JPH01189815A - Manufacture of transparent conductive film - Google Patents

Manufacture of transparent conductive film

Info

Publication number
JPH01189815A
JPH01189815A JP1330488A JP1330488A JPH01189815A JP H01189815 A JPH01189815 A JP H01189815A JP 1330488 A JP1330488 A JP 1330488A JP 1330488 A JP1330488 A JP 1330488A JP H01189815 A JPH01189815 A JP H01189815A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
spray
substrate
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1330488A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
淳 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP1330488A priority Critical patent/JPH01189815A/en
Publication of JPH01189815A publication Critical patent/JPH01189815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To enhance light transmittance even at a low temperature and reduce resistivity by spraying a heated base plate with spray liquid having a specific composition so as to form a transparent conductive film by the effect of thermal decomposition reaction. CONSTITUTION:Spray liquid 12 is prepared with aqueous solution or alcoholic solution including raw material for forming a transparent conductive film (for example, stannic chloride) and ammonium halide (for example, ammonium fluoride) or hydrogen halide. A base plate 2a (for example, glass applied with SiO2 as an undercoat) is mounted on a hot plate 11 so as to be heated (up to 400 deg.C). And next, a compressor 16 is operated so that a spray device 14 sprays the base plate 2a with the spray liquid, thereby the transparent conductive film (fluorine doped stannic oxide thin film) 2b is formed on the base plate 2a by the effect of thermal decomposition reaction.

Description

【発明の詳細な説明】 の1 本発明は、透明導電膜の作製法に関するものであり、特
にスプレー熱分解法を利用した透明導電膜の作製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) The present invention relates to a method for producing a transparent conductive film, and particularly to a method for producing a transparent conductive film using a spray pyrolysis method.

′ の ゛ び。 占 近年、半導体装置、液晶デイスプレー装置その他の用途
において、ガラス等のような基板上に酸化スズ、酸化イ
ンジウム等の金属酸化物の薄膜を形成する必要性が増大
している。
′ of ゛bi. In recent years, there has been an increasing need to form thin films of metal oxides such as tin oxide and indium oxide on substrates such as glass in semiconductor devices, liquid crystal display devices, and other applications.

第3図に図示するように、例えばアモルファスシリコン
太陽電池lは、透明電極付基板2にα−3t膜4及び裏
面金属6が積層されて形成されている。従って、その製
造工程は、 (1)ガラス基板2a上に0.2〜1.0gm程度の厚
さにて透明導電!12bを製膜し透明電極付基板2を形
成する工程、 (2)プラズマCVD法にて上記透明電極付基板2上に
アモルファスシリコンを製MLα−3ifi4を形成す
る工程、 (3)スパー2夕法又は真空蒸着法を利用しA!lを0
 、21Lm程度の厚さにて上記α−3i膜4上に製膜
し裏面金属6を形成する工程。
As shown in FIG. 3, for example, an amorphous silicon solar cell 1 is formed by laminating an α-3T film 4 and a back metal 6 on a substrate 2 with a transparent electrode. Therefore, the manufacturing process is as follows: (1) A transparent conductive film with a thickness of about 0.2 to 1.0 gm is placed on the glass substrate 2a. 12b to form a transparent electrode-attached substrate 2, (2) a step of forming amorphous silicon MLα-3ifi4 on the transparent electrode-attached substrate 2 by plasma CVD method, (3) Spar 2 evening method. Or use vacuum evaporation method A! l to 0
, a step of forming a back metal 6 on the α-3i film 4 to a thickness of about 21 Lm.

から成る。Consists of.

上記透明電極形成工程(1)は、従来ガラス基板2a上
に化学気相蒸着(CVD)法又はスプレー熱分解法にて
、例えば酸化スズ(S nO2)膜を製膜するのが一般
的であった。
In the transparent electrode forming step (1), it has conventionally been common to form, for example, a tin oxide (S nO2) film on the glass substrate 2a by a chemical vapor deposition (CVD) method or a spray pyrolysis method. Ta.

化学気相蒸着(CVD)法は、常圧での反応であり、又
コンベア炉を用いた連続プロセスが可能であり、多量生
産が容易であり、且つ大面積に均一な製膜が容易に行な
い得るといった利点を有しているが、スパッタ法等と同
様にテクスチャー構造ができ難いとう問題があった。
The chemical vapor deposition (CVD) method is a reaction at normal pressure, and a continuous process using a conveyor furnace is possible, making it easy to mass produce and uniformly forming a film over a large area. However, like the sputtering method, it has the problem that it is difficult to form a textured structure.

