び流
量との関連に於いて1例えば差動排気或いは、大型の排
気装置の使用等の工夫を加えて調整することが出来る。
When the film forming space is open and continuous with the reaction space, the internal pressure of the film forming space is the pressure introduced into the reaction space between the substrate-like raw material for forming the deposited film and the gaseous halogen oxidant. In relation to the flow rate, it is possible to adjust the flow rate by, for example, using a differential exhaust system or a large exhaust system.

或いは、反応空間と成膜空間の連結部のフンダクタンス
が小さい場合には、成膜空間に通出な排気装置、を設け
、該装置の排気量を制御することで成膜空間の圧力を調
整することが出来る。
Alternatively, if the fundductance of the connection between the reaction space and the film-forming space is small, an exhaust device that communicates with the film-forming space may be provided, and the pressure in the film-forming space may be adjusted by controlling the exhaust volume of the device. You can.

又、反応空間と成膜空間が一体的になっていて1反応位
置と成膜位置が空間的に異なるだけの場合には、前述の
様に差動排気するか或いは、排気能力の充分ある大型の
排気装置を設けてやれば良い。
In addition, if the reaction space and film-forming space are integrated and only one reaction position and film-forming position are spatially different, use differential pumping as described above, or use a large-scale pump with sufficient exhaust capacity. It is best to install an exhaust system.

上記のようにして成膜空間内の圧力は、反応空間に導入
される気体状原料物質と気体状ハロゲン酸化剤の導入圧
力との関係に於いて決められるが、好ましくは0.00
1To r r 〜l O0Torr、より好ましくは
0.0ITorr 〜30Torr、最適には0.05
〜10Torrとされるのが望ましい。
As described above, the pressure in the film forming space is determined based on the relationship between the gaseous raw material introduced into the reaction space and the introduction pressure of the gaseous halogen oxidizing agent, and is preferably 0.00.
1Torr ~ lOOTorr, more preferably 0.0ITorr ~ 30Torr, optimally 0.05
It is desirable to set it to 10 Torr.

ガスの原型に就いては、反応空間への前記増結膜形成用
の原料物質及びハロゲン系酸化剤の導入の際にこれ等が
均一に効率良く混合され、前記前駆体(E)が効率的に
生成され且つ成膜が支障なく適切になされる様に、ガス
導入口と基体とガス排気口との幾何学的配置を考慮して
設計される必要がある。この幾何学的な配置の好適な例
の1つが第1図に示される。
Regarding the original form of the gas, when the raw material for forming conjunctival membranes and the halogen-based oxidizing agent are introduced into the reaction space, they are mixed uniformly and efficiently, and the precursor (E) is efficiently mixed. The geometrical arrangement of the gas inlet, the substrate, and the gas outlet must be designed in consideration of the geometric arrangement of the gas inlet, the substrate, and the gas outlet so that the gas can be generated and the film can be formed properly without any problems. One preferred example of this geometry is shown in FIG.

成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種数と要求される特性に応じて
、個々に適宜所望に従って設定されるが、非晶質の膜を
得る場合には好ましくは室温から450℃、より好まし
くは50〜400℃とされるのが望ましい、殊に半導体
性や光導電性等の特性がより良好なシリコン堆積膜を形
成する場合には、基体温度(Ts)は70〜350℃と
されるのが望ましい、また、多結晶の膜を得る場合には
、好ましくは200〜650℃、より好ましくは300
〜600℃とされるのが望ましい。
The substrate temperature (Ts) during film formation is set as desired depending on the type of gas used, the number of types of deposited film to be formed, and the required characteristics. The temperature is preferably from room temperature to 450°C, more preferably from 50 to 400°C, especially when forming a silicon deposited film with better properties such as semiconductivity and photoconductivity. The substrate temperature (Ts) is desirably 70 to 350°C, and in the case of obtaining a polycrystalline film, it is preferably 200 to 650°C, more preferably 300°C.
It is desirable that the temperature be 600°C.

成膜空間の雰囲気温度(Tat)としては、生成される
前記前駆体(E)及び前記前駆体(D)が成Hりに不適
当な化学種に変化せず、且つ効率良く前記前駆体(E)
が生成される様に基体温度(TS)との関連で適宜所望
に応じて決められる。
The atmospheric temperature (Tat) in the film-forming space is set such that the precursor (E) and the precursor (D) that are produced do not change into inappropriate chemical species during the formation process, and that the precursor (Tat) is efficiently E)
It is determined as desired in relation to the substrate temperature (TS) so that TS is generated.

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い、導電性基体
としては1例えば。
The substrate used in the present invention may be electrically conductive or electrically insulating, as long as it is selected as desired depending on the use of the deposited film to be formed. 1 For example.

NiCr、 ステアL/ス、An、Cr、Mo、Au、
I r、Nb、Ta、V、Ti、Pt、Pd等の金屑又
はこれ等の合金が挙げられる。
NiCr, Steer L/S, An, Cr, Mo, Au,
Examples include gold scraps such as Ir, Nb, Ta, V, Ti, Pt, and Pd, and alloys thereof.

電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネート、セルローズアセテート、ポリプロ
ピレン、ポリ塩化ビニル。
Electrically insulating substrates include polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, and polyvinyl chloride.

ポリ塩化ビニリデン、ポリスチレン、ポリアミド等の合
成樹脂のフィルム又はシート、ガラス、セラミック、紙
等が通常使用される。これらの電気絶縁性基体は、好適
には少なくともその一方の表面が導電処理され、該導電
処理された表面側に他の層が設けられるのが望ましい。
Films or sheets of synthetic resins such as polyvinylidene chloride, polystyrene, polyamide, glass, ceramics, paper, etc. are commonly used. Preferably, at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えばガラスであれば、その表面がNiCr。For example, if it is glass, its surface is NiCr.

An、Cr、Mo、Au、I r、Nb、Ta、V、T
i、Pt、Pd、In2O3,5n02、ITO(I 
n203+5n02)等の薄膜を設ける事によって導電
処理され、或いはポリエステルフィルム等の合成樹脂フ
ィルムであれば、NiCr、 An、 Ag、 Pb、
 Zn、 Ni、Au、Cr、Mo、I r、Nb、T
a、V、Ti、Pt等の金属で真空蒸着、電子ビーム蒸
着、スパッタリング等で処理し、又は前記金属でラミネ
ート処理して、その表面が導電処理される。支持体の形
状としては1円筒状、ベルト状、板状等、任意の形状と
し得、所望によって、その形状が決定される。
An, Cr, Mo, Au, Ir, Nb, Ta, V, T
i, Pt, Pd, In2O3,5n02, ITO(I
NiCr, An, Ag, Pb, if it is conductive treated by providing a thin film such as n203+5n02) or a synthetic resin film such as polyester film.
Zn, Ni, Au, Cr, Mo, Ir, Nb, T
The surface is treated with a metal such as a, V, Ti, or Pt by vacuum evaporation, electron beam evaporation, sputtering, or the like, or laminated with the metal, so that the surface thereof is conductive. The shape of the support may be any shape, such as a cylinder, a belt, or a plate, and the shape is determined according to desire.

