JP3386756B2 - Thin film forming method and thin film forming apparatus - Google Patents

Thin film forming method and thin film forming apparatus

Info

Publication number
JP3386756B2
JP3386756B2 JP20381699A JP20381699A JP3386756B2 JP 3386756 B2 JP3386756 B2 JP 3386756B2 JP 20381699 A JP20381699 A JP 20381699A JP 20381699 A JP20381699 A JP 20381699A JP 3386756 B2 JP3386756 B2 JP 3386756B2
Authority
JP
Japan
Prior art keywords
thin film
gas
source material
fine particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20381699A
Other languages
Japanese (ja)
Other versions
JP2000144435A (en
Inventor
剛 西尾
哲也 新本
邦嘉 尾村
武司 日比野
Original Assignee
松下電池工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電池工業株式会社 filed Critical 松下電池工業株式会社
Priority to JP20381699A priority Critical patent/JP3386756B2/en
Publication of JP2000144435A publication Critical patent/JP2000144435A/en
Application granted granted Critical
Publication of JP3386756B2 publication Critical patent/JP3386756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光電変換素子や表
示素子などに使用される金属酸化物および金属硫化物の
薄膜形成方法および薄膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for forming thin films of metal oxides and metal sulfides used in photoelectric conversion elements, display elements and the like.

【0002】[0002]

【従来の技術】従来より、化合物半導体、特に金属酸化
物薄膜および金属硫化物薄膜は、光電変換素子や表示素
子の材料として広く用いられてきた。そして、これらの
化合物の多くは従来、スパッタリング法、蒸着法などに
よって製造されてきた。これらの手法によれば、所望の
膜質を有する薄膜を得やすいが、大面積の均一な薄膜形
成や高速連続製膜が困難である、真空装置を必要とする
ため装置が非常に高価になるなどの問題があった。
2. Description of the Related Art Conventionally, compound semiconductors, particularly metal oxide thin films and metal sulfide thin films, have been widely used as materials for photoelectric conversion elements and display elements. And many of these compounds have been conventionally manufactured by the sputtering method, the vapor deposition method, and the like. According to these methods, it is easy to obtain a thin film having a desired film quality, but it is difficult to form a large-area uniform thin film and continuous high-speed film formation, and a vacuum device is required, which makes the device very expensive. There was a problem.

【0003】そこで、真空装置を必要とせず安価に金属
硫化物や金属酸化物の薄膜を形成する方法として、金属
化合物の熱分解法が検討されている。例えば、少なくと
も一つの金属−硫黄結合を有する有機金属化合物をソー
ス基板上で熱分解させて、対向する製膜用基板上に金属
硫化物薄膜を形成する方法(例えば、特開平8−316
247号公報)が提案されている。しかし、この方法
は、ソース材料層を形成させたソース基板の作製が必要
なことや、ソース基板と製膜用基板とを一定の間隔で均
一に近接させる必要があるなど、工程の煩雑性、大面積
の薄膜形成の困難性などに問題があった。
Therefore, as a method for inexpensively forming a thin film of a metal sulfide or a metal oxide without the need for a vacuum device, a thermal decomposition method of a metal compound has been studied. For example, a method of thermally decomposing an organometallic compound having at least one metal-sulfur bond on a source substrate to form a metal sulfide thin film on an opposing film-forming substrate (for example, Japanese Patent Laid-Open No. 8-316).
No. 247) has been proposed. However, this method requires that a source substrate on which a source material layer is formed be produced, and that the source substrate and the film-forming substrate must be uniformly brought close to each other at a constant interval, which complicates the process. There was a problem in forming a large-area thin film.

【0004】さらに、有機金属化合物の溶液を超音波振
動子により霧化させて微粒子化し、空気や窒素などのキ
ャリアガスとともに、予め加熱された製膜用基板上に吹
き付け、前記微粒子中の有機金属化合物を熱分解させ、
前記製膜用基板上に金属硫化物薄膜を形成する方法(例
えば、特開平11−87747号)が提案されている。
しかし、前記のような金属化合物溶液の霧化による熱分
解法においては、前記溶液の温度変化に伴う粘度の変化
や超音波振動子の経時変化などにより、霧化される溶液
の微粒子の発生量が変化し、これを一定範囲に制御する
のが困難であった。そのため、均一な膜厚を備えた金属
硫化物や金属酸化物の薄膜を形成できないという問題が
あった。
Further, the solution of the organometallic compound is atomized by an ultrasonic oscillator to be fine particles, and the fine particles are sprayed onto a pre-heated film-forming substrate together with a carrier gas such as air or nitrogen. Thermal decomposition of the compound,
A method of forming a metal sulfide thin film on the film-forming substrate (for example, Japanese Patent Laid-Open No. 11-87747) has been proposed.
However, in the thermal decomposition method by atomizing the metal compound solution as described above, the amount of fine particles of the atomized solution generated due to the change of the viscosity with the temperature change of the solution and the change with time of the ultrasonic vibrator. Change, and it was difficult to control this within a certain range. Therefore, there is a problem in that a metal sulfide or metal oxide thin film having a uniform film thickness cannot be formed.

【0005】前記問題は、各種薄膜を形成する上におい
て共通の問題である。前記問題を有する金属硫化物薄膜
としては、例えば太陽電池、蛍光体などに用いられる硫
化カドミウム(CdS)、硫化亜鉛(ZnS)、CdS
とZnSとの混晶、露出計などに用いられる硫化鉛(P
bS)などの薄膜がある。また、金属酸化物薄膜として
は、例えば、太陽電池や表示ディスプレイなどの透明導
電膜として用いられる二酸化錫(SnO2)、酸化イン
ジウム(In23)、酸化インジウム錫(SnO2 とI
23 との混晶)、酸化亜鉛(ZnO)などの薄膜が
ある。
The above problems are common problems in forming various thin films. Examples of the metal sulfide thin film having the above problems include cadmium sulfide (CdS), zinc sulfide (ZnS), and CdS used in solar cells, phosphors, and the like.
Mixed with ZnS and lead sulfide (P
There is a thin film such as bS). Examples of the metal oxide thin film include tin dioxide (SnO 2 ), indium oxide (In 2 O 3 ), and indium tin oxide (SnO 2 and I) which are used as transparent conductive films for solar cells and display displays.
There are thin films of mixed crystals with n 2 O 3 ) and zinc oxide (ZnO).

【0006】[0006]

【発明が解決しようとする課題】本発明は、金属化合物
溶液(以下、ソース材料溶液という)を霧化させた溶液
微粒子を製膜用基板上に吹きつけて、金属化合物(以
下、ソース材料という)を熱分解させ、前記製膜用基板
上に金属硫化物あるいは金属酸化物の薄膜を形成する薄
膜形成方法の前記問題点を解決し、真空装置などの高価
な設備、煩雑な工程を必要とせず、安価で均一な膜厚の
薄膜を形成する方法およびその方法を実施する装置を提
供することを目的とする。
DISCLOSURE OF THE INVENTION In the present invention, fine particles of a solution of a metal compound solution (hereinafter referred to as a source material solution) are sprayed onto a film-forming substrate to produce a metal compound (hereinafter referred to as a source material). ) Is thermally decomposed to solve the above problems of the thin film forming method of forming a thin film of a metal sulfide or a metal oxide on the film forming substrate, requiring expensive equipment such as a vacuum device and complicated steps. First, it is an object of the present invention to provide an inexpensive method for forming a thin film having a uniform film thickness and an apparatus for carrying out the method.

【0007】[0007]

【課題を解決するための手段】本発明は、ソース材料が
溶媒に溶解したソース材料溶液を超音波振動子により霧
化し、霧化した前記溶液の微粒子をキャリアガス中に含
ませた吹き付け用ガスを、予め加熱した製膜用基板の表
面に吹き付け、前記微粒子中のソース材料を熱分解させ
て、前記製膜用基板上に金属酸化物あるいは金属硫化物
の薄膜を形成する薄膜形成方法において、前記吹き付け
用ガス中の前記微粒子の含有量、排気ガス中の前記ソー
ス材料の分解ガスの含有量、または排気ガス中の前記溶
媒の蒸気濃度を測定し、測定値が適正値となるように前
記超音波振動子の出力を制御しながら前記薄膜を形成す
る方法に関する。
According to the present invention, a source material solution in which a source material is dissolved in a solvent is atomized by an ultrasonic vibrator, and fine particles of the atomized solution are contained in a carrier gas for spraying. Is sprayed on the surface of a pre-heated film-forming substrate, and the source material in the fine particles is thermally decomposed to form a thin film of a metal oxide or a metal sulfide on the film-forming substrate. The content of the fine particles in the blowing gas, the content of the decomposition gas of the source material in the exhaust gas, or the vapor concentration of the solvent in the exhaust gas is measured, so that the measured value is an appropriate value. The present invention relates to a method for forming the thin film while controlling the output of an ultrasonic oscillator.