一方、L記スプレー熱分解法は、CVD法と同様に常圧
化でのプロセスであるために多量生産が可能であり、又
容易にテクスチャー構造とすることができ、更に、例え
ばアモルファス太陽電池を作製した場合等には、CVD
法に比較して該方法にて製造した基板を利用した方が高
い変換効率を達成し得ることが分かった。
On the other hand, since the spray pyrolysis method described in L is a process under normal pressure like the CVD method, it is possible to produce in large quantities, and it is also possible to easily form a textured structure. When fabricated, etc., CVD
It has been found that higher conversion efficiency can be achieved by using a substrate manufactured by this method than by the conventional method.

しかしながら、本発明者等の研究実験によると従来のス
プレー熱分解法にて形成されたハロゲンドープの透明導
電膜は、500℃以上の高温では透過率80%以上で比
抵抗も3 X l O−1Ωcm程度の膜が形成できる
が、400℃以下では光透過率が60%程度と低く、比
抵抗も5 X l O−100mと大キく、従って40
0℃以下の低温で光透過率を高くし且つ比抵抗を低下せ
しめることにより十分な変換効率を有するアモルファス
太陽電池用基板の生産コストの低減をなし得ることが分
かった。
However, according to research experiments conducted by the present inventors, a halogen-doped transparent conductive film formed by the conventional spray pyrolysis method has a transmittance of 80% or more and a specific resistance of 3 X l O- at high temperatures of 500°C or higher. A film with a thickness of about 1 Ωcm can be formed, but the light transmittance is as low as about 60% at temperatures below 400°C, and the specific resistance is as large as 5 x l O-100 m, so 40
It has been found that the production cost of an amorphous solar cell substrate having sufficient conversion efficiency can be reduced by increasing the light transmittance and decreasing the specific resistance at a low temperature of 0° C. or lower.

又、従来のスプレー熱分解法は膜の堆積速度が遅く生産
性の点で改善が望まれていた。
Furthermore, the conventional spray pyrolysis method has a slow film deposition rate, and improvements in productivity have been desired.

11立11 本発明の目的は、低温で光透過率が高く且つ比抵抗が小
さい透明導電膜を形成し得るスプレー熱分解法による透
明導電膜の作製法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a transparent conductive film using a spray pyrolysis method that can form a transparent conductive film with high light transmittance and low specific resistance at low temperatures.

本発明の他の目的は、堆積速度が速く、生産性が向上し
たスプレー熱分解法による透明導電膜の作製法を提供す
ることである。
Another object of the present invention is to provide a method for producing a transparent conductive film by spray pyrolysis, which has a high deposition rate and improved productivity.

ロー 上記目的は本発明によって達成される。要約すれば本発
明は、透明導電膜形成用原料物質及びハロゲン化アンモ
ニウム若しくはハロゲン化水素の水又はアルコール溶液
中に酸化剤を添加して調製したスプレー液を加熱基板上
に噴霧し、熱分解反応により該基板に透明導電膜を形成
することを特徴とする透明導電膜の作製法である。透明
導電膜形成用原料物質は、スズ、インジウム又は亜鉛と
され、酸化剤としては、過酸化水素(Hz Oz )又
はオキソ酸、例えば亜硝酸(HNOl)、硝酸(HNO
3)、過マンガン酸(8Mn04)、クロム酸(Hz 
Cr04 ) 、過塩素酸(HCl2)、塩素酸(HC
皇03)、亜塩素酸(HClOz)、次亜塩素酸()i
 Cl O)及びその塩類が好適に使用される。特に酸
化作用の強い過酸化水素、過マンガン酸又は過塩素酸が
好ましい。
The above objects are achieved by the present invention. In summary, the present invention involves spraying a spray solution prepared by adding an oxidizing agent to a water or alcohol solution of a raw material for forming a transparent conductive film and ammonium halide or hydrogen halide onto a heated substrate, and causing a thermal decomposition reaction. This is a method for producing a transparent conductive film, characterized in that a transparent conductive film is formed on the substrate. The raw material for forming the transparent conductive film is tin, indium or zinc, and the oxidizing agent is hydrogen peroxide (HzOz) or an oxoacid such as nitrous acid (HNOl), nitric acid (HNOl), etc.
3), permanganic acid (8Mn04), chromic acid (Hz
Cr04), perchloric acid (HCl2), chloric acid (HC
03), chlorous acid (HClOz), hypochlorous acid ()i
Cl 2 O) and its salts are preferably used. Particularly preferred are hydrogen peroxide, permanganic acid, or perchloric acid, which have a strong oxidizing effect.