基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい、更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合があるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
It is preferable to select the substrate from among the above in consideration of the adhesion and reactivity between the substrate and the film. Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the film, making it difficult to obtain a good quality film. Therefore, it is preferable to select and use a substrate whose thermal expansion difference is close to that of the two substrates.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
In addition, the surface condition of the substrate is directly related to the structure (orientation) of the film and the occurrence of cone-shaped structures, so it is important to treat the surface of the substrate so that it has a film structure and structure that provides the desired properties. is desirable.

第1図は本発明の堆積膜形成法を具現するに好適な装置
の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for implementing the deposited film forming method of the present invention.

第1図に示す堆積膜形成装置は、装置本体。The deposited film forming apparatus shown in FIG. 1 is a main body of the apparatus.

排気系及びガス供給系の3つに大別される。It is roughly divided into three parts: exhaust system and gas supply system.

装置本体には1反応室間及び成膜空間が設けられている
The main body of the apparatus is provided with one reaction chamber and a film forming space.

101−108は夫々、成膜する際に使用されるガスが
充填されているボンベ、101a〜108aは夫々ガス
供給パイプ、101b〜108bは夫々各ボンベからの
ガスの流量調整用ツマスフローコントローラー、101
c〜108cはそれぞれガス圧力計、101d〜108
d及び101e−108eは夫々バルブ、1otf〜1
08fは夫々対応するガスボンベ内の圧力を示す圧力計
である。
101-108 are cylinders filled with gases used for film formation, 101a-108a are gas supply pipes, 101b-108b are Tumas flow controllers for adjusting the flow rate of gas from each cylinder, 101
c to 108c are gas pressure gauges, 101d to 108, respectively.
d and 101e-108e are valves, 1otf to 1, respectively.
08f is a pressure gauge that indicates the pressure inside the corresponding gas cylinder.

120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体1
1Bが設置される様に基体ホールダー112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、三重同心円配置構造となっており、中よりガスボ
ンベlot、102よりのガスが導入される第1のガス
導入管109.ガスボンベ103〜105よりのガスが
導入される第2のガス導入管110、及びガスボンベ1
06〜108よりのガスが導入される第3のガス導入管
111を有する。
Reference numeral 120 denotes a vacuum chamber, which has a structure in which a pipe for introducing gas is provided at the upper part and a reaction space is formed downstream of the pipe.
It has a structure in which a film forming space is formed in which a substrate holder 112 is provided so that the substrate holder 1B is installed. The piping for gas introduction has a triple concentric arrangement structure, and a first gas introduction pipe 109. into which gas from the gas cylinder lot 102 is introduced from inside. A second gas introduction pipe 110 into which gas from the gas cylinders 103 to 105 is introduced, and the gas cylinder 1
It has a third gas introduction pipe 111 into which gases from 06 to 108 are introduced.

各ガス導入管の反応空間へのガス排出には、その位置が
内側の管になる程基体の表面位置より遠い位置に配され
る設計とされている。即ち、外側の管になる程その内側
にある管を包囲する様に夫々のガス導入管が配設されて
いる。
Each gas introduction tube is designed to discharge gas into the reaction space so that the inner tube is located further away from the surface of the substrate. That is, the gas introduction pipes are arranged so that the outer pipes surround the inner pipes.

各導入管への管ボンベからのガスの供給は。Gas is supplied from a tube cylinder to each inlet tube.

ガス供給パイプライン123〜125によって夫々なさ
れる。
are provided by gas supply pipelines 123-125, respectively.

各ガス導入管、各ガス供給パイプライン及び真空チャン
バー120は、メイン真空バルブ119を介して不図示
の真空排気装置により真空排気される。
Each gas introduction pipe, each gas supply pipeline, and the vacuum chamber 120 are evacuated via the main vacuum valve 119 by a vacuum evacuation device (not shown).

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
The base body 118 is installed at a desired distance from the position of each gas introduction pipe by moving the base body holder 112 up and down.

本発明の場合、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特性
、ガス流量、真空チャンバーの内圧等を考慮して適切な
状態になる様に決められるが、好ましくは、数mm〜2
0cm、より好ましくは、5mm−15cm程度とされ
るのが望ましい。
In the case of the present invention, the distance between the substrate and the gas outlet of the gas inlet pipe is determined appropriately by taking into consideration the type of deposited film to be formed, its desired characteristics, gas flow rate, internal pressure of the vacuum chamber, etc. It can be determined as desired, but preferably several mm to 2
It is desirable that the length be 0 cm, more preferably about 5 mm to 15 cm.

113は、基体118を成膜時に適当な温度に加熱した
り、或いは、成膜前に基体118を予備加熱したり、更
には、成膜後、膜を7ニールする為に加熱する基体加熱
ヒータである。
Reference numeral 113 denotes a substrate heater that heats the substrate 118 to an appropriate temperature during film formation, preheats the substrate 118 before film formation, and further heats the film for 7 anneals after film formation. It is.

基体加熱ヒータ113は、導線114により電源115
により電力が供給される。
The base heater 113 is connected to a power source 115 by a conductor 114.
Power is supplied by

116は、基体温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
116 is a thermocouple for measuring the substrate temperature (Ts), and is electrically connected to the temperature display device 117.

以下、実施例に従って、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained according to Examples.

実施例1 第1図に示す成膜装置を用いて、次の様にし本発明の方
法による堆積膜を作成した。
Example 1 Using the film forming apparatus shown in FIG. 1, a deposited film was produced by the method of the present invention in the following manner.

ボンベlotに充填されているSiH4ガスを流量20
secmでガス導入管109より、ポ/べ106に充填
されているF2ガスを流層2sccm、ポンベ107に
充填されているHeガスを流量40sccmでガス導入
管111より真空チャン八−102内に導入した。
The SiH4 gas filled in the cylinder lot has a flow rate of 20
secm, the F2 gas filled in the port/vessel 106 is introduced into the vacuum chamber 102 through the gas introduction pipe 109 at a flow rate of 2 sccm, and the He gas filled in the port/veneer 107 is introduced into the vacuum chamber 102 through the gas introduction pipe 111 at a flow rate of 40 sccm. did.

このとき、真空チャンバー120内の圧力を真空バルブ
119の開閉度を調整して800mTorrにした。基
体に石英ガラス(15cmX15cm)を用いガス導入
口111と基体との距離は3cmに設定した。SiH4
ガスとF2ガスの混合域で青白い発光が強くみられた。
At this time, the pressure inside the vacuum chamber 120 was adjusted to 800 mTorr by adjusting the opening/closing degree of the vacuum valve 119. The base was made of quartz glass (15 cm x 15 cm), and the distance between the gas inlet 111 and the base was set to 3 cm. SiH4
A strong blue-white luminescence was observed in the mixed region of gas and F2 gas.

基体温度(Ts)は各試料に対して表1に示す様に室温
から400℃までの間に設定した。
The substrate temperature (Ts) for each sample was set between room temperature and 400°C as shown in Table 1.

この状態で3時間ガスを流すと1表1に示す様なnり厚
のSi:H:F膜が基体上に堆積した。
When gas was allowed to flow in this state for 3 hours, a Si:H:F film having a thickness of n as shown in Table 1 was deposited on the substrate.

又膜厚の分布むらは±5%以内におさまった。Furthermore, the unevenness in film thickness distribution was within ±5%.

成膜したSi:H:F膜はいずれの試料も電子線回折に
よって非晶質であることが確認された。
It was confirmed by electron diffraction that all of the Si:H:F films formed were amorphous.