【0008】また、本発明は、ソース材料が溶媒に溶解
したソース材料溶液を超音波振動子により霧化する手
段、霧化した前記溶液の微粒子をキャリアガス中に含ま
せて吹き付け用ガスを得る手段、および製膜用基板を加
熱する手段を具備し、前記吹き付け用ガスを、予め加熱
した製膜用基板の表面に吹き付け、前記微粒子中のソー
ス材料を熱分解させて、前記製膜用基板上に金属酸化物
または金属硫化物の薄膜を形成する薄膜形成装置であっ
て、前記吹き付け用ガス中の前記微粒子の含有量を測定
し、測定値が適正値となるように前記超音波振動子の出
力を制御する手段、排気ガス中の前記ソース材料の分解
ガスの含有量を測定し、測定値が適正値となるように前
記超音波振動子の出力を制御する手段、または排気ガス
中の前記溶媒の蒸気濃度を測定し、測定値が適正値とな
るように前記超音波振動子の出力を制御する手段を有す
ることを特徴とする薄膜形成装置に関する。
In the present invention, means for atomizing a source material solution in which a source material is dissolved in a solvent by an ultrasonic oscillator, and fine particles of the atomized solution are contained in a carrier gas to obtain a spraying gas. And a means for heating the film-forming substrate, the gas for blowing is sprayed on the surface of the film-forming substrate that has been heated in advance, and the source material in the fine particles is thermally decomposed to form the film-forming substrate. A thin film forming apparatus for forming a thin film of a metal oxide or a metal sulfide thereon, wherein the content of the fine particles in the blowing gas is measured, and the ultrasonic transducer is set so that the measured value becomes an appropriate value. Means for controlling the output, measuring the content of decomposed gas of the source material in the exhaust gas, means for controlling the output of the ultrasonic oscillator so that the measured value becomes an appropriate value, or in the exhaust gas Vapor of the solvent Degrees were measured, a thin film forming apparatus characterized by comprising means for controlling the output of the ultrasonic vibrator so that the measured value becomes an appropriate value.

【0009】これにより、霧化されたソース材料溶液の
微粒子の発生速度および吹き付け用ガス中の微粒子の含
有量を常に適正な範囲内に維持しながら薄膜を形成する
ことができる。その結果、一定速度でソース材料が製膜
基板上に供給されるので、一定速度で薄膜を形成するこ
とができ、均一な膜厚の金属酸化物あるいは金属硫化物
の薄膜を得ることができる。前記吹き付け用ガス中の前
記微粒子の含有量は、前記吹き付け用ガスの光透過率に
より測定することが好ましい。前記金属酸化物は、二酸
化錫であることが好ましい。また、前記金属硫化物は、
硫化カドミウム、硫化亜鉛、または硫化カドミウムと硫
化亜鉛との混晶物であることが好ましい。
This makes it possible to form a thin film while always maintaining the generation rate of the fine particles of the atomized source material solution and the content of the fine particles in the blowing gas within an appropriate range. As a result, since the source material is supplied onto the film-forming substrate at a constant rate, a thin film can be formed at a constant rate, and a metal oxide or metal sulfide thin film having a uniform thickness can be obtained. The content of the fine particles in the blowing gas is preferably measured by the light transmittance of the blowing gas. The metal oxide is preferably tin dioxide. Further, the metal sulfide,
It is preferably cadmium sulfide, zinc sulfide, or a mixed crystal of cadmium sulfide and zinc sulfide.

【0010】[0010]

【発明の実施の形態】本発明の第一の薄膜形成方法は、
前記吹き付け用ガス中の前記溶液微粒子の含有量を測定
し、その測定値により前記超音波振動子の出力を制御す
るものである。前記第一の方法の実施に適した装置は、
例えば、製膜を行いながら同時に吹き付け用ガス中の前
記溶液微粒子の含有量を測定し、その含有量を超音波振
動子の出力コントローラーにフィードバックし、溶液微
粒子の含有量が適切な範囲内に維持されるように超音波
振動子への入力電圧を増減させる手段を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The first thin film forming method of the present invention comprises:
The content of the solution particles in the blowing gas is measured, and the output of the ultrasonic oscillator is controlled by the measured value. An apparatus suitable for carrying out the first method is
For example, while performing film formation, the content of the solution particles in the blowing gas is measured at the same time, and the content is fed back to the output controller of the ultrasonic vibrator to maintain the content of the solution particles within an appropriate range. As described above, it has means for increasing or decreasing the input voltage to the ultrasonic transducer.

【0011】さらに、この発明の好適な実施方法は、前
記吹き付け用ガスの光透過率を測定し、その測定値から
その測定値と一定の対応関係にある前記吹き付け用ガス
中の前記溶液微粒子の含有量を求める方法である。多数
の溶液微粒子が存在する吹き付け用ガスに光を照射する
と、これらの溶液微粒子によって光は乱反射もしくは吸
収され、透過光の強度は空間に存在する溶液微粒子の密
度によって変化する。従って、吹き付け用ガスの光透過
率を測定することにより溶液微粒子の含有量を測定する
ことができる。
Further, in a preferred method for carrying out the present invention, the light transmittance of the blowing gas is measured, and from the measured value, the solution fine particles in the blowing gas having a certain correspondence with the measured value are obtained. This is a method of determining the content. When a blowing gas containing a large number of solution particles is irradiated with light, light is diffusely reflected or absorbed by these solution particles, and the intensity of transmitted light changes depending on the density of the solution particles existing in the space. Therefore, the content of the solution particles can be measured by measuring the light transmittance of the blowing gas.

【0012】前記方法の実施に適した手段としては、レ
ーザー光源とそれから一定距離に備えられた受光素子か
らなり、レーザー光源から照射され、吹き付け用ガス中
を透過した後のレーザー光の強度を受光素子で検知し、
その光透過率から前記溶液微粒子の含有量を求める手段
が挙げられる。
Suitable means for carrying out the above method comprises a laser light source and a light receiving element provided at a fixed distance from the laser light source, and receives the intensity of the laser light after being irradiated from the laser light source and passing through the blowing gas. Detected by the element,
Means for determining the content of the solution fine particles from the light transmittance can be mentioned.

【0013】本発明の第二の薄膜形成方法は、排気ガス
中に含まれるソース材料の分解ガスの含有量を測定し、
その測定値に応じて超音波振動子の出力を制御するもの
である。熱分解後の分解ガス量は、薄膜形成に利用され
たソース材料の量に比例し、また吹き付けガス中のソー
ス材料が薄膜形成に利用される率は、ほぼ一定である。
換言すれば、排気ガス中の分解ガスの含有量の測定値
は、吹き付け用ガス中の溶液微粒子の含有量と比例関係
にある。従って、この方法は吹き付け用ガス中の前記溶
液微粒子の含有量が適正値となるように超音波振動子の
出力を制御する方法と実質的に同様の効果がある。
The second thin film forming method of the present invention is to measure the content of the decomposition gas of the source material contained in the exhaust gas,
The output of the ultrasonic transducer is controlled according to the measured value. The amount of decomposed gas after thermal decomposition is proportional to the amount of the source material used for forming the thin film, and the rate at which the source material in the blowing gas is used for forming the thin film is almost constant.
In other words, the measured value of the content of the decomposition gas in the exhaust gas is proportional to the content of the solution particles in the blowing gas. Therefore, this method has substantially the same effect as the method of controlling the output of the ultrasonic vibrator so that the content of the solution particles in the blowing gas becomes an appropriate value.

【0014】前記第二の方法の実施に適した装置は、例
えば、製膜を行いながら同時に排気ガス中のソース材料
の分解ガスの含有量を測定し、その含有量を超音波振動
子の出力コントローラーにフィードバックし、分解ガス
の含有量が適切な範囲内に維持されるように超音波振動
子への入力電圧を増減させる手段を有する。前記分解ガ
スの含有量を測定する手段としては、赤外線光源とそれ
から一定距離に備えられた赤外線受光素子からなり、赤
外線光源から入射され、排気ガス中を透過した後の前記
分解ガスに固有の吸収波長の赤外線の強度を赤外線受光
素子で検知し、その光透過率から前記分解ガスの含有量
を求める手段が挙げられる。
An apparatus suitable for carrying out the second method, for example, measures the content of the decomposition gas of the source material in the exhaust gas at the same time while performing film formation, and outputs the content to the output of the ultrasonic transducer. It has means for feeding back to the controller and increasing or decreasing the input voltage to the ultrasonic transducer so that the content of the decomposed gas is maintained within an appropriate range. The means for measuring the content of the decomposed gas is composed of an infrared light source and an infrared light receiving element provided at a constant distance from the infrared light source, is incident from the infrared light source, and is absorbed by the decomposed gas after passing through exhaust gas. There is a means for detecting the intensity of infrared rays having a wavelength with an infrared light receiving element and obtaining the content of the decomposed gas from the light transmittance thereof.