本発明等は、ハロゲンドープ酸化スズ、酸化インジウム
、酸化亜鉛等の透明導電膜の作製において、スプレー溶
液に、上記の如き酸化剤を添加することにより膜の酸化
度を上げてドーパント濃度を減らし、透明導電膜の透過
率を高くし得ることを見出した。又、このように酸化剤
をスプレー溶液に添加することにより透明導電膜中のキ
ャリヤ濃度は低下するが、移動度は増加し、比抵抗が低
下することが分かった。
In the present invention, when producing a transparent conductive film made of halogen-doped tin oxide, indium oxide, zinc oxide, etc., the oxidizing agent as described above is added to the spray solution to increase the oxidation degree of the film and reduce the dopant concentration. It has been discovered that the transmittance of a transparent conductive film can be increased. It has also been found that by adding an oxidizing agent to the spray solution in this manner, the carrier concentration in the transparent conductive film decreases, but the mobility increases and the specific resistance decreases.

更に具体的に言えば、従来のスプレー熱分解法により得
られる透明導電膜は成膜温度が400℃程度では厚さが
4000スのとき、透過率は60%程度、比抵抗は少な
くとも5×10″1Ωcm以上であるのに対して、本発
明によれば、同じ処理時間、同じ成膜温度にて厚さが7
300大と厚くすることができ、又そのときの透過率は
80%以上、比抵抗は4 、 OX 10 ’Ωcm以
下とすることができる。
More specifically, the transparent conductive film obtained by the conventional spray pyrolysis method has a transmittance of about 60% and a resistivity of at least 5×10 when the film-forming temperature is about 400°C and the thickness is 4000 mm. According to the present invention, the thickness is 7 Ωcm or more at the same processing time and the same film forming temperature.
The thickness can be increased to 300 mm, and the transmittance can be 80% or more, and the specific resistance can be 4.0 x 10' Ωcm or less.

更に堆積速度は、上記説明にても理解されるように従来
の6.0人/Sに対し、lOス/S以上と大きく増大す
る。このように堆積速度が向上するのはスプレー溶液中
に添加した酸化剤の酸化反応が堆積速度の促進に寄与し
ているのではないかと考えられる。
Furthermore, as can be understood from the above explanation, the deposition rate is greatly increased to more than 1Os/S compared to the conventional 6.0 people/S. It is thought that the reason why the deposition rate is increased in this way is that the oxidation reaction of the oxidizing agent added to the spray solution contributes to the acceleration of the deposition rate.

又、従来スプレー熱分解法にもたらされる基板は500
℃〜600℃に保持する必要があったが、本発明では基
板温度を300℃〜400℃に保持することにより極め
て良好な導電膜を形成することができた。基板温度を低
くして熱分解反応を達成し得ることは透明導電極付基板
の生産コストの低減、ソーダライムガラス使用時の透明
導電膜へのアルカリ金属の拡散抑制といった利益がある
。これも又、スプレー溶液中に添加した酸化剤の酸化反
応に起因するものであると考えられる。
Moreover, the substrates conventionally provided in the spray pyrolysis method are 500
Although it was necessary to maintain the substrate temperature between 300 and 600 degrees Celsius, in the present invention, an extremely good conductive film could be formed by maintaining the substrate temperature between 300 and 400 degrees Celsius. Achieving a thermal decomposition reaction by lowering the substrate temperature has the advantage of reducing the production cost of a substrate with a transparent conductive electrode and suppressing the diffusion of alkali metals into a transparent conductive film when soda lime glass is used. This is also believed to be due to the oxidation reaction of the oxidizing agent added to the spray solution.

本発明は種々の装置にて実施し得るが、代表的な例を図
面に即して説明する。
Although the present invention can be implemented in various devices, typical examples will be explained with reference to the drawings.

第1図には空気圧スプレー装置lOが図示される0本実
施例においてヒータ等にて加熱されるホットプレート1
1が設けられ、該ホットプレート11上に、例えばガラ
ス板のような基板2aがariaされる。該ガラス板2
aは本発明に従えば、従来の酸化剤無添加時の500℃
〜650℃と言った高温に比べれば、ホットプレー)1
1にて300℃〜450℃、好ましくは350〜400
℃と言った低い温度に加熱される。
FIG. 1 shows a pneumatic spray device 10. In this embodiment, a hot plate 1 heated by a heater etc.
1 is provided, and a substrate 2a such as a glass plate is placed on the hot plate 11. The glass plate 2
According to the present invention, a is 500°C when no oxidizing agent is added.
Compared to the high temperature of ~650℃, it is hot play) 1
1 at 300°C to 450°C, preferably 350 to 400°C
It is heated to a low temperature such as °C.