各試料の非晶質Si:H:Fil’!上にA立のくし形
電極(ギャップ長200JLm)を蒸着し、導電率測定
用の試料を作成した。各試料を真空タライオスタット中
にいれ電圧100Vを印加し、微少電流計(YHP41
40B)で電流を測定し、暗導電率(σd)を求めた。
Amorphous Si:H:Fil' of each sample! An A-shaped comb-shaped electrode (gap length 200 JLm) was deposited thereon to prepare a sample for conductivity measurement. Each sample was placed in a vacuum taliostat, a voltage of 100V was applied, and a microcurrent meter (YHP41
40B), and the dark conductivity (σd) was determined.

又600nm 、0.3mw/cm2の光を照射し、光
導電率(σP)を求めた。更に光の吸収より光学的バン
ドギャップ(EgOPt)を求めた。これらの結果は表
1に示した。
Further, 600 nm and 0.3 mw/cm2 light was irradiated to determine the photoconductivity (σP). Furthermore, the optical band gap (EgOPt) was determined from light absorption. These results are shown in Table 1.

表  1 次に基体温度を300℃に固定し、SiH4の流量を種
々かえて作成したときの各試料の膜厚、σd、σp、 
 E goptの結果を表2に示す。
Table 1 Next, the film thickness, σd, σp,
The results of E gopt are shown in Table 2.

この際ガスを流した時間はいずれの試料も3時間である
。又、いずれの試料もF2ガス流流量secm、Heガ
ス流toy 40 s c c m、内圧800mTo
rrとした。
At this time, the gas was flowed for 3 hours for all samples. In addition, for each sample, the F2 gas flow rate was sec, the He gas flow was 40 s cm, and the internal pressure was 800 mTo.
It was set as rr.

表  2 次に、基体温度を300℃、SiH4ガス流分20se
cm、F2ガス流i2sccm、内厚800mTorr
とし、Heガス流品−を種々に変化させて3時間各ガス
を流した後に得られた各試料の膜の膜厚、σd、σp 
、 Egoptの値を表3に示す。
Table 2 Next, the substrate temperature was set to 300°C, and the SiH4 gas flow rate was set to 20se.
cm, F2 gas flow i2sccm, inner thickness 800mTorr
The film thickness, σd, σp of each sample obtained after flowing each gas for 3 hours with various He gas flows.
, Egopt values are shown in Table 3.

表  3 次に、基体温度を300℃、5tH4ガス流量20SC
Cm、  F2ガス流量2sccm、 Heガス流量4
0secmとし、内圧を種々に変化させて作成した各試
料の膜厚、σd、σP、 E管tの値を表4に示す。
Table 3 Next, the substrate temperature was set to 300°C, and the 5tH4 gas flow rate was set to 20SC.
Cm, F2 gas flow rate 2 sccm, He gas flow rate 4
Table 4 shows the film thickness, σd, σP, and E-tube t values of each sample prepared by varying the internal pressure at 0 sec.

表  4 表1〜表4に示す各試料の膜厚の分布むらはガス導入管
illと基体との距離、ガス導入管109と111に流
すガス流量、内圧に依存した。6成n々において、ガス
導入管と基体との距離を調整することによって膜厚の分
布むらは15cmX15cmの基体において、±5%以
内におさめることができた。この位置はほとんどの場合
発光強度の最大の位置に対応していた。また成膜したS
i:H:F膜はいずれの試料のも、電子線回折の結果に
よると非晶質であることを確認した。
Table 4 The uneven distribution of film thickness of each sample shown in Tables 1 to 4 depended on the distance between the gas introduction tube ill and the substrate, the gas flow rate flowing through the gas introduction tubes 109 and 111, and the internal pressure. By adjusting the distance between the gas inlet pipe and the substrate in each of the six samples, the uneven distribution of film thickness could be kept within ±5% on a substrate measuring 15 cm x 15 cm. This position corresponded in most cases to the position of maximum emission intensity. Also, the S
According to the results of electron beam diffraction, it was confirmed that the i:H:F films of all samples were amorphous.

実施例2 実施例1においてF2ガスを導入すると共に107ボン
ベよりCu2ガスを導入し、成膜を行なった(試料2)
Example 2 In Example 1, F2 gas was introduced and Cu2 gas was also introduced from the 107 cylinder to form a film (Sample 2).
.

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

5i)i4         20secmF2   
         2 s c Cm(,4122sc
cm He            40secm内圧   
     800mTorr基体温度        
  300℃□ :        ガス吹き出し口と基体との距離 3
cm□ :      実施例1と同様、SiH4ガスと(F2
+、      C1z)fj’t#r<h流t″′域
1強°゛“パ発光”みられた、3時間のガス吹き出し後
1石英がラス基体上に約2.5gmのA−Si:H:F
:0文膜が堆積した。
5i) i4 20secF2
2 sc Cm(,4122sc
cm He 40sec Internal pressure
800mTorr substrate temperature
300℃□: Distance between gas outlet and base 3
cm□: Same as Example 1, SiH4 gas and (F2
+, C1z) fj't#r<h flow t″' region 1°゛“Pyroluminescence” was observed, after 3 hours of gas blowing 1 quartz was deposited on the lath substrate with approximately 2.5 gm of A-Si: H:F
:0 A film was deposited.

1       この膜が非晶質であることは電子線回
折で確認した。
1 It was confirmed by electron beam diffraction that this film was amorphous.

:      該A−St:H:F:C文膜上にA見の
くし形電極(ギャップ長200ルm)を真空蒸着した後
、試料を真空タラゼオスタット中にいれ、暗導電率(σ
d)、600nm、0.3 m w 70m2の光照射
時の導電率(σp)、及び光学吸収の測定より光学的バ
ンドギャップ(E gOPt)を夫々測定した。
: After vacuum-depositing an A-shaped comb-shaped electrode (gap length 200 lm) on the A-St:H:F:C film, the sample was placed in a vacuum thalazeostat, and the dark conductivity (σ
d), electrical conductivity (σp) upon irradiation with light of 600 nm, 0.3 mw 70 m2, and optical band gap (E gOPt) were measured by measuring optical absorption.

得られた値は σd = 4X 10−11s/。。The value obtained is σd = 4X 10-11s/. .

σp=8X10−7s/。。σp=8X10-7s/. .

EgOPt=1.70eV であった。EgOPt=1.70eV Met.

実施例3 実施例1においてSiH4ガスを導入するかわりに10
3ボンベよりS i 2H6ガスを導入し、成膜を行な
った(試料3)。
Example 3 Instead of introducing SiH4 gas in Example 1, 10
A film was formed by introducing Si 2H6 gas from No. 3 cylinder (Sample 3).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

Si2H620secm F2            5 s c cmHe 
           40sccm内圧      
  800mTo r r基体温度         
 300℃ガス吹き出し口と基体との距離 3cm5t
2H6ガスとF2ガスが合流する領域で強い青い発光が
みられた。1時間のガス吹き出し後、6芙ガラス基体上
に約1.8pmのA−Si+H:F膜が堆積した。
Si2H620sec F2 5 s c cmHe
40sccm internal pressure
800mTo r rsubstrate temperature
Distance between 300℃ gas outlet and base: 3cm5t
Intense blue light emission was observed in the region where 2H6 gas and F2 gas merge. After one hour of gas blowing, about 1.8 pm of an A-Si+H:F film was deposited on the 6-piece glass substrate.