【0015】本発明の第三の薄膜形成方法は、排気ガス
中に含まれるソース材料溶液の溶媒の蒸気濃度を測定
し、その測定値に応じて超音波振動子の出力を制御する
ものである。排気ガス中に含まれる前記溶媒の量は、吹
き付け用ガス中の溶液微粒子の含有量に比例するもので
あり、この方法も、吹き付け用ガス中の溶液微粒子の含
有量が適正値となるように超音波振動子の出力を制御す
る方法と実質的に同様の効果がある。
The third thin film forming method of the present invention is to measure the vapor concentration of the solvent of the source material solution contained in the exhaust gas and control the output of the ultrasonic transducer according to the measured value. . The amount of the solvent contained in the exhaust gas is proportional to the content of the solution particles in the blowing gas, also in this method, so that the content of the solution particles in the blowing gas is an appropriate value. This has substantially the same effect as the method of controlling the output of the ultrasonic transducer.

【0016】前記第三の方法の実施に適した装置は、例
えば、製膜を行いながら同時に排気ガス中の前記溶媒の
蒸気濃度を測定し、その濃度を超音波振動子の出力コン
トローラーにフィードバックし、溶媒の蒸気濃度が適切
な範囲内に維持されるように超音波振動子への入力電圧
を増減させる手段を有する。前記溶媒の蒸気濃度を測定
する手段としては、排気管中で徐冷された排気ガスの温
度が所定の温度となる位置に設置された溶媒蒸気濃度セ
ンサー(溶媒が水の場合、セラミック湿度センサーが好
ましい。)が挙げられる。
An apparatus suitable for carrying out the third method is, for example, simultaneously measuring the vapor concentration of the solvent in the exhaust gas while performing film formation and feeding back the concentration to the output controller of the ultrasonic transducer. , A means for increasing or decreasing the input voltage to the ultrasonic transducer so that the vapor concentration of the solvent is maintained within an appropriate range. As a means for measuring the vapor concentration of the solvent, a solvent vapor concentration sensor (when the solvent is water, a ceramic humidity sensor is installed at a position where the temperature of the exhaust gas gradually cooled in the exhaust pipe becomes a predetermined temperature. Preferred).

【0017】前記第一〜三の方法のうちでは、制御フィ
ードバックの早さの点から第一の方法が好ましい。第一
の方法は、製膜に供される前の吹き付け用ガス中の微粒
子含有量を測定し、フィードバックをかける方法であ
る。これに対し、第二、第三の方法では、製膜に供され
た後の排気ガス中の分解ガス濃度または溶媒蒸気濃度を
測定し、フィードバックをかける方法である。第二、第
三の方法は第一の方法に比べてフィードバックが遅くな
るため、第一の方法が好ましいといえる。
Of the first to third methods, the first method is preferable from the viewpoint of speed of control feedback. The first method is a method in which the content of fine particles in the gas for spraying before being subjected to film formation is measured and feedback is applied. On the other hand, the second and third methods are methods of measuring the decomposition gas concentration or the solvent vapor concentration in the exhaust gas after being subjected to the film formation and applying the feedback. It can be said that the first and second methods are preferable because the second and third methods provide slower feedback than the first method.

【0018】前記の方法で形成する金属硫化物あるいは
金属酸化物の薄膜には、前に例示したように種々のもの
があるが、それらのソース材料として用いる金属化合物
を以下に例示する。金属硫化物のうち、例えばCdSの
薄膜形成にはジブチルジチオカルバミン酸カドミウムを
主に用いるが、ジエチルジチオカルバミン酸カドミウム
などを用いることもできる。また、ZnSの薄膜形成に
はジブチルジチオカルバミン酸亜鉛、CdSとZnSの
混晶の薄膜形成にはジブチルジチオカルバミン酸カドミ
ウムとジブチルジチオカルバミン酸亜鉛の混合物、Pb
Sの薄膜形成にはジエチルジチオカルバミン酸鉛などを
用いることができる。
There are various thin films of metal sulfides or metal oxides formed by the above method, as exemplified above, and the metal compounds used as the source material thereof are exemplified below. Among metal sulfides, for example, cadmium dibutyldithiocarbamate is mainly used for forming a thin film of CdS, but cadmium diethyldithiocarbamate or the like can also be used. Further, zinc dibutyldithiocarbamate for forming a thin film of ZnS, a mixture of cadmium dibutyldithiocarbamate and zinc dibutyldithiocarbamate for forming a mixed crystal of CdS and ZnS, Pb.
For forming a thin film of S, lead diethyldithiocarbamate or the like can be used.

【0019】また、金属酸化物のうち、SnO2の薄膜
形成には二塩化ジメチル錫を主に用いるが、トリメチル
塩化錫などを用いることもできる。また、In23の薄
膜形成には硫酸インジウム、ITOの薄膜形成には硫酸
インジウムと硫酸錫の混合物、ZnOの薄膜形成には酢
酸亜鉛などの金属化合物を用いることができる。そし
て、これらのソース材料をトルエンなどの有機溶媒や水
などの溶媒に溶解した溶液をソース材料溶液として用い
る。
Of the metal oxides, dimethyltin dichloride is mainly used for forming the SnO 2 thin film, but trimethyltin chloride or the like can also be used. Further, indium sulfate can be used for forming a thin film of In 2 O 3 , a mixture of indium sulfate and tin sulfate can be used for forming a thin film of ITO, and a metal compound such as zinc acetate can be used for forming a thin film of ZnO. Then, a solution obtained by dissolving these source materials in an organic solvent such as toluene or a solvent such as water is used as a source material solution.

【0020】製膜用基板としては、形成する薄膜の使用
目的に応じて、ガラスなどの透光性基板、金属、セラミ
ックなどの耐熱性基板、あるいはこれらの基板に予め下
地膜が形成されたものを用いることができる。またキャ
リアガスとしては、金属硫化物薄膜を形成する場合には
窒素などの不活性ガス、酸化物薄膜を形成する場合には
空気などの酸素を含むガスを用いる。
As the film-forming substrate, a translucent substrate such as glass, a heat-resistant substrate such as metal or ceramic, or a substrate on which a base film is preliminarily formed, depending on the intended use of the thin film to be formed. Can be used. As the carrier gas, an inert gas such as nitrogen is used when forming a metal sulfide thin film, and an oxygen-containing gas such as air is used when forming an oxide thin film.

【0021】これらの方法により得られる薄膜は、前記
のように太陽電池などの光電変換素子や表示ディスプレ
イなどに広く用いられるが、特に、本発明により形成さ
れるSnO2薄膜を、例えば太陽電池の透明導電膜とし
て用いることにより、透明導電膜の抵抗値が均一化され
るので、太陽電池の曲線因子が一定化し、変換効率のバ
ラツキが少なく高品質な太陽電池を作製することがで
る。また、このSnO2薄膜を透明電極として用いるこ
とにより、高品質の液晶やタッチパネルを構成すること
ができる。
The thin film obtained by these methods is widely used for photoelectric conversion elements such as solar cells and display displays as described above. In particular, the SnO 2 thin film formed by the present invention is used, for example, for solar cells. Since the resistance value of the transparent conductive film is made uniform by using it as a transparent conductive film, the fill factor of the solar cell becomes constant, and it is possible to manufacture a high quality solar cell with less variation in conversion efficiency. Further, by using this SnO 2 thin film as a transparent electrode, a high quality liquid crystal or touch panel can be constructed.

【0022】さらに、本発明により得られるCdS薄
膜、ZnS薄膜、あるいはこれらの混晶膜をCdTe系
太陽電池のn型半導体膜として用いることが特に有効で
ある。CdTe系太陽電池のCdS膜などのn型半導体
膜は、膜厚が薄すぎる場合は太陽電池の開放電圧と変換
効率が低下し、膜厚が厚すぎる場合は短絡電流が低下し
て変換効率が低下する。従って、本発明により形成され
た膜厚が均一な前記n型半導体の薄膜をこれらの太陽電
池に用ることにより、変換効率を高レベルに安定化する
ことが可能となる。
Furthermore, it is particularly effective to use the CdS thin film, ZnS thin film or a mixed crystal film thereof obtained by the present invention as an n-type semiconductor film of a CdTe solar cell. When the film thickness of an n-type semiconductor film such as a CdS film of a CdTe-based solar cell is too thin, the open circuit voltage and conversion efficiency of the solar cell decrease, and when the film thickness is too large, the short-circuit current decreases and the conversion efficiency decreases. descend. Therefore, it is possible to stabilize the conversion efficiency at a high level by using the thin film of the n-type semiconductor formed according to the present invention and having a uniform film thickness in these solar cells.