一方、前記基板2a上に製膜される透明導電性形成用物
質スズ、インジウム又は亜鉛等を含んだスプレー液12
がタンク13からスプレー5at4のノズル15へと送
給される。該スプレー装置14にはコンプレッサー16
より圧縮空気が供給され、ノズル15からスプレー液1
2を基板2a上へと噴霧(スプレー)する、コンプレッ
サー16からの圧縮空気の圧力及び流量を制御手段17
にて制御することにより噴霧の粒径及び流量が適宜に選
択される。一般に、スプレー装W114にはコンブL/
11サー16から約0.5kg/crn”Gの圧縮空気
が供給され、孔径的0.5mmとされるノズル15から
、噴霧粒径が10〜10001mとされるスプレー液噴
霧体が流量0.1〜1.Oml/secにて基板2a上
へと所定時間間隔にて繰返し噴霧される。
On the other hand, a spray liquid 12 containing a transparent conductive material such as tin, indium, or zinc is deposited on the substrate 2a.
is fed from the tank 13 to the nozzle 15 of the spray 5at4. The spray device 14 includes a compressor 16.
compressed air is supplied from the nozzle 15, and the spray liquid 1 is
Control means 17 controls the pressure and flow rate of the compressed air from the compressor 16, which sprays 2 onto the substrate 2a.
The particle size and flow rate of the spray are appropriately selected by controlling the . Generally, spray equipment W114 includes kelp L/
Compressed air of approximately 0.5 kg/crn''G is supplied from the 11 sir 16, and a spray liquid atomizer having a spray particle diameter of 10 to 10,001 m is supplied from the nozzle 15 with a hole diameter of 0.5 mm at a flow rate of 0.1 It is repeatedly sprayed onto the substrate 2a at predetermined time intervals at ~1.0ml/sec.

第2図には本発明を実施する他の装置が例示される9本
実施例の装置20は超音波噴射装置とされる0本実施例
では、第1図に関連して説明したと同様に、ヒータ等に
て加熱されるホットプレー)21が設けられ、該ホット
プレー)21上に。
FIG. 2 illustrates another device for carrying out the present invention.9 The device 20 of this embodiment is an ultrasonic injection device.0 In this embodiment, the same device as described in connection with FIG. A hot plate (21) heated by a heater or the like is provided on the hot plate (21).

例えばガラス板のような基板2aが載置される。For example, a substrate 2a such as a glass plate is placed.

該ガラス板2aはホットプレート21にて同様に300
℃〜450℃、好ましくは350〜400℃に加熱され
る0本実施例ではホットプレート21及び基板2aは密
閉容器22内に配置される。
The glass plate 2a is similarly heated at 300 mm on the hot plate 21.
In this embodiment, the hot plate 21 and the substrate 2a are placed in a closed container 22.

該密閉容器22には適当な排気孔(図示せず)等が形成
されている。
Appropriate exhaust holes (not shown) and the like are formed in the closed container 22.

一方、前記基板2a上に製膜される透明導電性形成用物
質を含んだスプレー液23が送給ポンプ26を介してタ
ンク24から超音波噴射装置25へと送給される。超音
波噴射装置25は超音波振動発生手段100にて超音波
振動される。又、該密閉容器22内にはコンプレッサー
27より流量計28を介して同伴気体(キャリアガス)
1通常圧縮空気が供給される。
On the other hand, a spray liquid 23 containing a transparent conductive forming material to be formed into a film on the substrate 2a is fed from the tank 24 to the ultrasonic spraying device 25 via the feeding pump 26. The ultrasonic injection device 25 is ultrasonically vibrated by the ultrasonic vibration generating means 100. Further, entrained gas (carrier gas) is supplied into the airtight container 22 from a compressor 27 via a flow meter 28.
1 Normally compressed air is supplied.

一般に、超音波噴射装置25は超音波振動発生手段10
0により出力lO〜soow、周波数20〜100KH
zの超音波上て振動され、タンク24よりスプレー液2
3が0.1 NlOmJL/minの流量で供給される
0本実施例によると、スプレー液は粒径が約0.1〜1
0.4mの範囲内にて大略均一な粒径の霧滴が得られる
。更に、本実施例では、コンプレッサー27から、例え
ば約0 、5 k g / c rn” Gの圧縮空気
が、約21 / m in(標準状態)の割合で加熱基
板2a上に噴出される。a音波噴射装!125によって
霧化されたスプレー液23の微粒子を直接加熱基板2a
上に吹付けることも可能であるが、上述のように、超音
波噴射袋W25によって霧化されたスプレー液の微粒子
を、例えば空気のようなキャリアガスと共に基板2b上
へと吹付ける方が均一な製膜が達成される。
Generally, the ultrasonic jetting device 25 includes the ultrasonic vibration generating means 10.
0 output lO~soow, frequency 20~100KH
It is vibrated by the ultrasonic waves of z, and the spray liquid 2 is released from the tank 24.
According to this example, the spray liquid has a particle size of about 0.1 to 1
Mist droplets with approximately uniform particle size are obtained within a range of 0.4 m. Further, in this embodiment, compressed air of, for example, about 0.5 kg/crn''G is jetted onto the heating substrate 2a from the compressor 27 at a rate of about 21/min (standard condition).a The fine particles of the spray liquid 23 atomized by the sonic spray device!125 are directly heated to the substrate 2a.
Although it is possible to spray onto the substrate 2b, as described above, it is more uniform to spray the fine particles of the spray liquid atomized by the ultrasonic spray bag W25 onto the substrate 2b together with a carrier gas such as air. film formation is achieved.