この膜が非晶質であることは電子線回折で確認した。It was confirmed by electron diffraction that this film was amorphous.

A−5i:H:F膜上にA見のくし形電極(ギャップ長
200終m)を真空蒸着した後、真空クライオスタット
中にいれ、暗導電率(crd)、600 nm、0.3
mw/cm2の光照射時の導電率(σp)、及び光学吸
収の測定より光学的バンドギャップ(EgOpt)を夫
々測定した。
After vacuum-depositing a comb-shaped electrode (gap length 200 m) on the A-5i:H:F film, it was placed in a vacuum cryostat, and the dark conductivity (CRD) was 600 nm, 0.3.
The electrical conductivity (σp) upon irradiation with light of mw/cm 2 and the optical band gap (EgOpt) were measured by measuring optical absorption.

得られた値は crd==8X10−Its/cm crp=2X l 0−Gs/cm EgOPt =1.70eV であった。The value obtained is crd==8X10-Its/cm crp=2X l 0-Gs/cm EgOPt = 1.70eV Met.

実施例4 実施例1において5iHaガスを導入するかわりに10
4ボンベよりGeH4ガスを導入し、成膜を行なった(
試料4)。
Example 4 Instead of introducing 5iHa gas in Example 1, 10
GeH4 gas was introduced from the 4 cylinder to form a film (
Sample 4).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

G e H420S CCm F2           4sccm)(640sc
cm 内圧        800mTo r r基体温度 
         300℃ガス吹き出し口と基体との
距離 3cmこのときGeH4ガスとF2ガスの合流点
で青い強い発光がみられた。2時間のガス吹き出し後、
石英ガラス基体上に約1.5gmのA−Ge:H:F膜
が堆積した。この膜が非晶質であることは電子線回折で
確認した。
G e H420S CCm F2 4sccm) (640sc
cm Internal pressure 800mTo r r Base temperature
The distance between the 300°C gas outlet and the substrate was 3 cm.At this time, strong blue light was observed at the confluence of GeH4 gas and F2 gas. After blowing out gas for 2 hours,
Approximately 1.5 gm of A-Ge:H:F film was deposited on the fused silica substrate. It was confirmed by electron diffraction that this film was amorphous.

該A−Ge:H:F膜上にA見のくし形電極(ギャップ
長200ILm)を真空蒸着した後、真空クライオスタ
ット中にいれ、暗導電率(crd)、600nm、0.
3mw/cm2の光照射時の導電率(σp)、及び光学
吸収の測定より光学的バンドギャップ(E g ’Pt
)を夫々測定した。
After vacuum-depositing an A-shaped comb-shaped electrode (gap length 200 ILm) on the A-Ge:H:F film, it was placed in a vacuum cryostat and the dark conductivity (CRD) was 600 nm, 0.
The optical band gap (E g 'Pt
) were measured respectively.

得られた値は σd=8X10−7s/。工 σp=3X104s/。。The value obtained is σd=8X10-7s/. engineering σp=3X104s/. .

Eg Oρ’=1.OeV であった。Eg Oρ'=1. OeV Met.

実施例5 実施例1においてS iH4ガスを導入すると共に、1
04ポンベよりGeH4ガスを導入し、成膜を行なった
(試料5)。
Example 5 In addition to introducing SiH4 gas in Example 1,
GeH4 gas was introduced from the 04 pump to form a film (Sample 5).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

SiH420secm GeH4,5secm F2     5secm He     40secm 内圧   800mTorr 基体温度 300℃ ガス吹き出し口と基体との距離 3cmこのときガス吹
き出し管の出口近傍において青い強い発光がみられた。
SiH420secm GeH4,5secm F2 5secm He 40secm Internal pressure 800mTorr Substrate temperature 300°C Distance between gas outlet and substrate 3cm At this time, strong blue light emission was observed near the outlet of the gas outlet tube.

2時間のガス吹き出し後1石英ガラス基体上に約2.0
7LmのA−5iGe:H:Fff!Iが堆積した。非
晶質であることは電子線回折で確認した。
After 2 hours of gas blowing, approximately 2.0
7Lm A-5iGe:H:Fff! I was deposited. It was confirmed by electron beam diffraction that it was amorphous.

該A−3iGe:H:F膜上にA文ノくシ形電極(ギャ
ップ長200ILm)を真空蒸着した後、試料5を真空
クライオスタット中にいれ、暗導電率(crd) 、 
600 nm、 0.3mw/cm2の光照射時の導電
率(σp)、及び光学吸収の測定より光学的バンドギャ
ップ(Eg’Pt)を夫々測定した。
After vacuum-depositing an A-shaped electrode (gap length 200 ILm) on the A-3iGe:H:F film, sample 5 was placed in a vacuum cryostat, and the dark conductivity (CRD) was measured.
The electrical conductivity (σp) upon irradiation with light of 600 nm and 0.3 mw/cm 2 and the optical band gap (Eg'Pt) were measured by measuring optical absorption.

得られた値は crd=3X 10−9s/cm σp=IXlo−7s/Cm EgOPj=1.4eV であった・ 実施例6 実施例5においてGeH4ガスを導入するかわりに10
5ボンベよりC2H4ガスを導入し。
The obtained values were crd = 3X 10-9s/cm σp = IXlo-7s/Cm EgOPj = 1.4eV Example 6 Instead of introducing GeH4 gas in Example 5,
C2H4 gas was introduced from the 5 cylinder.

成1!りを行なった(試料6)。Sei 1! (Sample 6).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

SiH420sccm C2H45secm F2     5secm He     40secm 内圧   800mTorr 基体温度 300’0 ガス吹き出し口と基体との距離 3cm3時間のガス吹
き出し後1石英ガラス基体上に約1.0pmのA−3i
C:H:F膜が堆積した。この膜が非晶質であることは
電子線回折で確認した。
SiH420sccm C2H45secm F2 5secm He 40secm Internal pressure 800mTorr Substrate temperature 300'0 Distance between gas outlet and substrate 3cm After 3 hours of gas blowing 1 A-3i of about 1.0 pm was placed on the quartz glass substrate
A C:H:F film was deposited. It was confirmed by electron diffraction that this film was amorphous.

該A−SiC:H:F膜上にA文のくし形電極(ギャッ
プ長200gm)を真空蒸着した後、試料6を真空クラ
イオスタット中にいれ、暗導電率(crd)、600n
m、0.3mw/cm2の光照射時の導電率(σp)、
及び光学吸収の測定より光学的バンドギャップ(Eg’
Pt)を夫々測定した。
After vacuum-depositing a comb-shaped electrode (gap length 200 gm) on the A-SiC:H:F film, sample 6 was placed in a vacuum cryostat, and the dark conductivity (CRD) was 600 nm.
m, conductivity (σp) when irradiated with light of 0.3 mw/cm2,
The optical band gap (Eg'
Pt) was measured respectively.

得られた値は cr d = 8 X 10−13 s / c mc
rp=lX10−8s/cm E gapt = 1.9 eV であった。
The value obtained is cr d = 8 x 10-13 s/cmc
rp=lX10-8s/cm Egapt=1.9 eV.