【0023】[0023]

【実施例】以下に、本発明を具体的な実施例を挙げてよ
り詳細に説明する。図1、2、3は本発明の方法の実施
に用いる三種の装置の例を各々概念的に図解したもので
ある。まず、図1、2、3において共通する工程につい
て説明する。霧化容器1内で超音波振動子2によりソー
ス材料溶液3を霧化し、霧化された溶液微粒子4を導入
管5から霧化容器1内に導入されたキャリアガス6中に
混合して吹き付け用ガス7とする。
EXAMPLES The present invention will be described in more detail with reference to specific examples. 1, 2 and 3 are conceptual illustrations of examples of the three types of apparatus used to carry out the method of the present invention. First, steps common to FIGS. 1, 2, and 3 will be described. The source material solution 3 is atomized by the ultrasonic vibrator 2 in the atomization container 1, and the atomized solution particles 4 are mixed and sprayed into the carrier gas 6 introduced into the atomization container 1 from the introduction pipe 5. Use gas 7

【0024】支持台17上に固定され、ヒーター9によ
り予め加熱された加熱板10上に製膜用基板11を載置
する。この製膜用基板11上に、輸送管8により輸送さ
れた吹き付け用ガス7を吹き付け、前記製膜用基板11
の表面で溶液微粒子中のソース材料を熱分解させ、金属
酸化物あるいは金属硫化物の薄膜12を形成する。な
お、前記の工程は、下記の各実施例および各比較例にお
いて共通して実施したので、以下の個別の説明ではこれ
を省略する。
The film forming substrate 11 is placed on the heating plate 10 which is fixed on the support 17 and which is preheated by the heater 9. The gas for spraying 7 transported by the transport pipe 8 is blown onto the film-forming substrate 11 to form the film-forming substrate 11 described above.
The source material in the solution fine particles is thermally decomposed on the surface of to form the metal oxide or metal sulfide thin film 12. Since the above-mentioned steps were commonly performed in each of the following Examples and Comparative Examples, they will be omitted in the following individual explanations.

【0025】《実施例1》吹き付け用ガス7中の溶液微
粒子4の含有量を検出し、その測定値に対応させて、超
音波振動子2の出力を制御する図1の薄膜形成装置によ
り、SnO2薄膜を形成した。ソース材料溶液3とし
て、二塩化ジメチル錫100gを水360gに溶解させ
た溶液、超音波振動子2の周波数1MHz、製膜用基板
11として100mm角のガラス基板を用い、製膜用基
板11の加熱温度を550℃、一枚当たりの製膜時間を
100秒間とした。また、キャリアガス6には露点−5
0℃のドライエアーを用い、流量を20リットル/分と
した。一枚の製膜用基板11への製膜を終了後、直ちに
後続の製膜用基板を供給して37枚の薄膜形成を連続的
に行った。また、形成されたSnO2薄膜12の標準的
な膜厚は約500nmであった。
Example 1 The thin film forming apparatus of FIG. 1 which detects the content of the solution fine particles 4 in the blowing gas 7 and controls the output of the ultrasonic transducer 2 in accordance with the measured value, A SnO 2 thin film was formed. As the source material solution 3, a solution prepared by dissolving 100 g of dimethyltin dichloride in 360 g of water, a frequency of the ultrasonic oscillator 2 of 1 MHz, a 100 mm square glass substrate is used as the film forming substrate 11, and the film forming substrate 11 is heated. The temperature was 550 ° C., and the film formation time per sheet was 100 seconds. The carrier gas 6 has a dew point of -5.
The flow rate was set to 20 liters / minute using dry air at 0 ° C. Immediately after the film formation on one film-forming substrate 11 was completed, a subsequent film-forming substrate was supplied to continuously form 37 thin films. The standard thickness of the formed SnO 2 thin film 12 was about 500 nm.

【0026】図1の装置概念図に示すように、前記の製
膜を行いながら、透明の材質で作られた輸送管8の一方
の側面からレーザー光源13よりレーザー光14を照射
し、他方の側面に透過してくるレーザー光の強度を受光
素子15で検知して光透過率を測定した。図4に示す吹
き付け用ガス中でのレーザー光の光透過率と溶液微粒子
の含有率との関係から明らかなように、この光透過率が
大きいほど、輸送管内の吹き付け用ガス中の溶液微粒子
の含有量は少なくなる。そして、膜形成のための最適な
前記溶液微粒子の含有量は145〜150mg/リット
ルであり、これに対応するレーザ光の透過率は34〜3
8%である。この光透過率の測定値から検知した吹き付
け用ガス中の溶液微粒子の含有量を超音波振動子の出力
コントローラー16にフィードバックし、前記溶液微粒
子の含有量が前記の最適値の範囲内となるように、超音
波振動子2への入力電圧を増減させた。
As shown in the conceptual diagram of the apparatus of FIG. 1, while performing the above-mentioned film formation, a laser beam 14 is emitted from a laser light source 13 from one side surface of a transport tube 8 made of a transparent material, and the other side thereof is irradiated. The light transmittance was measured by detecting the intensity of the laser light transmitted to the side surface with the light receiving element 15. As is clear from the relationship between the light transmittance of the laser beam in the blowing gas and the content rate of the solution fine particles shown in FIG. 4, the higher the light transmittance, the more the solution fine particles in the blowing gas in the transport pipe. The content will be low. The optimum content of the solution particles for forming a film is 145 to 150 mg / liter, and the corresponding laser beam transmittance is 34 to 3
8%. The content of the solution fine particles in the blowing gas detected from the measured value of the light transmittance is fed back to the output controller 16 of the ultrasonic oscillator so that the content of the solution fine particles falls within the range of the optimum value. Then, the input voltage to the ultrasonic transducer 2 was increased or decreased.

【0027】図5に超音波振動子への入力電圧と吹き付
け用ガス中の溶液微粒子の含有量との溶液温度25℃に
おける標準的な対応関係を示す。図5から、超音波振動
子への入力電圧が高いほど前記溶液微粒子の含有量が多
くなり、最適入力電圧は39.5〜40V近辺にあるこ
とが分かる。しかし、薄膜形成中の溶液温度や溶液量の
変化、超音波振動子の特性のバラツキや経時変化などに
より、図5のような定量的関係は必ずしも維持されず、
刻々変化する。そのため、単に前記の最適電圧に入力電
圧を固定して薄膜を形成した場合には、前記溶液微粒子
の含有量を最適値範囲に維持できない。本実施例では、
薄膜形成中の溶液微粒子の含有量を常時測定し、その含
有量が不足な時には入力電圧を高め、過剰な時には入力
電圧を低くすることにより、前記溶液微粒子の含有量を
最適値範囲に維持しながら製膜した。
FIG. 5 shows a standard correspondence relationship between the input voltage to the ultrasonic vibrator and the content of solution particles in the blowing gas at a solution temperature of 25 ° C. From FIG. 5, it can be seen that the higher the input voltage to the ultrasonic oscillator, the higher the content of the solution particles, and the optimum input voltage is in the vicinity of 39.5 to 40V. However, the quantitative relationship as shown in FIG. 5 is not always maintained due to changes in solution temperature and solution volume during thin film formation, variations in the characteristics of ultrasonic transducers, and changes over time.
It changes every moment. Therefore, when the input voltage is simply fixed to the optimum voltage to form a thin film, the content of the solution particles cannot be maintained within the optimum value range. In this embodiment,
The content of solution fine particles is constantly measured during thin film formation, and when the content is insufficient, the input voltage is increased, and when the content is excessive, the input voltage is lowered to maintain the content of the solution fine particles in the optimum value range. While forming the film.

【0028】《比較例1》超音波振動子2への入力電圧
を40Vに固定した以外は、実施例1と同様にして37
枚のSnO2薄膜12を形成した。
Comparative Example 1 37 is carried out in the same manner as in Example 1 except that the input voltage to the ultrasonic vibrator 2 is fixed at 40V.
A sheet of SnO 2 thin film 12 was formed.

【0029】実施例1および比較例1で形成した各々3
7枚のSnO2薄膜の試料について面抵抗を測定した。
図7に実施例1の面抵抗の分布、図6に比較例1の面抵
抗の分布を示す。実施例1の場合のバラツキ幅は10〜
14Ω/□であり、比較例1の場合の9〜15Ω/□に
較べてバラツキが少ないことから、実施例1では安定し
た品質のSnO2薄膜が得られたことが確認された。ま
た同時に、この面抵抗は膜厚と比例関係にあることか
ら、実施例1では膜厚のバラツキ幅が効果的に縮小され
ていることが分かる。
3 each formed in Example 1 and Comparative Example 1
The sheet resistance was measured for seven SnO 2 thin film samples.
FIG. 7 shows the sheet resistance distribution of Example 1, and FIG. 6 shows the sheet resistance distribution of Comparative Example 1. The variation width in the case of Example 1 is 10
Since it was 14 Ω / □, and there was less variation compared with 9 to 15 Ω / □ in the case of Comparative Example 1, it was confirmed that the SnO 2 thin film of stable quality was obtained in Example 1. At the same time, since the surface resistance is proportional to the film thickness, it can be seen that in Example 1, the variation width of the film thickness is effectively reduced.