本発明に使用する超音波噴射装置25は、例えば特願昭
59−77572号に記載されるようなもの、或いはそ
の他当業者には周知の任意のものを使用することができ
る。
As the ultrasonic jetting device 25 used in the present invention, for example, the one described in Japanese Patent Application No. 77572/1984, or any other device well known to those skilled in the art can be used.

上記各実施例にて、スプレー液は、透明導電膜形成用原
料物質として混入されるフッ化スズ(II)(SnFz
)、7y化スズ(ff)  (SmF3)、塩化スズ(
■)(SnC交l)、塩化スズ(IT)(S ncu+
 )、臭化スズ(II)  (S nBrz)、臭化ス
ズ(IT)  (S nB r4 ) 、ヨウ化スズ(
II)(SnIz)、ヨウ化スズ(17)  (SnI
4)、硝酸スズ(Iff)  (S n (NO3)今
)、フッ化インジウム(III)  (I n Fl 
) 、塩化インジウム(I)(I ncjL)、塩化イ
ンジウム(III)  (I nc13) 、臭化イン
ジウム(m)(InBr3)、ヨウ化インジウム(Il
l)(In13)、硝酸インジウム(m)  (I n
 (NOx )])、]7−/化亜鉛ZnFz)、塩化
亜鉛(ZnCRz)、臭化亜鉛(ZnBrz)、ヨウ化
亜鉛(ZnIz)、硝酸亜鉛(Zn(NO3)z)又は
炭酸亜鉛(Z ncOx )と、フッ化アンモニウム又
はフッ化水素との水溶液又はアルコール溶滴とされ、更
に酸化剤として過酸化水素水(Hz 02)、又は例え
ば亜硝酸(HNOz )、硝酸(HNo、)、過マンガ
ン酸(HMnO+)、クロム酸(Hz Cro+)、塩
素酸(HCJ103 )、次亜塩素酸(HC10)等の
オキソ酸及びその塩類が好適に添加されたものが使用さ
れる。このとき、透明導電膜形成用原料物質としての塩
化スズ(Sn0文4)等は0.01−1.00モル/文
、フッ化アンモニウムは0.01〜1.000モル/と
され、酸化剤は体積%で1−100%、好ましくは3〜
8%添加される。
In each of the above examples, the spray liquid contains tin(II) fluoride (SnFz) mixed as a raw material for forming a transparent conductive film.
), tin 7y (ff) (SmF3), tin chloride (
■) (SnC exchange), tin chloride (IT) (Sncu+
), tin(II) bromide (S nBrz), tin bromide (IT) (S nB r4 ), tin iodide (
II) (SnIz), tin iodide (17) (SnI
4), tin nitrate (Iff) (S n (NO3) now), indium (III) fluoride (I n Fl
), indium (I) chloride (I ncjL), indium (III) chloride (I nc13), indium (m) bromide (InBr3), indium iodide (Il
l) (In13), indium nitrate (m) (I n
(NO x ) and ammonium fluoride or hydrogen fluoride in an aqueous solution or alcohol droplets, and hydrogen peroxide (Hz 02) as an oxidizing agent, or, for example, nitrous acid (HNOz), nitric acid (HNO, ), permanganic acid. (HMnO+), chromic acid (Hz Cro+), chloric acid (HCJ103), hypochlorous acid (HC10), and other oxoacids and their salts are preferably added. At this time, the amount of tin chloride (Sn0 4) used as a raw material for forming a transparent conductive film is 0.01-1.00 mol/ml, ammonium fluoride is 0.01-1.000 mol/ml, and the oxidizing agent is is 1-100% by volume, preferably 3-100%
8% added.

次に、本発明に係る方法を、半導体装置に使用される酸
化スズ膜基板の作製に適用した実施例について説明する
Next, an example will be described in which the method according to the present invention is applied to the production of a tin oxide film substrate used in a semiconductor device.

実施例1 第1図に図示される構成の製造装置を使用して透明導電
膜を作製した。基板2aとしては表面に5iOzアンダ
ーコートを施した10cm角の並ガラスを用い、ホット
プレート11上に載置し、表面温度400℃にまで加熱
した。
Example 1 A transparent conductive film was manufactured using a manufacturing apparatus having the configuration shown in FIG. As the substrate 2a, a 10 cm square ordinary glass with a 5 iOz undercoat on the surface was used, and it was placed on a hot plate 11 and heated to a surface temperature of 400°C.

スプレー液は、エタノール中に塩化スズ(SnC父斗・
5H2O)を0.1モル/1.フッ化アンモニウム(N
H4F)を0.1モル/文に、過酸化水素水()iz 
Oこ濃度約35%)を約5体積%加えた水溶液を調製し
た。
The spray solution contains tin chloride (SnC) in ethanol.
5H2O) at 0.1 mol/1. Ammonium fluoride (N
H4F) to 0.1 mol/liter, hydrogen peroxide solution ()iz
An aqueous solution containing about 5% by volume of O (concentration: about 35%) was prepared.

次いで、コンプレッサー16を作動させ、スプレー装置
14に約0.5kg/cm″qの圧縮空気を供給し、孔
径的0.5mmのノズル15から、噴霧粒径がlO〜1
000Anとされるスプレー液噴霧体を流量的0.3m
文/secにて基板2al−へと噴霧した。
Next, the compressor 16 is operated to supply compressed air of approximately 0.5 kg/cm''q to the spray device 14, and the sprayed particle size is 10 to 1 from the nozzle 15 with a hole diameter of 0.5 mm.
000An spray liquid atomizer with a flow rate of 0.3m
It was sprayed onto the substrate 2al- at a rate of 100 min/sec.

この噴霧を約10秒行ない、次いで10秒停止する噴霧
サイクルを10回繰り返し行なった。
This spraying cycle was repeated 10 times in which the spraying was continued for about 10 seconds and then stopped for 10 seconds.

基板?a上にフー、lドープ酸化スズ薄fi2bが約8
000大の厚さで形成された。該薄膜の透過率は400
〜800nmの可視域で約80%であり、比抵抗は約3
 X L O”10cmであった。
substrate? Fu, L-doped tin oxide thin fi2b on a is about 8
It was formed with a thickness of 0.000 mm. The transmittance of the thin film is 400
It is about 80% in the visible range of ~800 nm, and the specific resistance is about 3
The length was 10 cm.

比較例1 過酸化水素水を全く含まない以外は実施例1と同じスプ
レー液を使用し、実施例1と同様にして透明導電膜を作
製した。
Comparative Example 1 A transparent conductive film was produced in the same manner as in Example 1, using the same spray liquid as in Example 1 except that it did not contain any hydrogen peroxide solution.

このようにして作製したフッ素ドープ酸化スズ薄112
bは約5000スの厚さしか有しておらず、又、該薄膜
の透過率は400〜800nmの可視域で約60%であ
り、比抵抗は約5 X 10 ’Ωcmであった。
Fluorine-doped tin oxide thin film 112 produced in this way
b had a thickness of only about 5000 mm, the transmittance of the thin film was about 60% in the visible range from 400 to 800 nm, and the resistivity was about 5 x 10' Ωcm.

実施例2 第2図に図示される構成の製造装置を使用して透明導電
膜を作製した。基板2aとしては表面に5iOzアンダ
ーコートを施した10cm角の並ガラスを用い、ホット
プレート11上に載置し、表面温度400℃にまで加熱
された。
Example 2 A transparent conductive film was manufactured using a manufacturing apparatus having the configuration shown in FIG. As the substrate 2a, a 10 cm square ordinary glass with a 5 iOz undercoat on the surface was used, and it was placed on a hot plate 11 and heated to a surface temperature of 400°C.

実施例1と同じスプレー液を用意した。該スプレー液を
ポンプ26により超音波噴射装置25へと約2mu/m
inの流量で供給した。超音波発生手段100を作動さ
せて出力100W、周波数28Kl(zの超音波にてス
プレー液を霧化し、粒径的lβmの大略均一な粒径の噴
霧体を得た。更にコンプレッサー27を作動させて約0
.5kg/CゴGの圧縮空気を、約2JL/m1n(標
準状態)の割合で加熱基板2a上に噴出させた。この噴
霧を約12分間継続して行なった。
The same spray solution as in Example 1 was prepared. The spray liquid is transferred to the ultrasonic spray device 25 by the pump 26 at a rate of approximately 2 mu/m.
It was supplied at a flow rate of in. The ultrasonic generating means 100 was operated to atomize the spray liquid using ultrasonic waves with an output of 100 W and a frequency of 28 Kl (z) to obtain a spray having a substantially uniform particle size of lβm.Furthermore, the compressor 27 was operated. about 0
.. Compressed air of 5 kg/CG was jetted onto the heating substrate 2a at a rate of about 2 JL/m1n (standard state). This spraying was continued for about 12 minutes.

基板2a上にフッ素ドープ酸化スズ薄膜2bが約750
0大の厚さで形成された。該薄膜の透過率は400〜8
00nmの可視域で約80%であり、比抵抗は約4 X
 10−3Ωcmであった。
A fluorine-doped tin oxide thin film 2b is formed on the substrate 2a with a thickness of approximately 750 mm.
It was formed with a thickness of 0. The transmittance of the thin film is 400-8
It is about 80% in the visible range of 00 nm, and the specific resistance is about 4
It was 10-3 Ωcm.