実施例7 実施例1においてSiH4ガスを導入すると共に、10
3ボンベよりS i 2H6ガスを導入し、成膜を行な
った(試料7)。
Example 7 While introducing SiH4 gas in Example 1, 10
A film was formed by introducing Si 2H6 gas from No. 3 cylinder (Sample 7).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

SiH420secm S i 2H65secm F2     5secm He     40secm 内圧   800mTorr 基体温度 300℃ ガス吹き出し口と基体との距離 3cmこのときガスの
吹き出し口の近傍で青い強い発光がみられた。1時間の
ガス吹き出し後、石英ガラス基体上に約1.21Lmの
A−3i:H:F膜が堆積した。この膜が非晶質である
ことは電子線回折で確認した。
SiH 420secm Si 2H65secm F2 5secm He 40secm Internal pressure 800mTorr Substrate temperature 300°C Distance between gas outlet and substrate 3cm At this time, strong blue light emission was observed near the gas outlet. After one hour of gas blowing, about 1.21 Lm of A-3i:H:F film was deposited on the quartz glass substrate. It was confirmed by electron diffraction that this film was amorphous.

該A−3i:H:F膜上にAnのくし形電極(ギャップ
長200#Lm)を真空蒸着した後。
After vacuum-depositing An interdigitated electrodes (gap length 200#Lm) on the A-3i:H:F film.

試料7を真空クライオスタット中にいれ、暗導電率(c
rd)、600nm、0.3 m w / c m 2
の光照射時の導電率(σp)、及び光学吸収の測定より
光学的バンドギャップ(E g’Pt)をそれぞれ測定
した。
Sample 7 was placed in a vacuum cryostat, and the dark conductivity (c
rd), 600nm, 0.3 mw/cm2
The electrical conductivity (σp) upon irradiation with light and the optical band gap (E g'Pt) were measured by measuring optical absorption.

得られた値は crd=7X I 0−11s/Cm □       σp = 9 X 10−7 s /
 c mE g 0Pt= 1.65 e V であった。
The obtained value is crd=7X I0-11s/Cm □ σp = 9X10-7s/
c mE g 0Pt = 1.65 eV.

実施例8 実施例7においてF2ガスを導入すると共に0文2をポ
ンベ107より導入し、成膜を行なった(試料8)。
Example 8 In Example 7, F2 gas was introduced, and Omon 2 was also introduced from the pump 107 to form a film (Sample 8).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

SiH420secm S i 2H65secm F2     3secm (,122secm He     40secm □ 1:         内圧   800 m T O
r r1≧        基体温度 300’0ガス
吹き出し口と基体との距1t3cmガスを流したとき、
ガスの合流点で青い強い発光がみられた。1時間のガス
吹き出し後、石英ガラス基体上に約1.81LmのA−
Si:H:F:0文膜が堆積した。この膜が非晶質であ
ることは電子、線回折で確認した。
SiH420secm Si 2H65secm F2 3secm (,122secm He 40secm □ 1: Internal pressure 800 m T O
r r1 ≧ Substrate temperature 300'0 When gas is flowed with a distance of 1t3cm between the gas outlet and the substrate,
Strong blue light was seen at the gas confluence. After blowing out gas for 1 hour, approximately 1.81 Lm of A- was deposited on the quartz glass substrate.
A Si:H:F:0 film was deposited. It was confirmed by electron and line diffraction that this film was amorphous.

該A−Si:H:F:C文膜上にA文のくし文型上(ギ
ャップ長200gm)を真空蒸着した後、試料8を真空
クライオスタット中にいれ、暗導電率(σd)、600
nm、0.3 m w 70m2の光照射時の導電率(
σp)、及び光学吸収のJll定より光学的バンドギャ
ップ(E g’Pt)を測定した。
After vacuum-depositing a comb pattern pattern (gap length 200 gm) of pattern A on the A-Si:H:F:C pattern film, sample 8 was placed in a vacuum cryostat, and the dark conductivity (σd) was 600 gm.
conductivity when irradiated with light of nm, 0.3 mw 70m2 (
σp), and the optical band gap (E g'Pt) was measured from the Jll constant of optical absorption.

得られた値は crd = 8X 10−11s/ cmσp=9X1
0−’s/。。
The obtained value is crd = 8X 10-11s/cmσp=9X1
0-'s/. .

EgOPt =1.70eV であった・ 実施例9 実施例1においてSiH4ガスを導入するかわりに10
2ボンベよりSnH4ガスを導入し、成11りを行なっ
た(試料9)。
EgOPt = 1.70 eV Example 9 Instead of introducing SiH4 gas in Example 1, 10
SnH4 gas was introduced from a 2-cylinder cylinder, and a 11-year reaction was carried out (Sample 9).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

SnH410sc10 5c     20secm He     40sccm 内圧   800mTorr 基体温度 300℃ ガス吹き出し口と基体との距離 4cmこの際、SnH
4ガス、F2ガスの合流点で発光がみられた。3時間の
ガス吹き出し後、石英ガラス基体上に約1.OILmの
Sn:H:F膜が堆積した。電子線回折で確認したとこ
ろこの膜は非晶質であることがわかった。
SnH410sc10 5c 20secm He 40sccm Internal pressure 800mTorr Substrate temperature 300℃ Distance between gas outlet and substrate 4cm At this time, SnH
Luminescence was observed at the confluence of 4 gases and F2 gas. After blowing out the gas for 3 hours, about 1. A Sn:H:F film of OILm was deposited. When confirmed by electron beam diffraction, this film was found to be amorphous.

該A−5n:H:F膜上にA党のくし形電極(ギャップ
長200ILm)を真空蒸着した後、実施例1と同様真
空クライオスタット中にいれ、暗導電率(σd)、及び
光学吸収の測定より光学的バンドギャップ(Eg’Pt
)を夫々測定した。
After vacuum-depositing a comb-shaped electrode (gap length 200 ILm) on the A-5n:H:F film, it was placed in a vacuum cryostat as in Example 1, and the dark conductivity (σd) and optical absorption were measured. Optical bandgap (Eg'Pt
) were measured respectively.

得られた値は σd = 3 X 10 ’ s / c mEgOP
t  =0.80eV  ’ であった。
The value obtained is σd = 3 x 10' s/c mEgOP
t = 0.80 eV'.

実施例1O 実施例1において基体温度を600℃に設定し、成膜を
行なった(試料lO)。
Example 1O In Example 1, the substrate temperature was set at 600° C. and film formation was performed (Sample 1O).

このときのr&成膜条件次のとおりである。The r& film forming conditions at this time are as follows.

SiH420secm F2     2secm He     40secm 内圧   800mTorr ガス吹き出し口と基体との距離 3cm実施例1と同様
、SiH4ガスとF2ガスの合流点で青い強い発光がみ
られた。3時間のガス吹き出し後、石英ガラス基体上に
約1.04mのSi:H:F膜が堆積した。堆積膜を電
子線回折で測定したところSiの回折ピークがみちれ、
多結晶化していることがわかった。
SiH 420 sec F2 2 sec He 40 sec Internal pressure 800 mTorr Distance between gas outlet and substrate 3 cm As in Example 1, strong blue light emission was observed at the confluence of SiH 4 gas and F 2 gas. After 3 hours of gas blowing, about 1.04 m of Si:H:F film was deposited on the quartz glass substrate. When the deposited film was measured by electron beam diffraction, the diffraction peak of Si was visible.
It was found that it was polycrystalline.