【0030】《実施例2》排気ガス20中に含まれるソ
ース材料の分解ガスの含有量を測定し、その測定値に応
じて超音波振動子2の出力を制御する図2の薄膜形成装
置により、CdS薄膜12を形成した。ソース材料溶液
3として、ジブチルジチオカルバミン酸カドミウム20
gをトルエン80gに溶解させた溶液、超音波振動子2
の周波数1MHz、製膜用基板11として100mm角
のガラス基板上に実施例1の方法でSnO2薄膜を形成
したものを用い、製膜用基板11の加熱温度を450
℃、一枚当たりの製膜時間を60秒間とした。また、キ
ャリアガス6には窒素ガスを用い、流量を10リットル
/分とした。一枚の製膜用基板11への製膜を終了後、
直ちに後続の製膜用基板を供給して49枚の製膜を連続
的に行った。なお、形成されたCdS薄膜12の標準的
な膜厚は約100nmであった。
Example 2 With the thin film forming apparatus shown in FIG. 2, the content of the decomposition gas of the source material contained in the exhaust gas 20 is measured and the output of the ultrasonic transducer 2 is controlled according to the measured value. , CdS thin film 12 was formed. As the source material solution 3, cadmium dibutyldithiocarbamate 20
Ultrasonic transducer 2 a solution of g in 80 g of toluene
The film-forming substrate 11 having a frequency of 1 MHz and a SnO 2 thin film formed on a 100 mm square glass substrate by the method of Example 1 is used as the film-forming substrate 11 at a heating temperature of 450.
The film forming time per sheet at 60 ° C. was 60 seconds. Nitrogen gas was used as the carrier gas 6, and the flow rate was 10 liters / minute. After the film formation on one film formation substrate 11 is completed,
Immediately after that, the subsequent film-forming substrate was supplied to continuously form 49 films. The standard film thickness of the formed CdS thin film 12 was about 100 nm.

【0031】図2の装置概念図に示すように、前記の薄
膜形成を行いながら、赤外線光源24から、排気ガス2
0中の分解ガスに固有の吸収波長の赤外線21を透明材
質で作られた排気管22の一方の側面から入射させ、も
う一方の側面に透過してくる赤外線21の強度を赤外線
受光素子23で検知して光透過率を測定した。この場
合、ソ−ス材料のジブチルジチオカルバミン酸カドミウ
ムが熱分解してCdS薄膜12を形成した後の排気ガス
20中に含まれる分解ガスの主成分は二硫化炭素(CS
2)であり、このガスに固有の吸収波長である197n
mの波長の赤外線の光透過率を測定した。
As shown in the conceptual diagram of the apparatus of FIG. 2, the exhaust gas 2 is emitted from the infrared light source 24 while the thin film is formed.
An infrared ray 21 having an absorption wavelength peculiar to the decomposed gas in 0 is made incident from one side surface of an exhaust pipe 22 made of a transparent material, and the intensity of the infrared ray 21 transmitted to the other side surface is received by an infrared light receiving element 23. It was detected and the light transmittance was measured. In this case, the main component of the decomposition gas contained in the exhaust gas 20 after the source material cadmium dibutyldithiocarbamate is thermally decomposed to form the CdS thin film 12 is carbon disulfide (CS).
2 ) and the absorption wavelength peculiar to this gas is 197n
The light transmittance of infrared rays having a wavelength of m was measured.

【0032】この光透過率の測定値から、図8に示す光
透過率と排気ガス中のCS2ガスの含有量との関係にも
とづき、排気ガス中のCS2ガスの濃度を求めた。ま
た、排気ガス中のCS2ガスの最適な含有量は1.5〜
1.6mg/リットルであり、図8から、これに対応す
る光透過率は36〜38%である。この光透過率の測定
値から求めた排気ガス中のCS2ガスの含有量を超音波
振動子の出力コントローラー16にフィードバックし、
前記排気ガス中のCS2ガスの含有量が前記の最適値の
範囲内となるように、超音波振動子2への入力電圧を増
減させた。
From the measured values of the light transmittance, the concentration of the CS 2 gas in the exhaust gas was obtained based on the relationship between the light transmittance shown in FIG. 8 and the content of the CS 2 gas in the exhaust gas. The optimum content of CS 2 gas in the exhaust gas is 1.5 to
It is 1.6 mg / liter, and from FIG. 8, the light transmittance corresponding to this is 36 to 38%. The content of CS 2 gas in the exhaust gas obtained from the measured value of the light transmittance is fed back to the output controller 16 of the ultrasonic transducer,
The input voltage to the ultrasonic transducer 2 was increased or decreased so that the content of CS 2 gas in the exhaust gas was within the range of the optimum value.

【0033】図9に超音波振動子への入力電圧と排気ガ
ス中のCS2ガスの含有量との溶液温度25℃における
標準的な対応関係を示す。図9から、超音波振動子への
入力電圧が高いほど排気ガス中のCS2ガスの含有量が
多くなり、最適入力電圧が39.5〜40V近辺にある
ことが分かる。しかし、実際には薄膜形成中の溶液温度
や溶液量の変化、超音波振動子の特性バラツキや経時変
化等により、図9のような定量的関係は刻々変化する。
そのため、単に前記の最適電圧に入力電圧を固定して製
膜した場合には、CS2ガスの含有量を適正範囲に維持
できず、同時に吹き付け用ガス中の溶液微粒子の含有量
を最適値範囲に維持できない。
FIG. 9 shows a standard correspondence relationship between the input voltage to the ultrasonic transducer and the content of CS 2 gas in the exhaust gas at a solution temperature of 25 ° C. It can be seen from FIG. 9 that the higher the input voltage to the ultrasonic transducer, the higher the content of CS 2 gas in the exhaust gas, and the optimum input voltage is in the vicinity of 39.5 to 40V. However, in practice, the quantitative relationship as shown in FIG. 9 changes momentarily due to changes in the solution temperature and solution amount during thin film formation, variations in the characteristics of the ultrasonic oscillator, changes over time, and the like.
Therefore, when the film is formed by simply fixing the input voltage to the above-mentioned optimum voltage, the content of CS 2 gas cannot be maintained in an appropriate range, and at the same time, the content of solution fine particles in the gas for spraying falls within the optimum value range. Can't keep up.

【0034】本実施例では、前記のように排気ガス中の
CS2ガスの含有量を常時測定し、前記CS2ガスの含有
量が不足な時には入力電圧を高め、過剰な時には入力電
圧を低くすることにより、常時前記排気ガス中のCS2
ガスの含有量を適正範囲に維持し、前記溶液微粒子の含
有量を最適値範囲に維持しながら製膜した。
In this embodiment, as described above, the content of CS 2 gas in the exhaust gas is constantly measured, and when the content of CS 2 gas is insufficient, the input voltage is increased, and when it is excessive, the input voltage is decreased. By doing so, CS 2 in the exhaust gas is constantly
The gas content was maintained in an appropriate range, and the film formation was performed while maintaining the content of the solution fine particles in the optimum value range.

【0035】《比較例2》超音波振動子2への入力電圧
を40Vに固定した以外は、実施例1と同様にして49
枚のCdS薄膜を形成した。
Comparative Example 2 49 is carried out in the same manner as in Example 1 except that the input voltage to the ultrasonic vibrator 2 is fixed at 40V.
A sheet of CdS thin film was formed.

【0036】実施例2および比較例2で形成した各々4
9枚のCdS薄膜の試料について、波長400nmでの
光透過率を測定した。図11に実施例2の光透過率の分
布、図10に比較例2の光透過率の分布を示す。実施例
2の場合の光透過率のバラツキ幅は12〜22%であ
り、比較例2の場合の8〜22%に較べてバラツキが少
ないことから、実施例2では安定した品質のCdS薄膜
が得られたことが確認された。また、図12に示すよう
に、CdS薄膜の膜厚は、この光透過率と対応すること
から、実施例2では膜厚のバラツキ幅も同時に効果的に
縮小されていることが分かる。
Each of 4 formed in Example 2 and Comparative Example 2
The light transmittance at a wavelength of 400 nm was measured for the nine CdS thin film samples. FIG. 11 shows the light transmittance distribution of Example 2, and FIG. 10 shows the light transmittance distribution of Comparative Example 2. The variation range of the light transmittance in the case of Example 2 is 12 to 22%, which is smaller than the variation range of 8 to 22% in the case of Comparative Example 2. Therefore, in Example 2, a CdS thin film of stable quality was obtained. It was confirmed that it was obtained. Further, as shown in FIG. 12, since the film thickness of the CdS thin film corresponds to this light transmittance, it can be seen that in Example 2, the variation width of the film thickness is also effectively reduced.

【0037】《実施例3》排気ガス中に含まれるソース
材料溶液の溶媒蒸気の濃度を測定し、その測定値に応じ
て超音波振動子の出力を制御する図3の薄膜形成装置に
より、SnO2薄膜を形成した。薄膜形成の条件は、排
気ガス中に含まれる溶媒(水)の蒸気濃度の測定値に応
じて超音波振動子の出力を制御した以外は、実施例1と
同様の条件で標準膜厚が約100nmのCdS薄膜形成
を37枚連続して行った。
Example 3 The concentration of the solvent vapor of the source material solution contained in the exhaust gas is measured, and the output of the ultrasonic transducer is controlled according to the measured value by the thin film forming apparatus of FIG. Two thin films were formed. The thin film formation conditions were the same as in Example 1 except that the output of the ultrasonic transducer was controlled according to the measured value of the vapor concentration of the solvent (water) contained in the exhaust gas, and the standard film thickness was about 37 100-nm CdS thin film formation was performed continuously.