本実施例にて作製された透明導電膜のX線回折図形を第
4図に示す。
FIG. 4 shows the X-ray diffraction pattern of the transparent conductive film produced in this example.

比較例2 過酸化水素水を全く含まない以外は実施例2と同じスプ
レー液を使用し、実施例2と同様にして透明導電膜を作
製した。
Comparative Example 2 A transparent conductive film was produced in the same manner as in Example 2, using the same spray liquid as in Example 2 except that it did not contain any hydrogen peroxide solution.

このようにして作製したフッ素ドープ酸化スズ薄膜2b
は約4000大の厚さしか有しておらず、該薄膜の透過
率は400〜800nmの可視域で約63%であり、比
抵抗は約6 X 10−3ΩCmであった。
Fluorine-doped tin oxide thin film 2b produced in this way
had a thickness of only about 4000 nm, the transmittance of the thin film was about 63% in the visible range from 400 to 800 nm, and the resistivity was about 6 x 10-3 ΩCm.

本比較例にて作製された透明導電膜のX線回折図形を第
5図に示す、第4図と第5図を比較検討すると、酸化剤
添加により酸素を置換するフッ素が減少し、膜中ドナー
は酸素欠損が支配的となるということが分かる。
The X-ray diffraction pattern of the transparent conductive film produced in this comparative example is shown in Figure 5. Comparative examination of Figures 4 and 5 reveals that the addition of an oxidizing agent reduces the amount of fluorine that replaces oxygen in the film. It can be seen that the donor is dominated by oxygen vacancies.

左」LD」Ll 以上説明したように、本発明に係る透明導電膜作製法に
よると、400℃以下の低温で光透過率が高く且つ比抵
抗が小さい透明導電膜を形成し得、更には、堆積速度が
速く、生産性が向上するという特長を有する。
Left "LD" Ll As explained above, according to the method for producing a transparent conductive film according to the present invention, a transparent conductive film with high light transmittance and low specific resistance can be formed at a low temperature of 400° C. or lower, and further, It has the advantage of fast deposition rate and improved productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明に係る透明導電膜作製法を
実施するための装置の実施例を説明する概略断面図であ
る。 第3図は、アモルファスシリコン太陽電池の断面図であ
る。 第4図は、本発明に係る透明導電膜作製法にて形成され
たs膜のxm回折図形である。 第5図は、従来の透明導電膜作製法にて形成された薄膜
のX線回折図形である。 2a:基板 2b:透明導電膜 11.21:ホットプレート 12.23ニスプレー液 14ニスプレー装置 16:コンプレッサー 25:超音波噴射装置 100:超音波振動発生手段 し−二 第4図
FIGS. 1 and 2 are schematic cross-sectional views illustrating an embodiment of an apparatus for carrying out the method for producing a transparent conductive film according to the present invention. FIG. 3 is a cross-sectional view of an amorphous silicon solar cell. FIG. 4 is an xm diffraction pattern of an s film formed by the method for producing a transparent conductive film according to the present invention. FIG. 5 is an X-ray diffraction pattern of a thin film formed by a conventional transparent conductive film manufacturing method. 2a: Substrate 2b: Transparent conductive film 11.21: Hot plate 12.23 Varnish spray liquid 14 Varnish spray device 16: Compressor 25: Ultrasonic spray device 100: Ultrasonic vibration generating means -2 Fig. 4

Claims (1)

【特許請求の範囲】 1)透明導電膜形成用原料物質及びハロゲン化アンモニ
ウム若しくはハロゲン化水素を含む水溶液又はアルコー
ル溶液中に酸化剤を添加して調製したスプレー液を加熱
基板上に噴霧し、熱分解反応により該基板に透明導電膜
を形成することを特徴とする透明導電膜の作製法。 2)透明導電膜形成用原料物質は、スズ、インジウム若
しくは亜鉛のハロゲン化物、硝酸塩又は炭酸塩である特
許請求の範囲第1項記載の作製法。 3)酸化剤は、過酸化水素(H_2O_2)又はオキソ
酸若しくはその塩類である特許請求の範囲第1項又は第
2項記載の作製法。
[Scope of Claims] 1) A spray solution prepared by adding an oxidizing agent to an aqueous or alcoholic solution containing a raw material for forming a transparent conductive film and ammonium halide or hydrogen halide is sprayed onto a heated substrate, and then heated. A method for producing a transparent conductive film, which comprises forming a transparent conductive film on the substrate by a decomposition reaction. 2) The manufacturing method according to claim 1, wherein the raw material for forming the transparent conductive film is a halide, nitrate, or carbonate of tin, indium, or zinc. 3) The production method according to claim 1 or 2, wherein the oxidizing agent is hydrogen peroxide (H_2O_2) or an oxoacid or a salt thereof.
JP1330488A 1988-01-22 1988-01-22 Manufacture of transparent conductive film Pending JPH01189815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330488A JPH01189815A (en) 1988-01-22 1988-01-22 Manufacture of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330488A JPH01189815A (en) 1988-01-22 1988-01-22 Manufacture of transparent conductive film