該Si :H:F膜上にAiのくし形電極(ギャップ長
200ILm)を真空蒸着した後、試料lOを真空クラ
イオスタット中にいれ、暗導電率(σd)、及び光学吸
収の測定より光学的バンドギャップ(Eg’P’)を夫
々測定した。
After vacuum-depositing Ai comb-shaped electrodes (gap length 200 ILm) on the Si:H:F film, the sample IO was placed in a vacuum cryostat, and the optical band was determined by measuring dark conductivity (σd) and optical absorption. The gap (Eg'P') was measured respectively.

得られた値は σd=3X I 0−3s/cm EgOPt =1.4eV であった。The value obtained is σd=3X I 0-3s/cm EgOPt = 1.4eV Met.

実施例11 実施例1においてSiH4ガスを導入すると共に、10
4ボンベよりSnH4ガスを導入し、成膜を行なった(
試料11)。
Example 11 In addition to introducing SiH4 gas in Example 1, 10
SnH4 gas was introduced from the 4 cylinder and film formation was performed (
Sample 11).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

SiH420sccm SnH45secm F2     3sccm He     40secm 内圧   800mTorr 基体温度 300℃ ガス吹き出し口と基体との距離 3cmこのときガス吹
き出し管の出口近傍において青い強い発光がみられた。
SiH420sccm SnH45secm F2 3sccm He 40secm Internal pressure 800mTorr Substrate temperature 300°C Distance between gas outlet and substrate 3cm At this time, strong blue light emission was observed near the outlet of the gas blowout tube.

2時間のガス吹き出し後、石英ガラス基体上に約2.2
 JLmのA−SfSn:H:F膜が堆積した。この膜
は非晶質であることは電子線回折で確認した。
After 2 hours of gas blowing, approximately 2.2
A JLm A-SfSn:H:F film was deposited. It was confirmed by electron diffraction that this film was amorphous.

該A−5iSn:H:F1g上にAllのくし形電極(
ギャップ長2004m)を真空蒸着した後、試料11を
真空クライオスタット中にいれ。
All interdigitated electrodes (
After vacuum deposition of a gap length of 2004 m), sample 11 was placed in a vacuum cryostat.

暗導電率(σd)、600nm、0.3 m w 70
m2の光照射時の導電率(σp)、及び光学吸収の測定
より光学的バンドギャップ(E g’Pt)を夫々測定
した。
Dark conductivity (σd), 600 nm, 0.3 m w 70
The electrical conductivity (σp) upon irradiation with light of m2 and the optical band gap (E g'Pt) were measured by measuring optical absorption.

得られた値は σd=3XlO−8s/cm σp=9X 10−as/cm Eg’Pt=1.2eV であった・ 実施例12 実施例1においてSiH4ガスの代りに、All2 (
CH3)5ガスが充填されたボンベを102ガスボンベ
のつなぎ口につなぎ、AfL2(CH3)seHeガス
でバブリングして流し成膜を行なった(試料12)、バ
ブリング温度は60℃としたa Heガスボンベはボン
ベ101と106との2個所とした。
The obtained values were σd = 3XlO-8s/cm σp = 9X 10-as/cm Eg'Pt = 1.2eV Example 12 In Example 1, instead of SiH4 gas, All2 (
A cylinder filled with CH3)5 gas was connected to the connection port of a 102 gas cylinder, and a flow film was formed by bubbling AfL2(CH3)seHe gas (sample 12), the bubbling temperature was 60 °C. There were two cylinders, cylinders 101 and 106.

このときの成S条件は次のとおりである。The conditions for S formation at this time are as follows.

An2 (CH3)をバブリング したときのHe流量   20secmF2     
        5secmF2ガスと共に流した He流量        40 s c cm内   
圧            800mTo  r  r
基体温度          室  温基  体   
       石英基体ガス吹き出し口と基体との距1
1i   3 c mこのとき、ガス吹き出し口の出口
近傍から基体にかけて発光がみられた。
He flow rate when bubbling An2 (CH3) 20secF2
5secHe flow rate flowed with F2 gas within 40 s c cm
Pressure 800mTorr
Substrate temperature Room temperature substrate
Distance between quartz substrate gas outlet and substrate 1
1i 3 cm At this time, light emission was observed from near the exit of the gas outlet to the substrate.

30分間のガス吹き出し後1石英基体上に3000人の
Anの膜が堆積していた。
After 30 minutes of gas blowing, a 3000 An film was deposited on the quartz substrate.

導電率は真空蒸着で作成したAnとほとんど変わらなか
った。また石英基体への密着性は、真空蒸着したA、Q
膜に比べ著しく良好であった。
The conductivity was almost the same as that of An produced by vacuum evaporation. In addition, the adhesion to the quartz substrate was determined by vacuum-deposited A and Q.
It was significantly better than the membrane.

実施例13 実施例1において、SiH4ガスの代りにw(co)6
ポンベを102ガスボンベとした。
Example 13 In Example 1, w(co)6 was used instead of SiH4 gas.
The pombe was a 102 gas cylinder.

そしてw (Co)sをHeガスでバブリングして流し
、成膜を行なった(試料13)、バブリング温度は60
℃とした。Heガスボンベは101と106の2個所の
ボンベとした。
Then, w(Co)s was bubbled with He gas to form a film (sample 13), and the bubbling temperature was 60°C.
℃. There were two He gas cylinders, 101 and 106.

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

W(Co)9をバブリング したときのHe流量   20 s e cmF2  
           5secmF2ガスと共に流し
た He流74        40 s e c m内 
   圧            800mTo  r
  r基体温度          室  温基  体
          石英基体ガス吹き出し口と基体と
の距111i   3 c mこのときガス吹き出し口
の出口近傍から基体にかけて発光がみられた。
He flow rate when bubbling W(Co)9 20 s e cmF2
Within 74 40 sec m of He flowing with 5 sec F2 gas
Pressure 800mTor
r Substrate temperature Room temperature Substrate Quartz substrate Distance between gas outlet and substrate: 111i 3 cm At this time, light emission was observed from near the exit of the gas outlet to the substrate.

30分間のガス吹き出し後1石英基体上に5000人の
W膜が堆積していた。導電率は電子ビーム真空蒸着で作
成したW膜と殆ど変わらなかった。又石英基体への密着
性は、電子ビーム蒸着で得たAn膜に比べ著しく良好で
あった。
After 30 minutes of gas blowing, 5000 W films were deposited on the quartz substrate. The conductivity was almost the same as that of the W film made by electron beam vacuum evaporation. Furthermore, the adhesion to the quartz substrate was significantly better than that of the An film obtained by electron beam evaporation.

実施例14 実施例1においてSiH4ガスを流す代りに。Example 14 Instead of flowing SiH4 gas in Example 1.

H2Seガスを流して、成膜を行なった(試料14)。Film formation was performed by flowing H2Se gas (Sample 14).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

H2Se         20secmF2    
      10sc105c           
、40sccm内  圧           800
mTo  r  r基体温度          60
℃ 基 体          石英基板 ガス吹き出し口と基体との距離 3cmガスを流すと、
ガス吹き出し管の出口近傍より基板にかけて発光がみち
れた。
H2Se 20secF2
10sc105c
, 40sccm internal pressure 800
mTo r rsubstrate temperature 60
℃ Substrate Quartz substrate Distance between gas outlet and substrate When gas is flowed 3 cm,
Luminescence was observed from near the outlet of the gas blowing tube to the board.

30分間のガス吹き出し後1石英基体上に約2pmのS
e膜が堆積していた。
Approximately 2 pm of S was deposited on the quartz substrate after 30 minutes of gas blowing.
E film was deposited.

得られたSe膜は電子線回折の結果、非晶質であること
を確認1.た、Se膜上に、真空蒸着法でくし形のA文
電極を蒸着して、実施例1に記載した方法で暗導電率・
(σd)、600nm、0.3mw/cm2の光照射時
の導電率(cr p)、及び光学吸収の測定より光学的
バンドギャップ(Eg’Pt)を測定した。
As a result of electron beam diffraction, it was confirmed that the obtained Se film was amorphous.1. In addition, a comb-shaped A pattern electrode was deposited on the Se film by vacuum evaporation, and the dark conductivity was determined by the method described in Example 1.
(σd), electrical conductivity (crp) upon irradiation with light of 600 nm and 0.3 mw/cm2, and optical band gap (Eg'Pt) by measuring optical absorption.

得られた値は cr d = 3 X I O−13s / c ma
r p = 2 X 10−8 s / c mEg’
Pt=2.1eV であった。
The obtained value is cr d = 3 X IO-13s / c ma
r p = 2 x 10-8 s/c mEg'
Pt=2.1eV.

実施例15 実施例1においてF2を導入する代りに。Example 15 Instead of introducing F2 in Example 1.

107ポンベよりci2ガスを導入し、成膜を行なった
(試料15)。
A film was formed by introducing ci2 gas from a 107 pump (Sample 15).

このときの成膜条件は次のとおりである。The film forming conditions at this time are as follows.

SiH420sccm CJ12        2sccm He         40sccm 内  圧          800mTorr基体温
度     300℃ ガス吹き出し口と基体との距fi3cmこの際、SiH
4ガスとCfL2ガスが合流する点で強い発光がみられ
た。3時間のガス吹き出し後1石英ガラス基体上に約1
.5JLmのA−Si:H:C文型が堆積した。この膜
が非晶質であることは電子線回折で確認した。
SiH420sccm CJ12 2sccm He 40sccm Internal pressure 800mTorr Substrate temperature 300℃ Distance between gas outlet and substrate fi3cm At this time, SiH
Strong light emission was observed at the point where the 4 gas and the CfL2 gas merged. After 3 hours of gas blowing, about 1 layer was deposited on 1 quartz glass substrate.
.. A-Si:H:C sentence pattern of 5JLm was deposited. It was confirmed by electron diffraction that this film was amorphous.

該A−Si:H:CfL膜上にA見のくし形電極(ギャ
ップ長200 gm)を真空蒸着した後、試料15を真
空タライオスタット中にいれ、暗導電率(crd)、6
00 nm、0.3mw/Cm2の光照射時の導電率(
σp)、及び光学吸収の測定より光学的バンドギャップ
(E g’Pt)を測定した。
After vacuum-depositing a comb-shaped electrode (gap length 200 gm) on the A-Si:H:CfL film, sample 15 was placed in a vacuum taliostat, and the dark conductivity (CRD) was 6.
00 nm, conductivity when irradiated with light of 0.3 mw/Cm2 (
σp), and the optical band gap (E g'Pt) was measured by measuring optical absorption.

得られた値は crd=2X10=I+s/cm σp=6X10−85/Cm EgOPt=1.70eV であった。The value obtained is crd=2X10=I+s/cm σp=6X10-85/Cm EgOPt=1.70eV Met.

〔効果〕〔effect〕

以上の詳細な説明及び各実施例より1本発明の堆積膜形
成法によれば、省エネルギー化を計ると同時に膜品質の
管理が容易で大面積に亘って均一物理特性の堆積膜が得
られる。又、生産性、量産性に優れ、高品質で電気的、
光学的、半導体的等の物理特性に優れた膜を簡便に得る
ことが出来る。
From the above detailed description and examples, according to the method for forming a deposited film of the present invention, it is possible to save energy, easily control the film quality, and obtain a deposited film with uniform physical properties over a large area. In addition, it has excellent productivity and mass production, and is of high quality and electrical.
A film with excellent physical properties such as optical and semiconductor properties can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた成膜装置の模式的概略
図である。 101−108−−−−−−−−−−−−−−−−ガス
ボンベ。 101 a 〜108 a−−−−−−−−−−ガスの
導入管。 101b〜l O8b−−−−−−マスフロメーター、
101 c −108c−−−−−−−−−−−−ガス
圧力計。 101d N108d及び 101 e Nl 08 e−−−−−−−−−−−−
−−−−バルブ。 101 f −108f−−−−−−−−−−−−−−
−一圧力計。 109 、110 、111−−−−−一−−ガス導入
管、112−−一−−−−−−−−−−−−−−−−−
−一基体ホルダー。 113−−−−−−−−−−−−−−−一基体加熱用ヒ
ーター、116−−−−−−−−−−基体温度モニター
用熱電対、11 B−−−−−−−−−−−−−−−−
−−−−−−−−一−−−−−基体、119−−一−−
−−−−−−−−−−−−−−一真空排気バルブ。 を夫々表わしている。
FIG. 1 is a schematic diagram of a film forming apparatus used in an example of the present invention. 101-108---------------Gas cylinder. 101a to 108a---------Gas introduction pipes. 101b~l O8b------mass flow meter,
101c -108c------------Gas pressure gauge. 101d N108d and 101e Nl 08 e----------------------
----- Valve. 101 f -108f----------------------
- One pressure gauge. 109, 110, 111----1---Gas introduction pipe, 112--1------------------
- One-substrate holder. 113------------Heater for heating one substrate, 116---Thermocouple for monitoring substrate temperature, 11 B------------ −−−−−−−−
---------1-----Substrate, 119--1--
−−−−−−−−−−−−−−1 Vacuum exhaust valve. respectively.

Claims (18)

【特許請求の範囲】[Claims] (1)堆積膜形成用の気体状原料物質と、該原料物質に
酸化作用をする性質を有する気体状ハロゲン系酸化剤と
、を反応空間内に導入して化学的に接触させることで励
起状態の前駆体を含む複数の前駆体を生成し、これらの
前駆体の内少なくとも1つの前駆体を堆積膜構成要素の
供給源として成膜空間内にある基体上に堆積膜を形成す
ることを特徴とする堆積膜形成法。
(1) A gaseous raw material for forming a deposited film and a gaseous halogen-based oxidant having the property of oxidizing the raw material are introduced into a reaction space and brought into chemical contact to bring them into an excited state. A deposited film is formed on a substrate located in a deposition space by generating a plurality of precursors including precursors of and using at least one of these precursors as a source of a deposited film component. Deposited film formation method.
(2)生成時に発光を伴う特許請求の範囲第1項に記載
の堆積膜形成法。
(2) The deposited film forming method according to claim 1, which accompanies light emission during generation.
(3)前記気体状原料物質は、鎖状シラン化合物である
特許請求の範囲第1項に記載の堆積膜形成法。
(3) The deposited film forming method according to claim 1, wherein the gaseous raw material is a chain silane compound.
(4)前記鎖状シラン化合物は、直鎖状シラン化合物で
ある特許請求の範囲第3項に記載の堆積膜形成法。
(4) The deposited film forming method according to claim 3, wherein the chain silane compound is a linear silane compound.
(5)前記直鎖状シラン化合物は、一般式Si_nH_
2_n_+_2(nは1〜8の整数)で示される特許請
求の範囲第4項に記載の堆積膜形成法。
(5) The linear silane compound has the general formula Si_nH_
The deposited film forming method according to claim 4, which is represented by 2_n_+_2 (n is an integer from 1 to 8).
(6)前記鎖状シラン化合物は、分岐状鎖状シラン化合
物である特許請求の範囲第3項に記載の堆積膜形成法。
(6) The deposited film forming method according to claim 3, wherein the chain silane compound is a branched chain silane compound.
(7)前記気体状原料物質は、硅素の環状構造を有する
シラン化合物である特許請求の範囲第1項に記載の堆積
膜形成法。
(7) The deposited film forming method according to claim 1, wherein the gaseous raw material is a silane compound having a silicon ring structure.
(8)前記気体状原料物質は、鎖状ゲルマン化合物であ
る特許請求の範囲第1項に記載の堆積膜形成法。
(8) The deposited film forming method according to claim 1, wherein the gaseous raw material is a chain germane compound.
(9)前記鎖状ゲルマン化合物は、一般式Ge_mH_
2_m_+_2(mは1〜5の整数)で示される特許請
求の範囲第8項に記載の堆積膜形成法。
(9) The linear germane compound has the general formula Ge_mH_
The deposited film forming method according to claim 8, which is represented by 2_m_+_2 (m is an integer of 1 to 5).
(10)前記気体状原料物質は、水素化スズ化合物であ
る特許請求の範囲第1項に記載の堆積膜形成法。
(10) The deposited film forming method according to claim 1, wherein the gaseous raw material is a tin hydride compound.
(11)前記気体状原料物質は、テトラヘドラル系化合
物である特許請求の範囲第1項に記載の堆積膜形成法。
(11) The deposited film forming method according to claim 1, wherein the gaseous raw material is a tetrahedral compound.
(12)前記気体状ハロゲン系酸化剤は、ハロゲンガス
を含む特許請求の範囲第1項に記載の堆積膜形成法。
(12) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen gas.
(13)前記気体状ハロゲン系酸化剤は、弗素ガスを含
む特許請求の範囲第1項に記載の堆積膜形成法。
(13) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains fluorine gas.
(14)前記気体状ハロゲン系酸化剤は、塩素ガスを含
む特許請求の範囲第1項に記載の堆積膜形成法。
(14) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains chlorine gas.
(15)前記気体状ハロゲン系酸化剤は、弗素原子を構
成成分として含むガスである特許請求の範囲第1項に記
載の堆積膜形成法。
(15) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent is a gas containing fluorine atoms as a constituent component.
(16)前記気体状ハロゲン系酸化剤は、発生期状態の
ハロゲンを含む特許請求の範囲第1項に記載の堆積膜形
成法。
(16) The deposited film forming method according to claim 1, wherein the gaseous halogen-based oxidizing agent contains halogen in a nascent state.
(17)前記基体は、前記気体状原料物質と前記気体状
ハロゲン系酸化剤の前記反応空間への導入方向に対して
対向する位置に配設される特許請求の範囲第1項に記載
の堆積膜形成法。
(17) The deposition according to claim 1, wherein the substrate is disposed at a position opposite to the direction in which the gaseous raw material and the gaseous halogen-based oxidizing agent are introduced into the reaction space. Film formation method.
(18)前記気体状原料物質と前記気体状ハロゲン系酸
化剤は前記反応空間へ、多重管構造の輸送管から導入さ
れる特許請求の範囲第1項に記載の堆積膜形成法。
(18) The deposited film forming method according to claim 1, wherein the gaseous raw material and the gaseous halogen-based oxidizing agent are introduced into the reaction space from a transport pipe having a multi-tube structure.
JP60237006A 1985-10-23 1985-10-23 Deposited film formation method Expired - Lifetime JPH0645882B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60237006A JPH0645882B2 (en) 1985-10-23 1985-10-23 Deposited film formation method
CA000521129A CA1315614C (en) 1985-10-23 1986-10-22 Method for forming deposited film
CN86107141.7A CN1015008B (en) 1985-10-23 1986-10-22 Method for forming deposited film
AU64269/86A AU595251B2 (en) 1985-10-23 1986-10-22 Method for forming deposited film
US06/921,462 US4818564A (en) 1985-10-23 1986-10-22 Method for forming deposited film
AT86308271T ATE68530T1 (en) 1985-10-23 1986-10-23 PROCESS FOR DEPOSITED FILM FORMATION.
EP86308271A EP0234094B1 (en) 1985-10-23 1986-10-23 Method for forming deposited film
DE8686308271T DE3682054D1 (en) 1985-10-23 1986-10-23 METHOD FOR TRAINING A DEPOSITED FILM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237006A JPH0645882B2 (en) 1985-10-23 1985-10-23 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS6296675A true JPS6296675A (en) 1987-05-06
JPH0645882B2 JPH0645882B2 (en) 1994-06-15

Family

ID=17008988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237006A Expired - Lifetime JPH0645882B2 (en) 1985-10-23 1985-10-23 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0645882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196821A (en) * 1986-02-24 1987-08-31 Agency Of Ind Science & Technol Manufacture of thin-film
US5213997A (en) * 1989-03-31 1993-05-25 Canon Kabushiki Kaisha Method for forming crystalline film employing localized heating of the substrate
US5624720A (en) * 1989-03-31 1997-04-29 Canon Kabushiki Kaisha Process for forming a deposited film by reacting between a gaseous starting material and an oxidizing agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196821A (en) * 1986-02-24 1987-08-31 Agency Of Ind Science & Technol Manufacture of thin-film
JPH0545055B2 (en) * 1986-02-24 1993-07-08 Kogyo Gijutsuin
US5213997A (en) * 1989-03-31 1993-05-25 Canon Kabushiki Kaisha Method for forming crystalline film employing localized heating of the substrate
US5624720A (en) * 1989-03-31 1997-04-29 Canon Kabushiki Kaisha Process for forming a deposited film by reacting between a gaseous starting material and an oxidizing agent

Also Published As

Publication number Publication date
JPH0645882B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JPS62158874A (en) Multi-layered structure of thin film and its formation
JPS62152171A (en) Thin-film transistor
US4812325A (en) Method for forming a deposited film
US5322568A (en) Apparatus for forming deposited film
US4812328A (en) Method for forming deposited film
US4822636A (en) Method for forming deposited film
JPS62156813A (en) Thin film semiconductor element and forming method thereof
JPS6296675A (en) Formation of deposited film
US4837048A (en) Method for forming a deposited film
JPH0647734B2 (en) Deposited film formation method
JPS62142780A (en) Formation of deposited film
JPH0645883B2 (en) Deposited film formation method
JP2637396B2 (en) Deposition film formation method
JP2637397B2 (en) Deposition film formation method
JPS6299465A (en) Deposited film formation
JPS62151571A (en) Deposited film forming device
JPS6338581A (en) Functional deposited film forming device
JPS6299466A (en) Deposited film formation
JPS62228478A (en) Deposited film forming device
JPS62158868A (en) Deposited film forming device
JPS62229825A (en) Deposit film forming method
JPH0647731B2 (en) Deposited film formation method
JPS62230980A (en) Formation of deposited film
JPS62228474A (en) Deposited film forming device
JPS62228479A (en) Deposited film forming device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term