【0038】図3の装置概念図に示すように、前記の薄
膜形成を行いながら、排気ガス20中の水蒸気濃度を溶
媒蒸気濃度センサー25(セラミック湿度センサー)に
より測定した。この測定は、排気管26中で徐冷された
排気ガス20の温度が80℃となる位置にセラミック湿
度センサー25を設置して行った。測定された80℃で
の相対湿度値を超音波振動子の出力コントローラー16
にフィードバックし、前記排気ガス20中の水蒸気濃度
が一定になるようにフィードバック制御した。
As shown in the conceptual diagram of the apparatus in FIG. 3, the water vapor concentration in the exhaust gas 20 was measured by the solvent vapor concentration sensor 25 (ceramic humidity sensor) while forming the thin film. This measurement was performed by installing the ceramic humidity sensor 25 at a position where the temperature of the exhaust gas 20 gradually cooled in the exhaust pipe 26 becomes 80 ° C. The measured relative humidity value at 80 ° C is used as the output controller 16 of the ultrasonic transducer.
To perform a feedback control so that the concentration of water vapor in the exhaust gas 20 becomes constant.

【0039】超音波振動子への入力電圧と排気ガスの8
0℃における相対湿度との関係については、標準的には
図13に示すような傾向があり、前記入力電圧が高くな
るにつれて水蒸気濃度が高くなる。この場合の最適な相
対湿度は75〜80%にあり、最適入力電圧は39.5
〜40V近辺にある。しかし、実際には薄膜形成時の溶
液温度や溶液量の変化、超音波振動子の特性バラツキや
経時変化等により、図13のような定量的関係は刻々変
化する。そのため、単に最適電圧に入力電圧を固定して
製膜した場合には、前記水蒸気濃度を適正範囲に維持で
きず、同時に吹き付け用ガス中の溶液微粒子の含有量を
最適値範囲に維持できない。本実施例では、前記のよう
に排気ガス中の水蒸気濃度を80℃における相対湿度と
して常時測定し、前記水蒸気濃度が最適値より低い時に
は入力電圧を高め、高い時には入力電圧を低くすること
により、常時前記排気ガス中の水蒸気濃度を適正範囲に
維持し、前記溶液微粒子の含有量を最適値範囲に維持し
ながら薄膜を形成した。
Input voltage to the ultrasonic transducer and exhaust gas 8
Regarding the relationship with the relative humidity at 0 ° C., there is a standard tendency as shown in FIG. 13, and the water vapor concentration increases as the input voltage increases. In this case, the optimum relative humidity is 75-80%, and the optimum input voltage is 39.5.
It is around -40V. However, in reality, the quantitative relationship as shown in FIG. 13 changes momentarily due to changes in the solution temperature and solution amount during thin film formation, variations in the characteristics of the ultrasonic oscillator, and changes over time. Therefore, when the film is formed by simply fixing the input voltage to the optimum voltage, the water vapor concentration cannot be maintained within an appropriate range, and at the same time, the content of solution particles in the blowing gas cannot be maintained within the optimum value range. In this embodiment, as described above, the water vapor concentration in the exhaust gas is constantly measured as the relative humidity at 80 ° C., and when the water vapor concentration is lower than the optimum value, the input voltage is increased, and when the water vapor concentration is high, the input voltage is lowered. The water vapor concentration in the exhaust gas was constantly maintained in an appropriate range, and a thin film was formed while maintaining the content of the solution particles in the optimum value range.

【0040】実施例3で製膜した各々37枚のSnO2
薄膜の試料について面抵抗を測定した結果を図14に示
す。実施例3の場合のバラツキ幅は10〜15Ω/□で
あり、図6の比較例1の場合の9〜15Ω/□に較べて
バラツキが少ないことから、本発明による効果が確認さ
れた。また同時に、この面抵抗は膜厚に比例することか
ら、実施例3では膜厚のバラツキ幅が縮小されているこ
とが分かる。
37 sheets of SnO 2 each formed in Example 3
The results of measuring the sheet resistance of the thin film sample are shown in FIG. The variation width in the case of Example 3 is 10 to 15 Ω / □, which is smaller than the variation width of 9 to 15 Ω / □ in the case of Comparative Example 1 in FIG. 6, confirming the effect of the present invention. At the same time, since the surface resistance is proportional to the film thickness, it can be seen that the variation width of the film thickness is reduced in Example 3.

【0041】なお、前記の実施例2では金属硫化物薄膜
のうちCdS薄膜の形成について詳細に説明したが、前
記以外にZnS薄膜、CdSとZnSとの混晶薄膜の形
成についても実施例2と同様の実験を行い、同じ傾向の
本発明による効果が確認された。これらの場合に、Zn
S薄膜の形成にはジブチルジチオカルバミン酸亜鉛20
gをトルエン80gに溶解したソース材料溶液を用い、
CdSとZnSとの混晶薄膜の形成にはジブチルジチオ
カルバミン酸カドミウム10.5gとジブチルジチオカ
ルバミン酸亜鉛9.5gとをトルエン80gに溶解した
ソース材料溶液を用い、その他の条件を実施例2と同様
にして実験を行った。
Although the formation of the CdS thin film among the metal sulfide thin films has been described in detail in the second embodiment, the formation of the ZnS thin film and the mixed crystal thin film of CdS and ZnS is also the same as the second embodiment. The same experiment was conducted, and the effect of the present invention with the same tendency was confirmed. In these cases, Zn
Zinc dibutyldithiocarbamate for forming S thin film 20
Using a source material solution in which g is dissolved in 80 g of toluene,
To form a mixed crystal thin film of CdS and ZnS, a source material solution prepared by dissolving 10.5 g of cadmium dibutyldithiocarbamate and 9.5 g of zinc dibutyldithiocarbamate in 80 g of toluene was used. Other conditions were the same as in Example 2. I conducted an experiment.

【0042】[0042]

【発明の効果】本発明により、吹き付け用ガス中のソー
ス材料溶液の溶液微粒子の含有量、または製膜後の排気
ガス中のソース材料の分解ガスの含有量、または排気ガ
ス中のソース材料溶液の溶媒蒸気濃度を薄膜形成中に常
時測定し、その測定値が適正値となるように前記超音波
振動子の出力を制御することにより、形成される金属酸
化物や金属硫化物の薄膜の膜厚を均一化し、特性を安定
化することができる。
According to the present invention, the content of the solution fine particles of the source material solution in the blowing gas, the content of the decomposition gas of the source material in the exhaust gas after film formation, or the source material solution in the exhaust gas The solvent vapor concentration of is constantly measured during thin film formation, and by controlling the output of the ultrasonic oscillator so that the measured value becomes an appropriate value, a thin film of metal oxide or metal sulfide is formed. The thickness can be made uniform and the characteristics can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】吹き付け用ガス中の溶液微粒子の含有量が適正
値となるように超音波振動子の出力を制御する本発明の
一実施形態に用いた装置の構成を示す概念図である。
FIG. 1 is a conceptual diagram showing the configuration of an apparatus used in an embodiment of the present invention for controlling the output of an ultrasonic transducer so that the content of solution fine particles in a blowing gas becomes an appropriate value.

【図2】排気ガス中の分解ガスの含有量が適正値となる
ように超音波振動子の出力を制御する本発明の他の実施
形態に用いた装置の構成を示す概念図である。
FIG. 2 is a conceptual diagram showing a configuration of an apparatus used in another embodiment of the present invention for controlling the output of the ultrasonic transducer so that the decomposition gas content in the exhaust gas becomes an appropriate value.

【図3】排気ガス中の溶媒蒸気濃度が適正値となるよう
に超音波振動子の出力を制御する本発明のさらに他の実
施形態に用いた装置の構成を示す概念図である。
FIG. 3 is a conceptual diagram showing the configuration of an apparatus used in yet another embodiment of the present invention for controlling the output of the ultrasonic transducer so that the concentration of solvent vapor in exhaust gas becomes an appropriate value.

【図4】二酸化錫薄膜の製膜における吹き付け用ガス中
でのレーザー光の光透過率と溶液微粒子の含有量との関
係を示す図である。
FIG. 4 is a diagram showing the relationship between the light transmittance of laser light and the content of solution fine particles in a gas for spraying when forming a tin dioxide thin film.

【図5】二酸化錫薄膜の製膜における吹き付け用ガス中
の溶液微粒子の含有量と超音波振動子への入力電圧との
標準的な関係を示す図である。
FIG. 5 is a diagram showing a standard relationship between the content of solution fine particles in a blowing gas and the input voltage to an ultrasonic oscillator in the production of a tin dioxide thin film.

【図6】比較例1の二酸化錫薄膜の面抵抗の分布図であ
る。
6 is a distribution diagram of sheet resistance of the tin dioxide thin film of Comparative Example 1. FIG.

【図7】実施例1の二酸化錫薄膜の面抵抗の分布図であ
る。
FIG. 7 is a distribution diagram of sheet resistance of the tin dioxide thin film of Example 1.