Publications (1)

Publication Number Publication Date
JPH01189815A true JPH01189815A (en) 1989-07-31

Family

ID=11829441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330488A Pending JPH01189815A (en) 1988-01-22 1988-01-22 Manufacture of transparent conductive film

Country Status (1)

Country Link
JP (1) JPH01189815A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085699A (en) * 2003-09-10 2005-03-31 Fujikura Ltd Apparatus for manufacturing substrate for transparent electrode
JP2007238393A (en) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd Method and apparatus for producing metal oxide film
JP2011504293A (en) * 2007-11-02 2011-02-03 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Transparent conductive oxide film for thin film photovoltaic application and method of manufacturing the same
WO2014196095A1 (en) * 2013-06-04 2014-12-11 Roca株式会社 Method for producing oxide crystal thin film
WO2015005202A1 (en) * 2013-07-09 2015-01-15 株式会社Flosfia Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
JP2017112345A (en) * 2015-12-11 2017-06-22 株式会社Flosfia Method for manufacturing silicon oxide film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698939B2 (en) * 2003-09-10 2011-06-08 株式会社フジクラ Transparent electrode substrate manufacturing equipment
JP2005085699A (en) * 2003-09-10 2005-03-31 Fujikura Ltd Apparatus for manufacturing substrate for transparent electrode
JP2007238393A (en) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd Method and apparatus for producing metal oxide film
JP2015053494A (en) * 2007-11-02 2015-03-19 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. Transparent conductive oxide coating for thin film photovoltaic application and production method of the same
JP2011504293A (en) * 2007-11-02 2011-02-03 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Transparent conductive oxide film for thin film photovoltaic application and method of manufacturing the same
US9181124B2 (en) 2007-11-02 2015-11-10 Agc Flat Glass North America, Inc. Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
WO2014196095A1 (en) * 2013-06-04 2014-12-11 Roca株式会社 Method for producing oxide crystal thin film
TWI490368B (en) * 2013-06-04 2015-07-01 Flosfia Inc Preparation method of oxide crystal film
US10202685B2 (en) 2013-06-04 2019-02-12 Flosfia Inc. Method of manufacturing oxide crystal thin film
WO2015005202A1 (en) * 2013-07-09 2015-01-15 株式会社Flosfia Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
JPWO2015005202A1 (en) * 2013-07-09 2017-03-02 株式会社Flosfia Semiconductor device and manufacturing method thereof, and crystal and manufacturing method thereof
US9966439B2 (en) 2013-07-09 2018-05-08 Flosfia Inc. Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
JP2017112345A (en) * 2015-12-11 2017-06-22 株式会社Flosfia Method for manufacturing silicon oxide film

Similar Documents

Publication Publication Date Title
WO2005005686A1 (en) Method for forming metal oxide coating film and vapor deposition apparatus
JPH1179788A (en) Film-coated glass and its production
JP2002146536A (en) Low-temperature deposition method for thin film of tin oxide
US20140044977A1 (en) Method for coating substrates
JPH01189815A (en) Manufacture of transparent conductive film
EP2370613A2 (en) Conductive film formation on glass
US5009928A (en) Method for forming a transparent conductive metal oxide film
KR20110025385A (en) F-dopped tin oxide film with low resistivity and high transmittance and method thereof
JP2009536144A (en) Method for depositing a zinc oxide coating on a substrate
JP5148743B1 (en) Thin film deposition apparatus, thin film deposition method, and thin film solar cell manufacturing method
JP2000044238A (en) Production of tin dioxide film and solar cell
US4788079A (en) Method of making haze-free tin oxide coatings
JPS6018090B2 (en) Method of forming conductive thin film
JPS61244025A (en) Manufacture of thin film
CA1131742A (en) Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer
JP2001080939A (en) Apparatus for producing photocatalytic glass and production of the same glass
US4931308A (en) Process for the preparation of functional tin oxide thin films
WO2012147219A1 (en) Transparent conductive film and method for forming same
JPH0662317B2 (en) Method for producing transparent conductive glass
CN105951061B (en) Tin oxide film and its manufacturing method
JP2005162543A (en) Method for forming metal oxide thin film
KR100322850B1 (en) Composition for transparent conductive thin layers and method for preparing transparent conductive thin layers with low electric resistances using the same
JPS613885A (en) Manufacture of thin film by atomization
WO2012127708A1 (en) Thin film forming apparatus and thin film forming method
JPH0294210A (en) Transparent conductive substrate and manufacture thereof