【図8】硫化カドミウム薄膜の製膜における排気ガス中
での赤外線の光透過率とCS2ガスの含有量との関係を
示す図である。
FIG. 8 is a diagram showing the relationship between the infrared light transmittance in exhaust gas and the CS 2 gas content in the film formation of a cadmium sulfide thin film.

【図9】硫化カドミウム薄膜の製膜における排気ガス中
のCS2ガスの含有量と超音波振動子への入力電圧との
標準的な関係を示す図である。
FIG. 9 is a diagram showing a standard relationship between the content of CS 2 gas in the exhaust gas and the input voltage to the ultrasonic vibrator in the film formation of the cadmium sulfide thin film.

【図10】比較例2の硫化カドミウム薄膜の光透過率の
分布図である。
10 is a distribution diagram of light transmittance of the cadmium sulfide thin film of Comparative Example 2. FIG.

【図11】実施例2の硫化カドミウム薄膜の光透過率の
分布図である。
FIG. 11 is a distribution diagram of the light transmittance of the cadmium sulfide thin film of Example 2.

【図12】硫化カドミウム薄膜の膜厚と光透過率との関
係を示す図である。
FIG. 12 is a diagram showing the relationship between the film thickness of a cadmium sulfide thin film and the light transmittance.

【図13】二酸化錫の製膜における排気ガスの相対湿度
と超音波振動子への入力電圧との標準的な関係を示す図
である。
FIG. 13 is a diagram showing a standard relationship between the relative humidity of exhaust gas in a tin dioxide film formation and the input voltage to an ultrasonic transducer.

【図14】実施例3の二酸化錫薄膜の面抵抗の分布図で
ある。
FIG. 14 is a distribution diagram of sheet resistance of the tin dioxide thin film of Example 3.

【符号の説明】[Explanation of symbols]

1 霧化容器 2 超音波振動子 3 ソース材料溶液 4 溶液微粒子 5 導入管 6 キャリアガス 7 吹き付け用ガス 8 輸送管 9 ヒーター 10 加熱板 11 製膜用基板 12 薄膜 13 レーザー光源 14 レーザー光 15 受光素子 16 超音波振動子の出力コントローラー 17 支持台 20 排気ガス 21 赤外線 22 排気管 23 赤外線受光素子 24 赤外線光源 25 溶媒蒸気濃度センサー 1 atomization container 2 Ultrasonic transducer 3 Source material solution 4 Solution particles 5 introduction pipes 6 carrier gas 7 Spraying gas 8 transport pipes 9 heater 10 heating plate 11 Film forming substrate 12 thin film 13 Laser light source 14 laser light 15 Light receiving element 16 Ultrasonic transducer output controller 17 Support 20 exhaust gas 21 infrared 22 Exhaust pipe 23 Infrared receiver 24 infrared light source 25 Solvent vapor concentration sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日比野 武司 大阪府守口市松下町1番1号 松下電池 工業株式会社内 (56)参考文献 特開 昭61−244025(JP,A) 特開 平7−150361(JP,A) 特開 平2−179880(JP,A) 特開 平8−41646(JP,A) 特開 昭61−166978(JP,A) 特開 平8−316247(JP,A) 特開 平11−87747(JP,A) 特開2000−44238(JP,A) 特開 平8−239240(JP,A) 特開 平10−317144(JP,A) 特開 平7−126852(JP,A) 特開 平7−54141(JP,A) 特表 平6−508659(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 18/12 C01G 9/08 C01G 11/02 C01G 19/02 C23C 16/44 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takeshi Hibino Takeshi Hibino 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industrial Co., Ltd. (56) Reference JP-A-61-244025 (JP, A) JP-A-7 -150361 (JP, A) JP 2-179880 (JP, A) JP 8-41646 (JP, A) JP 61-166978 (JP, A) JP 8-316247 (JP, A) ) JP-A-11-87747 (JP, A) JP-A-2000-44238 (JP, A) JP-A-8-239240 (JP, A) JP-A-10-317144 (JP, A) JP-A-7-126852 (JP, A) JP 7-54141 (JP, A) Special table 6-508659 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 18/12 C01G 9 / 08 C01G 11/02 C01G 19/02 C23C 16/44

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ソース材料が溶媒に溶解したソース材料
溶液を超音波振動子により霧化し、霧化した前記溶液の
微粒子をキャリアガス中に含ませた吹き付け用ガスを、
予め加熱した製膜用基板の表面に吹き付け、前記微粒子
中のソース材料を熱分解させて、前記製膜用基板上に金
属酸化物または金属硫化物の薄膜を形成する薄膜形成方
法において、前記吹き付け用ガス中の前記微粒子の含有
量を測定し、測定値が適正値となるように前記超音波振
動子の出力を制御しながら前記薄膜を形成することを特
徴とする薄膜形成方法。
1. A source material solution in which a source material is dissolved in a solvent is atomized by an ultrasonic oscillator, and a spraying gas in which the atomized fine particles of the solution are contained in a carrier gas,
In the thin film forming method of spraying on the surface of the pre-heated film-forming substrate, thermally decomposing the source material in the fine particles to form a metal oxide or metal sulfide thin film on the film-forming substrate, A method of forming a thin film, comprising: measuring the content of the fine particles in a working gas, and controlling the output of the ultrasonic transducer so that the measured value becomes an appropriate value.
【請求項2】 前記吹き付け用ガス中の前記微粒子の含
有量を前記吹き付け用ガスの光透過率により測定する請
求項1に記載の薄膜形成方法。
2. The thin film forming method according to claim 1, wherein the content of the fine particles in the blowing gas is measured by the light transmittance of the blowing gas.
【請求項3】 ソース材料が溶媒に溶解したソース材料
溶液を超音波振動子により霧化し、霧化した前記溶液の
微粒子をキャリアガス中に含ませた吹き付け用ガスを、
予め加熱した製膜用基板の表面に吹き付け、前記微粒子
中のソース材料を熱分解させて、前記製膜用基板上に金
属酸化物または金属硫化物の薄膜を形成する薄膜形成方
法において、排気ガス中の前記ソース材料の分解ガスの
含有量を測定し、測定値が適正値となるように前記超音
波振動子の出力を制御しながら前記薄膜を形成すること
を特徴とする薄膜形成方法。
3. A source material solution in which a source material is dissolved in a solvent is atomized by an ultrasonic oscillator, and a spraying gas in which fine particles of the atomized solution are contained in a carrier gas is used.
In a thin film forming method of spraying on the surface of a pre-heated film-forming substrate to thermally decompose the source material in the fine particles to form a metal oxide or metal sulfide thin film on the film-forming substrate, exhaust gas A method of forming a thin film, comprising: measuring a content of a decomposed gas of the source material therein, and controlling the output of the ultrasonic oscillator so that the measured value becomes an appropriate value.
【請求項4】 ソース材料が溶媒に溶解したソース材料
溶液を超音波振動子により霧化し、霧化した前記溶液の
微粒子をキャリアガス中に含ませた吹き付け用ガスを、
予め加熱した製膜用基板の表面に吹き付け、前記微粒子
中のソース材料を熱分解させて、前記製膜用基板上に金
属酸化物または金属硫化物の薄膜を形成する薄膜形成方
法において、排気ガス中の前記溶媒の蒸気濃度を測定
し、測定値が適正値となるように前記超音波振動子の出
力を制御しながら前記薄膜を形成することを特徴とする
薄膜形成方法。
4. A source material solution in which a source material is dissolved in a solvent is atomized by an ultrasonic vibrator, and a spraying gas in which fine particles of the atomized solution are contained in a carrier gas,
In a thin film forming method of spraying on the surface of a pre-heated film-forming substrate to thermally decompose the source material in the fine particles to form a metal oxide or metal sulfide thin film on the film-forming substrate, exhaust gas A thin film forming method, characterized in that the vapor concentration of the solvent therein is measured, and the thin film is formed while controlling the output of the ultrasonic oscillator so that the measured value becomes an appropriate value.
【請求項5】 前記金属酸化物が二酸化錫である請求項
1〜4のいずれかに記載の薄膜形成方法。
5. The thin film forming method according to claim 1, wherein the metal oxide is tin dioxide.
【請求項6】 前記金属硫化物が硫化カドミウム、硫化
亜鉛、または硫化カドミウムと硫化亜鉛との混晶物であ
る請求項1〜4のいずれかに記載の薄膜形成方法。
6. The thin film forming method according to claim 1, wherein the metal sulfide is cadmium sulfide, zinc sulfide, or a mixed crystal of cadmium sulfide and zinc sulfide.
【請求項7】 ソース材料が溶媒に溶解したソース材料
溶液を超音波振動子により霧化する手段、霧化した前記
溶液の微粒子をキャリアガス中に含ませて吹き付け用ガ
スを得る手段、および製膜用基板を加熱する手段を具備
し、前記吹き付け用ガスを、予め加熱した製膜用基板の
表面に吹き付け、前記微粒子中のソース材料を熱分解さ
せて、前記製膜用基板上に金属酸化物または金属硫化物
の薄膜を形成する薄膜形成装置であって、前記吹き付け
用ガス中の前記微粒子の含有量を測定し、測定値が適正
値となるように前記超音波振動子の出力を制御する手段
を有することを特徴とする薄膜形成装置。
7. A means for atomizing a source material solution in which a source material is dissolved in a solvent by an ultrasonic oscillator, a means for containing fine particles of the atomized solution in a carrier gas to obtain a gas for spraying, and A means for heating the film-forming substrate is provided, and the gas for blowing is sprayed onto the surface of the film-forming substrate that has been heated in advance, so that the source material in the fine particles is thermally decomposed and metal oxide is formed on the film-forming substrate. A thin film forming apparatus for forming a thin film of a metal or metal sulfide, measuring the content of the fine particles in the blowing gas, and controlling the output of the ultrasonic vibrator so that the measured value becomes an appropriate value. An apparatus for forming a thin film, comprising:
【請求項8】 前記吹き付け用ガス中の前記微粒子の含
有量を前記吹き付け用ガスの光透過率により測定する請
求項7に記載の薄膜形成装置。
8. The thin film forming apparatus according to claim 7, wherein the content of the fine particles in the blowing gas is measured by the light transmittance of the blowing gas.
【請求項9】 ソース材料が溶媒に溶解したソース材料
溶液を超音波振動子により霧化する手段、霧化した前記
溶液の微粒子をキャリアガス中に含ませて吹き付け用ガ
スを得る手段、および製膜用基板を加熱する手段を具備
し、前記吹き付け用ガスを、予め加熱した製膜用基板の
表面に吹き付け、前記微粒子中のソース材料を熱分解さ
せて、前記製膜用基板上に金属酸化物または金属硫化物
の薄膜を形成する薄膜形成装置であって、排気ガス中の
前記ソース材料の分解ガスの含有量を測定し、測定値が
適正値となるように前記超音波振動子の出力を制御する
手段を有することを特徴とする薄膜形成装置。
9. A means for atomizing a source material solution in which a source material is dissolved in a solvent with an ultrasonic oscillator, a means for containing fine particles of the atomized solution in a carrier gas to obtain a blowing gas, and A means for heating the film-forming substrate is provided, and the gas for blowing is sprayed onto the surface of the film-forming substrate that has been heated in advance, so that the source material in the fine particles is thermally decomposed and metal oxide is formed on the film-forming substrate. A thin film forming apparatus for forming a thin film of a metal or metal sulfide, measuring the content of decomposed gas of the source material in exhaust gas, and outputting the ultrasonic transducer so that the measured value becomes an appropriate value. A thin film forming apparatus having a means for controlling.
【請求項10】 ソース材料が溶媒に溶解したソース材
料溶液を超音波振動子により霧化する手段、霧化した前
記溶液の微粒子をキャリアガス中に含ませて吹き付け用
ガスを得る手段、および製膜用基板を加熱する手段を具
備し、前記吹き付け用ガスを、予め加熱した製膜用基板
の表面に吹き付け、前記微粒子中のソース材料を熱分解
させて、前記製膜用基板上に金属酸化物または金属硫化
物の薄膜を形成する薄膜形成装置であって、排気ガス中
の前記溶媒の蒸気濃度を測定し、測定値が適正値となる
ように前記超音波振動子の出力を制御する手段を有する
ことを特徴とする薄膜形成装置。
10. A means for atomizing a source material solution in which a source material is dissolved in a solvent by an ultrasonic oscillator, a means for containing fine particles of the atomized solution in a carrier gas to obtain a gas for spraying, and A means for heating the film-forming substrate is provided, and the gas for blowing is sprayed onto the surface of the film-forming substrate that has been heated in advance, so that the source material in the fine particles is thermally decomposed and metal oxide is formed on the film-forming substrate. Thin film forming apparatus for forming a thin film of a metal or metal sulfide, means for measuring the vapor concentration of the solvent in the exhaust gas, and controlling the output of the ultrasonic transducer so that the measured value becomes an appropriate value. A thin film forming apparatus comprising:
【請求項11】 前記金属酸化物が二酸化錫である請求
項7〜10のいずれかに記載の薄膜形成装置。
11. The thin film forming apparatus according to claim 7, wherein the metal oxide is tin dioxide.
【請求項12】 前記金属硫化物が硫化カドミウム、硫
化亜鉛、または硫化カドミウムと硫化亜鉛との混晶物で
ある請求項7〜10のいずれかに記載の薄膜形成装置。
12. The thin film forming apparatus according to claim 7, wherein the metal sulfide is cadmium sulfide, zinc sulfide, or a mixed crystal of cadmium sulfide and zinc sulfide.
JP20381699A 1998-08-31 1999-07-16 Thin film forming method and thin film forming apparatus Expired - Fee Related JP3386756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20381699A JP3386756B2 (en) 1998-08-31 1999-07-16 Thin film forming method and thin film forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-245694 1998-08-31
JP24569498 1998-08-31
JP20381699A JP3386756B2 (en) 1998-08-31 1999-07-16 Thin film forming method and thin film forming apparatus

Publications (2)

Publication Number Publication Date
JP2000144435A JP2000144435A (en) 2000-05-26
JP3386756B2 true JP3386756B2 (en) 2003-03-17

Family

ID=26514131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20381699A Expired - Fee Related JP3386756B2 (en) 1998-08-31 1999-07-16 Thin film forming method and thin film forming apparatus

Country Status (1)

Country Link
JP (1) JP3386756B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
CN101931097B (en) 2004-12-08 2012-11-21 希莫菲克斯公司 Deposition of LiCoO2
EP2067163A4 (en) 2006-09-29 2009-12-02 Infinite Power Solutions Inc Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
JP5551612B2 (en) 2007-12-21 2014-07-16 インフィニット パワー ソリューションズ, インコーポレイテッド Method of sputtering a target for an electrolyte membrane
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
JP5705549B2 (en) 2008-01-11 2015-04-22 インフィニット パワー ソリューションズ, インコーポレイテッド Thin film encapsulation for thin film batteries and other devices
DE102008017077B4 (en) 2008-04-01 2011-08-11 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Process for the preparation of an n-semiconducting indium sulfide thin film
KR101672254B1 (en) 2008-04-02 2016-11-08 사푸라스트 리써치 엘엘씨 Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
CN102119454B (en) 2008-08-11 2014-07-30 无穷动力解决方案股份有限公司 Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
WO2010042594A1 (en) 2008-10-08 2010-04-15 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
WO2011028825A1 (en) 2009-09-01 2011-03-10 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
JP5688911B2 (en) * 2010-03-03 2015-03-25 東京エレクトロン株式会社 Film forming apparatus, system, and film forming method
JP2013528912A (en) 2010-06-07 2013-07-11 インフィニット パワー ソリューションズ, インコーポレイテッド Rechargeable high density electrochemical device
JP2013092683A (en) * 2011-10-26 2013-05-16 Toppan Printing Co Ltd Image display body, manufacturing method of image display body and information medium
JP7358714B2 (en) * 2017-04-19 2023-10-11 株式会社Flosfia Film-forming equipment and film-forming method

Also Published As

Publication number Publication date
JP2000144435A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3386756B2 (en) Thin film forming method and thin film forming apparatus
JP2001259494A (en) Thin film forming device
Zhou et al. Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process
KR101570266B1 (en) Apparatus for forming metal oxide film, method for forming metal oxide film, and metal oxide film
CZ310099A3 (en) Photocatalytically activated self-cleaning object and process for producing thereof
US4224355A (en) Method for quality film formation
US6211043B1 (en) Method of manufacturing a compound semiconductor thin film on a substrate
US4307681A (en) Apparatus for quality film formation
JPWO2003050324A1 (en) THIN FILM FORMING METHOD, SUBSTRATE WITH THIN FILM FORMED BY THE METHOD, AND PHOTOELECTRIC CONVERSION DEVICE USING THE SUBSTRATE
US8163404B2 (en) Chlorine, fluorine and lithium co-doped transparent conductive films and methods for fabricating the same
US4239809A (en) Method for quality film formation
Garnier et al. A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films
CN101477846A (en) Method for producing a transparent base with transparent conductive film
US5009928A (en) Method for forming a transparent conductive metal oxide film
JP2000044238A (en) Production of tin dioxide film and solar cell
JP4377003B2 (en) Method for adjusting sheet resistance value of transparent conductive film and method for forming transparent conductive film
Heo et al. Influence of ITO surface modification on the growth of CdS and on the performance of CdS/CdTe solar cells
JPH01283357A (en) Production of electrically conductive transparent film coated with thin metal oxide film
JP2001035262A (en) Glass plate with conductive film, its manufacture and photoelectric transfer device using the same
JPS62211378A (en) Sputtering device
JP4522566B2 (en) Method for adjusting sheet resistance value of transparent conductive film
JP2004362842A (en) Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
Bennaceur Elaboration and characterization of SnO2: In thin films deposited by spray pyrolysis technique
US4931308A (en) Process for the preparation of functional tin oxide thin films
JPH0353727B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees