JPH104206A - Compound semiconductor thin film forming method and optoelectric transducer using the thin film - Google Patents

Compound semiconductor thin film forming method and optoelectric transducer using the thin film

Info

Publication number
JPH104206A
JPH104206A JP9014938A JP1493897A JPH104206A JP H104206 A JPH104206 A JP H104206A JP 9014938 A JP9014938 A JP 9014938A JP 1493897 A JP1493897 A JP 1493897A JP H104206 A JPH104206 A JP H104206A
Authority
JP
Japan
Prior art keywords
metal
thin film
forming
substrate
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9014938A
Other languages
Japanese (ja)
Inventor
Satoshi Shibuya
聡 澁谷
Kuniyoshi Omura
邦嘉 尾村
Takeshi Nishio
剛 西尾
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP9014938A priority Critical patent/JPH104206A/en
Publication of JPH104206A publication Critical patent/JPH104206A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film forming method with which a high quality large area compound semiconductor thin film, which is uniformly thinned off, can be obtained at low cost in the formation of a compound semiconductor thin film, especially in the manufacture of a sulfide thin film. SOLUTION: A metal organic compound, which is obtained by sublimating or evaporating by heating a substrate 1 where a metal organic compound 2, containing at least one or more metal and sulfur, is deposited by heating to sublimate or evaporate, is adhered to a thin film forming substrate 3 having a transparent conductive film 4 which is arranged in an interval with the substrate 1 on which heated metal organic compound is applied. By thermally decomposing the adhered metal organic compound simultaneously with the adhesion or after adhesion, a metal sulfide thin film is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電変換素子に使
用される化合物半導体薄膜の形成法、特に金属硫化物薄
膜の形成法とこれを用いた光電変換素子の形成法に関す
るものである。
The present invention relates to a method for forming a compound semiconductor thin film used for a photoelectric conversion element, and more particularly to a method for forming a metal sulfide thin film and a method for forming a photoelectric conversion element using the same.

【0002】[0002]

【従来の技術】従来より、化合物半導体、特に硫化カド
ミウム、硫化亜鉛、硫化銅、硫化鉛、硫化水銀等の硫化
物薄膜は光電変換素子材料として幅広く用いられてき
た。そして、これらの化合物の多くは従来、スパッタリ
ング法、蒸着法、CVD法などによって製造されてき
た。これらの手法により、光電変換素子材料として所望
の膜質を有する薄膜が得られるが、何れも真空装置など
の非常に高価な製膜装置を必要とするため、大面積均一
製膜、高速連続製膜等が困難であった。
2. Description of the Related Art Conventionally, compound semiconductors, particularly sulfide thin films such as cadmium sulfide, zinc sulfide, copper sulfide, lead sulfide, and mercury sulfide, have been widely used as photoelectric conversion element materials. Many of these compounds have been conventionally produced by a sputtering method, an evaporation method, a CVD method, or the like. By these methods, a thin film having a desired film quality can be obtained as a photoelectric conversion element material, but all require extremely expensive film forming equipment such as a vacuum apparatus, so that large-area uniform film forming and high-speed continuous film forming are required. Etc. were difficult.

【0003】大面積薄膜の形成をより安価に行う方法と
して溶液法もあるが、この場合は製膜装置およびプロセ
スに要するコストは比較的安価であるが、大面積薄膜の
製膜において、膜質の均一性および再現性を得ることが
非常に困難であった。
There is also a solution method as a method for forming a large-area thin film at a lower cost. In this case, the cost required for a film-forming apparatus and a process is relatively inexpensive. It was very difficult to obtain uniformity and reproducibility.

【0004】そこで、化合物半導体薄膜の大面積製膜を
安価な装置で再現性良く行う手法として塗布・焼結法が
提案された。これは、化合物半導体の微粉末分散ペース
トを基板上にスクリーン印刷し、連続ベルト炉で焼結す
るものであり、すでに、同手法による硫化カドミウム焼
結膜上に、同じくテルル化カドミウム焼結膜を積層形成
したテルル化カドミウム光電変換素子の製造方法が開示
されている(特公昭56−28386号公報)。
Therefore, a coating and sintering method has been proposed as a technique for producing a large area of a compound semiconductor thin film with good reproducibility using an inexpensive apparatus. In this method, a fine powder dispersion paste of a compound semiconductor is screen-printed on a substrate and sintered in a continuous belt furnace, and a cadmium telluride sintered film is also formed on the cadmium sulfide sintered film by the same method. A method for producing a cadmium telluride photoelectric conversion element has been disclosed (Japanese Patent Publication No. 56-28386).

【0005】この方法は、前記した通り安価な装置で、
均一にかつ再現性良く化合物半導体薄膜の大面積製膜を
連続して行え、かつ製膜と同時にパターンニングが可能
であるという優れた特徴がある。しかし、焼結温度が約
700℃と高温であるため耐熱性に優れた高価な特殊ガ
ラス(例えば、バリウム硼珪酸ガラス)などを基板とし
て使用する必要があること、2時間以上の長時間の焼結
反応を必要とするため高速・大量生産に不向きなこと、
焼結時に融点降下剤の蒸発を制御するためのセラミック
製の高価な焼結ケースが必要であること、焼結時に窒素
等の不活性雰囲気が必要であること、原材料の粒径(通
常2〜4μm)よりも薄い膜ができないこと、さらに、
膜中に多数の空隙が形成し、膜質が均一でないこと等の
問題があった。
This method uses an inexpensive device as described above,
There is an excellent feature that a large area of a compound semiconductor thin film can be continuously formed uniformly and with good reproducibility, and patterning can be performed simultaneously with the film formation. However, since the sintering temperature is as high as about 700 ° C., it is necessary to use expensive special glass (eg, barium borosilicate glass) having excellent heat resistance as a substrate. Unsuitable for high-speed, mass-production due to the need for sintering reaction,
An expensive ceramic sintering case is required to control the evaporation of the melting point depressant during sintering, an inert atmosphere such as nitrogen is required during sintering, 4 μm) cannot be formed,
There are problems such as formation of a large number of voids in the film and uneven film quality.

【0006】[0006]

【発明が解決しようとする課題】最近、塗布・焼結法の
特徴を生かしこれらの諸課題を解決する手法として、金
属−硫黄結合を少なくとも一つ内部に有する金属有機化
合物を含む溶液を基板上に塗布し、酸化雰囲気中で上記
金属有機化合物を熱分解して金属の硫化物薄膜を形成す
る、という提案がなされている(特公平6−99809
号公報)。
Recently, as a method for solving these problems by making use of the characteristics of the coating and sintering method, a solution containing a metal organic compound having at least one metal-sulfur bond inside is coated on a substrate. And a thermal decomposition of the metal organic compound in an oxidizing atmosphere to form a metal sulfide thin film has been proposed (Japanese Patent Publication No. Hei 6-99809).
No.).

【0007】この方法ではスピナ−法で溶液を塗布して
製膜するのが一般的な手法とされているが、大面積の基
板に溶液を均一に薄く塗布することが困難なため、工業
的に均一な厚さの大面積金属硫化物薄膜を形成できず、
これを可能とすることが大きな課題とされている。
In this method, it is a general method to apply a solution by a spinner method to form a film. However, it is difficult to apply the solution uniformly and thinly to a large-area substrate. To form a large area metal sulfide thin film with a uniform thickness
Making this possible is a major challenge.

【0008】本発明は、化合物半導体薄膜の製膜方式に
関して、上記の従来技術の諸問題を解決し、均一に薄膜
化された高品質で安価な大面積の化合物半導体薄膜を得
る製膜手段を提供することを目的とする。また、この化
合物半導体薄膜を用いて高変換効率を有する光電変換素
子を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art with respect to a method for forming a compound semiconductor thin film, and provides a film forming means for obtaining a high quality, inexpensive, large-area compound semiconductor thin film uniformly thinned. The purpose is to provide. Another object is to provide a photoelectric conversion element having high conversion efficiency using the compound semiconductor thin film.

【0009】[0009]

【課題を解決するための手段】本発明は上記の課題を解
決するために、金属及び硫黄を少なくとも一つ以上含む
金属有機化合物を加熱し、この加熱により昇華、気化も
しくは蒸発した金属有機化合物を薄膜形成用基板に付着
させるとともに、付着した金属有機化合物を付着と同時
にもしくは付着後に熱分解させることにより金属の硫化
物薄膜を形成することを特徴とした形成法である。これ
により、高品質で安価な化合物半導体薄膜を工業的に製
膜することができる。
In order to solve the above-mentioned problems, the present invention heats a metal-organic compound containing at least one metal and sulfur, and sublimates, vaporizes or evaporates the metal-organic compound by this heating. This method is characterized in that a metal sulfide thin film is formed by causing the metal organic compound to be attached to a thin film forming substrate and thermally decomposing the attached metal organic compound simultaneously with or after the attachment. Thereby, a high-quality and inexpensive compound semiconductor thin film can be industrially formed.

【0010】さらに本発明は、金属及び硫黄を少なくと
も一つ以上含む金属有機化合物を塗布した基板に所定の
間隔を持って薄膜形成用基板を配置し、前記塗布基板を
所定の温度に加熱し、加熱により昇華、気化もしくは蒸
発した金属有機化合物を所定の温度に加熱した薄膜形成
用基板に付着させるとともに、付着した金属有機化合物
を付着と同時にもしくは付着後に熱分解させることによ
り金属の硫化物薄膜を得ることを特徴とした化合物半導
体薄膜の形成法である。これにより、高品質で安価な大
面積の化合物半導体薄膜を工業的に製膜することができ
る。
Further, according to the present invention, a thin film forming substrate is disposed at a predetermined interval on a substrate coated with a metal organic compound containing at least one metal and sulfur, and the coated substrate is heated to a predetermined temperature. The metal organic compound sublimated, vaporized or evaporated by heating is attached to the thin film forming substrate heated to a predetermined temperature, and the attached metal organic compound is thermally decomposed simultaneously with or after the attachment to form a metal sulfide thin film. This is a method for forming a compound semiconductor thin film characterized in that it is obtained. Thus, a high-quality and inexpensive large-area compound semiconductor thin film can be industrially formed.

【0011】さらに本発明は、金属及び硫黄を少なくと
も一つ以上含む金属有機化合物を加熱し、この加熱によ
り昇華、気化もしくは蒸発した金属有機化合物を薄膜形
成用基板表面に搬送し、薄膜形成用基板に付着させると
ともに、付着した金属有機化合物を付着と同時にもしく
は付着後に熱分解させることにより金属の硫化物薄膜を
得ることを特徴とした化合物半導体薄膜の形成法であ
る。これにより、高品質で安価な大面積の化合物半導体
薄膜を工業的に製膜することができる。
The present invention further provides a method for heating a metal-organic compound containing at least one of a metal and sulfur, and transporting the metal-organic compound sublimated, vaporized or evaporated by the heating to the surface of the thin-film forming substrate. A method for forming a compound semiconductor thin film, characterized in that a metal sulfide thin film is obtained by thermally decomposing the metal organic compound attached simultaneously with or after the attachment. Thus, a high-quality and inexpensive large-area compound semiconductor thin film can be industrially formed.

【0012】また本発明は、上記いずれかの化合物半導
体薄膜の形成法により形成した化合物半導体薄膜を窓層
として用いることを特徴とした光電変換素子である。こ
の高品質の半導体膜を用いることにより、高性能の光電
変換素子を得ることができる。
Further, the present invention is a photoelectric conversion element characterized in that a compound semiconductor thin film formed by any one of the above-described methods for forming a compound semiconductor thin film is used as a window layer. By using this high-quality semiconductor film, a high-performance photoelectric conversion element can be obtained.

【0013】[0013]

【発明の実施の形態】本発明は、金属及び硫黄を少なく
とも一つ以上含む金属有機化合物を加熱し、この加熱に
より昇華、気化もしくは蒸発した金属有機化合物を薄膜
形成用基板に付着させるとともに、付着した金属有機化
合物を付着と同時にもしくは付着後に熱分解させること
により金属の硫化物薄膜を形成することを特徴とした形
成法である。この方法により、薄膜形成用基板に付着し
た金属有機化合物の熱分解で生成した有機物が飛散する
とともに、分子状に分離した金属硫化物が同基板上に規
則的に配列し、簡易的な手法により極めて緻密な高品質
薄膜を形成できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method of heating a metal organic compound containing at least one metal and sulfur, and attaching the metal organic compound sublimated, vaporized or evaporated by the heating to a thin film forming substrate. The formation method is characterized in that a metal sulfide thin film is formed by thermally decomposing the formed metal organic compound simultaneously with or after the adhesion. By this method, the organic matter generated by the thermal decomposition of the metal organic compound attached to the thin film forming substrate is scattered, and the metal sulfides separated into molecules are regularly arranged on the substrate, and a simple method is used. An extremely dense high-quality thin film can be formed.

【0014】請求項2に記載の発明は、金属及び硫黄を
少なくとも一つ以上含む金属有機化合物を塗布した基板
に所定の間隔を持って薄膜形成用基板を配置し、前記塗
布基板を所定の温度に加熱し、加熱により昇華、気化も
しくは蒸発した金属有機化合物を所定の温度に加熱した
薄膜形成用基板に付着させるとともに、付着した金属有
機化合物を付着と同時にもしくは付着後に熱分解させる
ことにより金属の硫化物薄膜を得ることを特徴とした化
合物半導体薄膜の形成法である。この方法により、金属
有機化合物塗布基板から蒸発または昇華した金属有機化
合物が、より短時間に均一に薄膜形成用基板上に付着
し、より薄膜化された緻密な金属硫化物薄膜を形成する
ことができる。
According to a second aspect of the present invention, a thin film forming substrate is disposed at a predetermined interval on a substrate coated with a metal organic compound containing at least one metal and sulfur, and the coated substrate is heated at a predetermined temperature. The metal organic compound which has sublimated, vaporized or evaporated by heating is attached to the thin film forming substrate heated to a predetermined temperature, and the attached metal organic compound is thermally decomposed simultaneously with or after the attachment. This is a method for forming a compound semiconductor thin film, characterized by obtaining a sulfide thin film. According to this method, the metal organic compound evaporated or sublimated from the metal organic compound coated substrate can be uniformly attached to the thin film forming substrate in a shorter time to form a thinner dense metal sulfide thin film. it can.

【0015】請求項3に記載の発明は、含まれる金属が
カドミウム、亜鉛、銅、鉛もしくは水銀である金属有機
化合物を用いる請求項2記載の化合物半導体薄膜の形成
法であり、これにより硫化カドミウム、硫化亜鉛、硫化
銅、硫化鉛、もしくは硫化水銀の良質な各種半導体薄膜
が得られる。
According to a third aspect of the present invention, there is provided a method of forming a compound semiconductor thin film according to the second aspect, wherein a metal organic compound containing cadmium, zinc, copper, lead or mercury is used. , Zinc sulfide, copper sulfide, lead sulfide, or mercury sulfide can be obtained.

【0016】請求項4に記載の発明は、金属有機化合物
が金属メルカプチド、金属のチオ酸塩、金属のジチオ酸
塩、金属のチオカルボナート塩、金属のジチオカルボナ
ート塩、金属のトリチオカルボナート塩、金属のチオカ
ルバミン酸塩もしくは金属のジチオカルバミン酸塩であ
る請求項2記載の化合物半導体薄膜の形成法であり、高
品質な各種金属硫化物薄膜が得られる。
The invention according to claim 4 is characterized in that the metal organic compound is a metal mercaptide, a metal thioate, a metal dithioate, a metal thiocarbonate, a metal dithiocarbonate, a metal trithiocarbonate. 3. The method for forming a compound semiconductor thin film according to claim 2, which is a salt of a salt, a metal thiocarbamate or a metal dithiocarbamate, and a high-quality thin film of various metal sulfides is obtained.

【0017】請求項5に記載の発明は、金属有機化合物
を塗布した基板の加熱温度を100℃以上、600℃以
下とする請求項2記載の化合物半導体薄膜の形成法であ
り、これにより、より一層短時間に良質な半導体薄膜を
形成できるとともに、耐熱温度が比較的低い薄膜形成用
基板を用いることができる。
According to a fifth aspect of the present invention, there is provided the method of forming a compound semiconductor thin film according to the second aspect, wherein the substrate coated with the metal organic compound is heated at a temperature of 100 ° C. or more and 600 ° C. or less. A high-quality semiconductor thin film can be formed in a shorter time, and a thin film forming substrate having a relatively low heat-resistant temperature can be used.

【0018】請求項6に記載の発明は、薄膜形成用基板
がガラス板、金属板もしくは樹脂フィルムである請求項
2記載の化合物半導体薄膜の形成法である。このよう
に、薄膜形成用基板材料の選択自由度が広がるという点
から各種構造の光電変換素子の形成が可能である。
The invention according to claim 6 is the method for forming a compound semiconductor thin film according to claim 2, wherein the substrate for forming a thin film is a glass plate, a metal plate or a resin film. As described above, it is possible to form photoelectric conversion elements having various structures from the viewpoint of increasing the degree of freedom in selecting a substrate material for forming a thin film.

【0019】さらに、請求項5の耐熱温度が比較的低い
薄膜形成用基板を用いられることと、請求項6の薄膜形
成用基板材料の選択自由度が広がることから、薄膜形成
用基板として、安価で一般的に入手可能なソーダライム
ガラスやポリアミド樹脂フィルムなどの材料を用いるこ
とができ、これにより、安価な光電変換素子材料として
太陽電池用などに広く用いることができる。
Further, since the substrate for forming a thin film having a relatively low heat-resistant temperature according to claim 5 can be used and the degree of freedom in selecting the substrate material for forming a thin film according to claim 6 can be increased, the substrate for forming a thin film can be manufactured at a low cost. For example, materials such as soda lime glass and polyamide resin film, which are generally available, can be used, so that they can be widely used as inexpensive photoelectric conversion element materials for solar cells and the like.

【0020】請求項7に記載の発明は、薄膜形成用基板
温度が300℃以上である請求項2記載の化合物半導体
薄膜の形成法であり、緻密な高品質膜を得ることができ
る。
According to a seventh aspect of the present invention, there is provided the method of forming a compound semiconductor thin film according to the second aspect, wherein the substrate temperature for forming a thin film is 300 ° C. or higher, and a dense high-quality film can be obtained.

【0021】請求項8に記載の発明は、金属有機化合物
を塗布した基板と薄膜形成用基板の間隔が0.1mm以
上である請求項2記載の化合物半導体薄膜の形成法であ
り、基板の反り、歪による製膜不良が減少し安定した製
膜が行える。
The invention according to claim 8 is the method for forming a compound semiconductor thin film according to claim 2, wherein the distance between the substrate coated with the metal organic compound and the substrate for thin film formation is 0.1 mm or more. In addition, film formation defects due to distortion are reduced, and stable film formation can be performed.

【0022】請求項9に記載の発明は、金属の硫化物薄
膜の膜厚が700nm以下である請求項2記載の化合物
半導体薄膜の形成法であり、膜中にカーボンなどの有機
成分をほとんど含まない高品質膜を得ることができる。
さらに、膜厚を30nm以上とすることでピンホールな
どの欠陥がない極めて良好な化合物半導体薄膜を得るこ
とができる。
According to a ninth aspect of the present invention, there is provided the method for forming a compound semiconductor thin film according to the second aspect, wherein the thickness of the metal sulfide thin film is 700 nm or less, and the film contains almost no organic component such as carbon. No high quality film can be obtained.
Further, by setting the thickness to 30 nm or more, an extremely good compound semiconductor thin film free from defects such as pinholes can be obtained.

【0023】請求項10に記載の発明は、金属及び硫黄
を少なくとも一つ以上含む金属有機化合物を加熱し、こ
の加熱により昇華、気化もしくは蒸発した金属有機化合
物を薄膜形成用基板表面に搬送し、薄膜形成用基板に付
着させるとともに、付着した金属有機化合物を付着と同
時にもしくは付着後に熱分解させることにより金属の硫
化物薄膜を得ることを特徴とした化合物半導体薄膜の形
成法である。簡易な方法により極めて緻密な高品質金属
硫化物薄膜を大面積に形成することができる。
According to a tenth aspect of the present invention, a metal-organic compound containing at least one metal and sulfur is heated, and the sublimated, vaporized or evaporated metal-organic compound is conveyed to the surface of the thin film forming substrate by this heating. A compound semiconductor thin film forming method characterized in that a metal sulfide thin film is obtained by causing the metal organic compound to adhere to a thin film forming substrate and thermally decomposing the metal organic compound simultaneously with or after the attachment. An extremely dense high-quality metal sulfide thin film can be formed over a large area by a simple method.

【0024】請求項11に記載の発明は、含まれる金属
がカドミウム、亜鉛、銅、鉛もしくは水銀である金属有
機化合物を用いる請求項10記載の化合物半導体薄膜の
形成法であり、これにより硫化カドミウム、硫化亜鉛、
硫化銅、硫化鉛、もしくは硫化水銀の良質な各種半導体
薄膜が得られる。
The invention according to claim 11 is the method for forming a compound semiconductor thin film according to claim 10, wherein the metal contained is a metal organic compound containing cadmium, zinc, copper, lead or mercury. , Zinc sulfide,
Various high-quality semiconductor thin films of copper sulfide, lead sulfide, or mercury sulfide can be obtained.

【0025】請求項12に記載の発明は、金属有機化合
物が金属メルカプチド、金属のチオ酸塩、金属のジチオ
酸塩、金属のチオカルボナート塩、金属のジチオカルボ
ナート塩、金属のトリチオカルボナート塩、金属のチオ
カルバミン酸塩もしくは金属のジチオカルバミン酸塩で
ある請求項10記載の化合物半導体薄膜の形成法であ
り、高品質な各種金属硫化物薄膜が得られる。
According to a twelfth aspect of the present invention, the metal organic compound is a metal mercaptide, a metal thioate, a metal dithioate, a metal thiocarbonate, a metal dithiocarbonate, or a metal trithiocarbonate. The method for forming a compound semiconductor thin film according to claim 10, wherein the thin film is a salt of a salt, a metal thiocarbamate or a metal dithiocarbamate, and a high-quality metal sulfide thin film can be obtained.

【0026】請求項13に記載の発明は、金属有機化合
物の加熱温度を100℃以上、600℃以下とする請求
項10記載の化合物半導体薄膜の形成法であり、これに
より、より一層短時間に良質な半導体薄膜を形成できる
とともに、耐熱温度が比較的低い薄膜形成用基板を用い
ることができる。
According to a thirteenth aspect of the present invention, there is provided the method of forming a compound semiconductor thin film according to the tenth aspect, wherein the heating temperature of the metal organic compound is set to 100 ° C. or more and 600 ° C. or less. A high-quality semiconductor thin film can be formed, and a thin-film formation substrate having a relatively low heat-resistant temperature can be used.

【0027】請求項14に記載の発明は、薄膜形成用基
板温度が300℃以上である請求項10記載の化合物半
導体薄膜の形成法であり、緻密な高品質膜を得ることが
できる。
The invention according to claim 14 is the method for forming a compound semiconductor thin film according to claim 10, wherein the substrate temperature for forming a thin film is 300 ° C. or higher, and a dense high-quality film can be obtained.

【0028】請求項15に記載の発明は、請求項1、2
あるいは10記載の化合物半導体薄膜の形成法により形
成した化合物半導体薄膜を窓層として用いた光電変換素
子である。簡易な手法により形成された大面積の緻密な
薄膜を用いることにより、短波長感度が良好な高効率な
光電変換素子を形成できる。
The invention according to claim 15 is the first or second invention.
Alternatively, a photoelectric conversion element using a compound semiconductor thin film formed by the method for forming a compound semiconductor thin film according to 10 as a window layer. By using a large-area dense thin film formed by a simple method, a highly efficient photoelectric conversion element with good short-wavelength sensitivity can be formed.

【0029】請求項16に記載の発明は、光電変換素子
の光吸収層がテルル化カドミウム膜からなる請求項15
記載の光電変換素子であり、高効率なテルル化カドミウ
ム光電変換素子を形成できる。
According to a sixteenth aspect of the present invention, the light absorption layer of the photoelectric conversion element is made of a cadmium telluride film.
It is a photoelectric conversion element of description, It can form a highly efficient cadmium telluride photoelectric conversion element.

【0030】請求項17に記載の発明は、光電変換素子
の光吸収層がI−III−VI2型カルコパイライトからなる
ことを特徴とする請求項15記載の光電変換素子の形成
法であり、高効率なI−III−VI2型カルコパイライト光
電変換素子、例えばCuInxGa1-xSe2光電変換素
子あるいはCuInxGa1-x2光電変換素子を形成で
きる。
The invention according to claim 17 is the method for forming a photoelectric conversion element according to claim 15, wherein the light absorption layer of the photoelectric conversion element is made of I-III-VI type 2 chalcopyrite. A highly efficient I-III-VI 2- type chalcopyrite photoelectric conversion element, for example, a CuIn x Ga 1 -x Se 2 photoelectric conversion element or a CuIn x Ga 1 -x S 2 photoelectric conversion element can be formed.

【0031】以下、本発明の実施の形態を図1、2を用
いて説明する。 (実施の形態1)本発明は所定の間隔を持って金属有機
化合物塗布基板と薄膜形成用基板を配置した形成法であ
り、図1を用いて説明する。図1において、金属有機化
合物塗布基板1上に、調整した金属有機化合物2のペー
ストをスクリーン印刷法を用いて均一に塗布する。同塗
布基板を乾燥し、溶媒を揮発させて金属有機化合物塗布
基板を作製する。
An embodiment of the present invention will be described below with reference to FIGS. (Embodiment 1) The present invention is a forming method in which a metal organic compound coated substrate and a thin film forming substrate are arranged at a predetermined interval, and will be described with reference to FIG. In FIG. 1, the prepared paste of the metal-organic compound 2 is uniformly applied onto the metal-organic compound-coated substrate 1 by using a screen printing method. The coated substrate is dried, and the solvent is volatilized to prepare a metal organic compound coated substrate.

【0032】一方、薄膜形成用基板3に透明導電膜4を
形成し、ヒーター6で大気中で予め加熱し、薄膜形成用
基板3と並行に向き合うようにスペーサー5を用いて所
定の間隔で金属有機化合物塗布基板を配置する。この金
属有機化合物塗布基板を、予め加熱された薄膜形成用基
板3からの輻射熱によって加熱し、温度を上昇させる。
この温度状態を数秒保持させ、金属有機化合物2を昇
華、気化もしくは蒸発させ、薄膜形成用基板上に均一な
金属の硫化物膜を得る。
On the other hand, a transparent conductive film 4 is formed on the thin film forming substrate 3, preheated in the air by a heater 6, and metal is disposed at predetermined intervals by using a spacer 5 so as to face the thin film forming substrate 3 in parallel. An organic compound coated substrate is arranged. The metal organic compound coated substrate is heated by radiant heat from the thin film forming substrate 3 which has been heated in advance, and the temperature is increased.
This temperature state is maintained for several seconds, and the metal organic compound 2 is sublimated, vaporized or evaporated to obtain a uniform metal sulfide film on the thin film forming substrate.

【0033】なお、本実施の形態では薄膜形成用基板を
予め加熱し、その輻射熱によって金属有機化合物を加熱
する方法を示したが、金属有機化合物塗布基板あるいは
薄膜形成用基板と金属有機化合物塗布基板を共に加熱す
ることにより、温度制御がより正確に行うことができ
る。
In this embodiment, the method of heating the substrate for forming the thin film in advance and heating the metal organic compound by the radiant heat is described. However, the substrate for coating the metal organic compound or the substrate for forming the thin film and the substrate for coating the metal organic compound is described. Are heated together, temperature control can be performed more accurately.

【0034】(実施の形態2)本発明は金属有機化合物
を入れた容器を加熱することにより昇華、気化もしくは
蒸発した金属有機化合物を薄膜形成用基板上に形成する
形成法であり、図2を用いて説明する。図2において、
薄膜形成用基板3に透明導電膜4を形成し、ヒーター6
で大気中で予め加熱しておく。
(Embodiment 2) The present invention relates to a method of forming a sublimated, vaporized or evaporated metal organic compound on a thin film forming substrate by heating a container containing the metal organic compound. It will be described using FIG. In FIG.
A transparent conductive film 4 is formed on a thin film forming substrate 3 and a heater 6
In advance in the atmosphere.

【0035】金属有機化合物を流入口7と排出口8を有
した密閉できる金属容器9内に入れ、ヒーター10で加
熱し、昇華、気化もしくは蒸発させる。流入口7より加
熱した窒素ガスを所定の流量で金属容器に導入すること
により、発生した有機金属化合物のガスを排出口8から
配管11を用いて薄膜形成基板3上まで搬送し、薄膜形
成用基板3上に吹き付け、薄膜形成用基板3上に均一な
金属の硫化物膜を得る。
The metal organic compound is placed in a sealable metal container 9 having an inlet 7 and an outlet 8 and heated by a heater 10 to sublimate, vaporize or evaporate. By introducing a nitrogen gas heated from the inlet 7 into the metal container at a predetermined flow rate, the gas of the generated organometallic compound is transported from the outlet 8 to the thin film forming substrate 3 by using the pipe 11 and is used for forming a thin film. It is sprayed on the substrate 3 to obtain a uniform metal sulfide film on the substrate 3 for forming a thin film.

【0036】なお、排出口あるいは配管を加熱すること
により温度制御が正確に行え、また排出口や配管内に金
属有機化合物が付着するのを抑制できる。
It is to be noted that the temperature of the outlet or the pipe can be accurately controlled by heating the pipe, and that the metal organic compound can be prevented from adhering to the outlet or the pipe.

【0037】[0037]

【実施例】以下に実施例により説明する。Embodiments will be described below with reference to embodiments.

【0038】[0038]

【実施例1】金属有機化合物であるジエチルジチオカル
バミン酸カドミウムをプロピレングリコール溶媒に1.
75モル/リットルの割合で溶解させてペーストを調製
した。同ペーストをスクリーン印刷法を用い、ガラス基
板上に6.4mg/cm2均一に塗布する。同塗布基板
を120℃で乾燥し、溶媒を揮発させて金属有機化合物
塗布基板を作製した。
Example 1 Cadmium diethyldithiocarbamate, which is a metal organic compound, was added to a propylene glycol solvent.
A paste was prepared by dissolving at a rate of 75 mol / liter. The paste is uniformly applied to a glass substrate at 6.4 mg / cm 2 by a screen printing method. The coated substrate was dried at 120 ° C., and the solvent was volatilized to prepare a metal organic compound coated substrate.

【0039】一方、薄膜形成用基板として200nm膜
厚の酸化インジウム膜(ITO膜)を形成させた1.1
mm厚のソ−ダライムガラスを大気中で予め450℃に
加熱し、該薄膜形成用基板と並行に向き合うように1m
mの間隔で金属有機化合物塗布基板を配置する。この金
属有機化合物塗布基板を、予め加熱された薄膜形成用基
板からの輻射熱によって加熱し、約300℃まで温度を
上昇させる。この温度状態を40秒保持させ、金属有機
化合物を昇華もしくは蒸発させ、薄膜形成用基板上に膜
厚70nmの均一な膜が得られた。
On the other hand, an indium oxide film (ITO film) having a thickness of 200 nm was formed as a thin film forming substrate.
mm soda lime glass is heated to 450 ° C. in the air in advance, and 1 m so as to face the thin film forming substrate in parallel.
The metal organic compound coated substrates are arranged at intervals of m. The metal-organic compound-coated substrate is heated by radiant heat from a previously heated substrate for forming a thin film, and the temperature is increased to about 300 ° C. This temperature state was maintained for 40 seconds, and the metal organic compound was sublimated or evaporated, whereby a uniform film having a thickness of 70 nm was obtained on the thin film forming substrate.

【0040】なお、この製膜は窒素、アルゴンもしくは
ヘリウムなどの不活性雰囲気下でも同様に行なえること
が確認されている。
It has been confirmed that this film formation can be performed similarly under an inert atmosphere such as nitrogen, argon or helium.

【0041】この膜の光学的バンドギャップを測定した
ところ2.42eVであり、一般的に知られている硫化
カドミウムのバンドギャップの標準値と一致した。この
ことから格子欠陥の少ない硫化カドミウム薄膜が形成さ
れていることが確認された。また、光電子分光法の分析
の結果から、同硫化カドミウム薄膜表面および同膜中に
光学的透過率低下の原因となるカーボン等の有機物が殆
ど残留していないことが確認された。
The optical band gap of this film was measured and found to be 2.42 eV, which was in agreement with the generally known standard value of the band gap of cadmium sulfide. From this, it was confirmed that a cadmium sulfide thin film having few lattice defects was formed. In addition, from the results of photoelectron spectroscopy analysis, it was confirmed that almost no organic matter such as carbon causing a decrease in optical transmittance remained on the surface of the cadmium sulfide thin film and in the film.

【0042】以上の方法で作製した硫化カドミウム薄膜
を窓層として用い、硫化カドミウム膜上にテルル化カド
ミウム膜を形成し、光電変換素子を形成する。図3に実
施例として作成した光電変換素子の構造断面図を示す。
Using the cadmium sulfide thin film produced by the above method as a window layer, a cadmium telluride film is formed on the cadmium sulfide film to form a photoelectric conversion element. FIG. 3 shows a structural sectional view of a photoelectric conversion element prepared as an example.

【0043】ガラス基板16上に200nmの酸化イン
ジウム膜17を形成し、その上の一部に上記実施例1と
同様の方法により硫化カドミウム膜12を形成する。
A 200 nm indium oxide film 17 is formed on a glass substrate 16, and a cadmium sulfide film 12 is formed on a part of the film in the same manner as in the first embodiment.

【0044】この硫化カドミウム膜12を形成した基板
を、テルル化カドミウム粉末を敷いたアルミナボードと
3.0mmの間隔を保持し対面させ、圧力200Pa、
アルゴン雰囲気下で前者を600℃に、後者を630℃
に1分間加熱し、厚さ5.0μmのテルル化カドミウム
膜13を形成する。
The substrate on which the cadmium sulfide film 12 was formed was opposed to an alumina board on which cadmium telluride powder was laid at a distance of 3.0 mm, and the pressure was 200 Pa.
Under argon atmosphere, the former is 600 ° C, the latter is 630 ° C
For 1 minute to form a cadmium telluride film 13 having a thickness of 5.0 μm.

【0045】このテルル化カドミウム膜13付基板を、
塩化カドミウム飽和溶液に浸積し、400℃30分熱処
理し、その後純水で表面を洗浄する。
The substrate with the cadmium telluride film 13 is
It is immersed in a saturated solution of cadmium chloride, heat-treated at 400 ° C. for 30 minutes, and then the surface is washed with pure water.

【0046】テルル化カドミウム膜13上にカーボンペ
ーストをスクリーン印刷法を用い塗布する。同塗布基板
を熱風乾燥機により150℃で60分乾燥しカーボン電
極14を得る。
A carbon paste is applied on the cadmium telluride film 13 using a screen printing method. The coated substrate is dried at 150 ° C. for 60 minutes using a hot air drier to obtain a carbon electrode 14.

【0047】カーボン電極14上および酸化インジウム
膜17上に集電電極として、AgIn電極15を形成す
る。以上により図3の構造の硫化カドミウム/テルル化
カドミウム光電変換素子を形成した。
An AgIn electrode 15 is formed on the carbon electrode 14 and the indium oxide film 17 as a current collecting electrode. Thus, a cadmium sulfide / cadmium telluride photoelectric conversion device having the structure shown in FIG. 3 was formed.

【0048】図5に従来例として塗布・焼結法により作
製した硫化カドミウム薄膜(膜厚;20μm)を窓層と
して用いた光電変換素子の断面構造を示す。ガラス基板
22上に膜厚20μmの硫化カドミウム膜18、テルル
化カドミウム膜19が形成され、その上にカーボン電極
20とAgIn電極21が形成されている。
FIG. 5 shows, as a conventional example, a cross-sectional structure of a photoelectric conversion element using a cadmium sulfide thin film (thickness: 20 μm) produced by a coating and sintering method as a window layer. A cadmium sulfide film 18 and a cadmium telluride film 19 having a thickness of 20 μm are formed on a glass substrate 22, and a carbon electrode 20 and an AgIn electrode 21 are formed thereon.

【0049】図4および図6に各々、実施例の光電変換
素子と従来例の光電変換素子の電圧−電流特性を示す。
図4より、実施例の光電変換素子(面積:1cm2)の
変換効率は14.9%であり、図6に示した従来例の光
電変換素子の11.3%より極めて高い値が得られた。
これは、本発明を用いて試作した光電変換素子は硫化カ
ドミウム層の膜厚が薄く、膜質が緻密なため、短波長感
度が増し、結果として短絡電流密度が21.1mA/c
2から25.3mA/cm2へと増加したことが主な要
因であると考えられる。
FIGS. 4 and 6 show the voltage-current characteristics of the photoelectric conversion device of the embodiment and the conventional photoelectric conversion device, respectively.
4, the conversion efficiency of the photoelectric conversion element (area: 1 cm 2 ) of the example is 14.9%, which is much higher than 11.3% of the conventional photoelectric conversion element shown in FIG. Was.
This is because the photoelectric conversion device prototyped using the present invention has a thin cadmium sulfide layer and a dense film quality, so that short-wavelength sensitivity is increased, and as a result, the short-circuit current density is 21.1 mA / c.
The main factor is considered to be the increase from m 2 to 25.3 mA / cm 2 .

【0050】なお、薄膜形成用基板として硼珪酸ガラス
もしくはバリウム硼珪酸ガラスを用い、上記の実施例と
同様の方法で作製した光電変換素子と、ソ−ダライムガ
ラスを用いた上記の実施例の光電変換素子とは全く一致
した特性が得られることを確認した。
The photoelectric conversion element manufactured by the same method as in the above embodiment using borosilicate glass or barium borosilicate glass as the thin film forming substrate, and the above-described embodiment using soda lime glass. It was confirmed that characteristics completely consistent with those of the photoelectric conversion element were obtained.

【0051】従来、焼結法では、製膜する場合の温度が
約700℃と高いため、特に熱膨張係数が小さく高温で
も軟化や変質しにくい薄膜形成用基板材料を選択するこ
とが必要となり、硼珪酸ガラスもしくはバリウム硼珪酸
ガラスなどの高価な材料を用いざるを得なかった。しか
し上記の確認により本発明を適用すれば、比較的低温で
製膜出来るため、ソ−ダライムガラスなどの安価で一般
的に入手可能なガラス基板材料を用いることができ材料
の選択自由度が大幅に広がることが立証された。
Conventionally, in the sintering method, since the temperature for forming a film is as high as about 700 ° C., it is necessary to select a substrate material for forming a thin film which has a small thermal expansion coefficient and is hardly softened or deteriorated even at a high temperature. Expensive materials such as borosilicate glass or barium borosilicate glass have to be used. However, if the present invention is applied by the above confirmation, a film can be formed at a relatively low temperature, so that an inexpensive and commonly available glass substrate material such as soda lime glass can be used, and the degree of freedom in material selection is increased. It has been proved that it has expanded significantly.

【0052】[0052]

【実施例2】金属有機化合物として、ジメチルジチオカ
ルバミン酸カドミウムを使用し、薄膜形成用基板の加熱
温度を440℃とし、金属有機化合物塗布基板の温度が
330℃となるように両基板の間隔を調整した以外は、
実施例1と同様にして硫化カドミウム半導体薄膜を形成
した。得られた膜の光学的バンドギャップの測定結果は
(表1)に示したように、2.42eVに近い値を示
し、本薄膜が良質な硫化カドミウム膜であることが判っ
た。
Example 2 Cadmium dimethyldithiocarbamate was used as the metal organic compound, the heating temperature of the substrate for forming the thin film was 440 ° C., and the distance between the two substrates was adjusted so that the temperature of the metal organic compound coated substrate was 330 ° C. Other than
A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1. The measurement results of the optical band gap of the obtained film showed a value close to 2.42 eV as shown in (Table 1), and it was found that this thin film was a good quality cadmium sulfide film.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【実施例3】金属有機化合物として、ジブチルジチオカ
ルバミン酸カドミウムを使用し、薄膜形成用基板の加熱
温度を440℃とし、金属有機化合物塗布基板の温度が
270℃となるように両基板の間隔を調整した以外は、
実施例1と同様にして硫化カドミウム半導体薄膜を形成
した。得られた膜の光学的バンドギャップの測定結果は
(表1)に示したように、2.42eVとほぼ一致し、
本薄膜が良質な硫化カドミウム膜であることが判った。
Example 3 Cadmium dibutyldithiocarbamate was used as the metal organic compound, the heating temperature of the thin film forming substrate was 440 ° C., and the distance between the two substrates was adjusted so that the temperature of the metal organic compound coated substrate was 270 ° C. Other than
A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1. The measurement results of the optical band gap of the obtained film almost agreed with 2.42 eV as shown in (Table 1).
This thin film was found to be a good cadmium sulfide film.

【0055】[0055]

【実施例4】金属有機化合物として、ジベンジルジチオ
カルバミン酸カドミウムを使用し、薄膜形成用基板の加
熱温度を440℃とし、金属有機化合物塗布基板の温度
が320℃となるように両基板の間隔を調整した以外
は、実施例1と同様にして硫化カドミウム半導体薄膜を
形成した。得られた膜の光学的バンドギャップの測定結
果は(表1)に示したように、2.42eVとほぼ一致
し、本薄膜が良質な硫化カドミウム膜であることが判っ
た。
Example 4 Cadmium dibenzyldithiocarbamate was used as the metal-organic compound, the heating temperature of the substrate for forming a thin film was 440 ° C., and the distance between the two substrates was adjusted so that the temperature of the substrate coated with the metal-organic compound became 320 ° C. Except for the adjustment, a cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1. The measurement results of the optical band gap of the obtained film almost coincided with 2.42 eV as shown in (Table 1), and it was found that this thin film was a good quality cadmium sulfide film.

【0056】[0056]

【実施例5】金属有機化合物として、ジエチルジチオカ
ルバミン酸亜鉛を使用し、薄膜形成用基板の加熱温度を
500℃とし、金属有機化合物塗布基板の温度が305
℃となるように両基板の間隔を調整した以外は、実施例
1と同様にして硫化亜鉛半導体薄膜を形成した。得られ
た膜の光学的バンドギャップの測定結果は(表1)に示
したように、硫化亜鉛のバンドギャップ標準値(3.5
eV)とほぼ一致し、本薄膜が良質な硫化亜鉛膜である
ことが判った。
Embodiment 5 Zinc diethyldithiocarbamate was used as the metal organic compound, the heating temperature of the substrate for forming the thin film was 500 ° C., and the temperature of the substrate coated with the metal organic compound was 305.
A zinc sulfide semiconductor thin film was formed in the same manner as in Example 1 except that the distance between the two substrates was adjusted so as to be ° C. The measurement results of the optical band gap of the obtained film were as shown in (Table 1), and the band gap standard value of zinc sulfide (3.5) was obtained.
eV), which indicates that this thin film is a good quality zinc sulfide film.

【0057】[0057]

【実施例6】金属有機化合物として、ジエチルジチオカ
ルバミン酸銅を使用し、薄膜形成用基板の加熱温度を3
80℃とし、金属有機化合物塗布基板の温度が310℃
となるように両基板の間隔を調整した以外は、実施例1
と同様にして硫化銅半導体薄膜を形成した。得られた膜
の光学的バンドギャップの測定結果は(表1)に示した
ように、硫化銅のバンドギャップの標準値(1.2e
V)とほぼ一致し本薄膜が良質な硫化銅膜であることが
判った。
Embodiment 6 Copper diethyldithiocarbamate was used as the metal organic compound, and the heating temperature of the thin film forming substrate was 3
80 ° C. and the temperature of the substrate coated with the metal organic compound is 310 ° C.
Example 1 except that the distance between both substrates was adjusted so that
In the same manner as described above, a copper sulfide semiconductor thin film was formed. The measurement results of the optical band gap of the obtained film are shown in (Table 1), and the standard value of the band gap of copper sulfide (1.2 e) was obtained.
V), and it was found that this thin film was a high-quality copper sulfide film.

【0058】[0058]

【実施例7】金属有機化合物として、ジエチルジチオカ
ルバミン酸鉛を使用し、薄膜形成用基板の加熱温度を5
50℃とし、金属有機化合物塗布基板の温度が330℃
となるように両基板の間隔を調整した以外は、実施例1
と同様にして硫化鉛半導体薄膜を形成した。得られた膜
の光学的バンドギャップの測定結果は(表1)に示した
ように、硫化鉛のバンドギャップ標準値(0.37e
V)とほぼ一致し、本薄膜が良質な硫化鉛膜であること
が判った。
Embodiment 7 As the metal organic compound, lead diethyl dithiocarbamate was used, and the heating temperature of the substrate for forming a thin film was 5
50 ° C, and the temperature of the substrate coated with the metal organic compound is 330 ° C
Example 1 except that the distance between both substrates was adjusted so that
A lead sulfide semiconductor thin film was formed in the same manner as described above. The measurement results of the optical band gap of the obtained film are shown in Table 1, and the band gap standard value of lead sulfide (0.37e) was obtained.
V), which indicates that the thin film is a good quality lead sulfide film.

【0059】[0059]

【実施例8】金属有機化合物として、ジエチルジチオカ
ルバミン酸水銀を使用し、薄膜形成用基板の加熱温度を
330℃とし、金属有機化合物塗布基板の温度が250
℃となるように両基板の間隔を調整した以外は、実施例
1と同様にして硫化水銀半導体薄膜を形成した。得られ
た膜の光学的バンドギャップの測定結果は(表1)に示
したように、硫化水銀のバンドギャップ標準値(1.9
eV)とほぼ一致し、本薄膜が良質な硫化水銀膜である
ことが判った。
Example 8 Mercury diethyldithiocarbamate was used as the metal organic compound, the heating temperature of the thin film forming substrate was set to 330 ° C., and the temperature of the metal organic compound coated substrate was set to 250 ° C.
A mercury sulfide semiconductor thin film was formed in the same manner as in Example 1 except that the distance between the two substrates was adjusted so as to be ° C. The measurement results of the optical band gap of the obtained film were as shown in Table 1 and the band gap standard value of mercury sulfide (1.9) was obtained.
eV), which indicates that this thin film is a good-quality mercury sulfide film.

【0060】[0060]

【実施例9】金属有機化合物として、カドミウムメルカ
プチドであるカドミウムエチルメルカプチドを使用し、
薄膜形成用基板の加熱温度を440℃とし、金属有機化
合物塗布基板の温度が360℃となるように両基板の間
隔を調整した以外は、実施例1と同様にして硫化カドミ
ウム半導体薄膜を形成した。得られた膜の光学的バンド
ギャップの測定結果は(表1)に示したように、2.4
2eVとほぼ一致し、本薄膜が良質な硫化カドミウム膜
であることが判った。
Example 9 Cadmium ethyl mercaptide, which is cadmium mercaptide, was used as a metal organic compound.
A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1 except that the heating temperature of the thin film forming substrate was 440 ° C., and the distance between the two substrates was adjusted so that the temperature of the metal organic compound coated substrate was 360 ° C. . The measurement result of the optical band gap of the obtained film was 2.4 as shown in (Table 1).
The value almost coincided with 2 eV, indicating that this thin film was a good-quality cadmium sulfide film.

【0061】[0061]

【実施例10】金属有機化合物として、チオ酸カドミウ
ムであるエチルチオ酸カドミウムを使用し、薄膜形成用
基板の加熱温度を440℃とし、金属有機化合物塗布基
板の温度が320℃となるように両基板の間隔を調整、
した以外は、実施例1と同様にして硫化カドミウム半導
体薄膜を形成した。得られた膜の光学的バンドギャップ
の測定結果は(表1)に示したように、2.42eVと
ほぼ一致し、本薄膜が良質な硫化カドミウム膜であるこ
とが判った。
Example 10 Cadmium ethyl thioate, which is cadmium thioate, was used as the metal organic compound, the heating temperature of the thin film forming substrate was set to 440 ° C., and the temperature of the metal organic compound coated substrate was set to 320 ° C. Adjust the spacing of
A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1 except for performing the above. The measurement results of the optical band gap of the obtained film almost coincided with 2.42 eV as shown in (Table 1), and it was found that this thin film was a good quality cadmium sulfide film.

【0062】[0062]

【実施例11】金属有機化合物として、ジチオ酸カドミ
ウムであるエチルジチオ酸カドミウムを使用し、薄膜形
成用基板の加熱温度を440℃とし、金属有機化合物塗
布基板の温度が270℃となるように両基板の間隔を調
整した以外は、実施例1と同様にして硫化カドミウム半
導体薄膜を形成した。得られた膜の光学的バンドギャッ
プの測定結果は(表1)に示したように、2.42eV
に近い値を示し、本薄膜が良質な硫化カドミウム膜であ
ることが判った。
EXAMPLE 11 Cadmium ethyldithioate, which is cadmium dithioate, was used as the metal organic compound, the heating temperature of the substrate for forming the thin film was 440 ° C., and the temperature of the substrate coated with the metal organic compound was 270 ° C. A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1 except that the interval was adjusted. The measurement result of the optical band gap of the obtained film was 2.42 eV as shown in (Table 1).
, Indicating that this thin film was a good-quality cadmium sulfide film.

【0063】[0063]

【実施例12】金属有機化合物として、チオカルボナー
トカドミウムであるエチルチオカルボナートカドミウム
を使用し、薄膜形成用基板の加熱温度を440℃とし、
金属有機化合物塗布基板の温度が240℃となるように
両基板の間隔を調整した以外は、実施例1と同様にして
硫化カドミウム半導体薄膜を形成した。得られた膜の光
学的バンドギャップの測定結果は(表1)に示したよう
に、2.42eVに近い値を示し、本薄膜が良質な硫化
カドミウム膜であることが判った。
Example 12 Ethyl thiocarbonate cadmium, which is thiocarbonate cadmium, was used as the metal organic compound, and the heating temperature of the substrate for forming a thin film was 440 ° C.
A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1, except that the distance between the two substrates was adjusted so that the temperature of the metal-organic compound-coated substrate was 240 ° C. The measurement results of the optical band gap of the obtained film showed a value close to 2.42 eV as shown in (Table 1), and it was found that this thin film was a good quality cadmium sulfide film.

【0064】[0064]

【実施例13】金属有機化合物として、ジチオカルボナ
ートカドミウムであるエチルジチオカルボナートカドミ
ウムを使用し、薄膜形成用基板の加熱温度を440℃と
し、金属有機化合物塗布基板の温度が300℃となるよ
うに両基板の間隔を調整した以外は、実施例1と同様に
して硫化カドミウム半導体薄膜を形成した。得られた膜
の光学的バンドギャップの測定結果は(表1)に示した
ように、2.42eVに近い値を示し、本薄膜が良質な
硫化カドミウム膜であることが判った。
Example 13 Ethyl dithiocarbonate cadmium, which is dithiocarbonate cadmium, was used as the metal organic compound, the heating temperature of the thin film forming substrate was set to 440 ° C., and the temperature of the metal organic compound coated substrate was set to 300 ° C. A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1 except that the distance between the two substrates was adjusted. The measurement results of the optical band gap of the obtained film showed a value close to 2.42 eV as shown in (Table 1), and it was found that this thin film was a good quality cadmium sulfide film.

【0065】[0065]

【実施例14】金属有機化合物として、トリチオカルボ
ナートカドミウムであるエチルトリチオカルボナートカ
ドミウムを使用し、薄膜形成用基板の加熱温度を440
℃とし、金属有機化合物塗布基板の温度が320℃とな
るように両基板の間隔を調整した以外は、実施例1と同
様にして硫化カドミウム半導体薄膜を形成した。得られ
た膜の光学的バンドギャップの測定結果は(表1)に示
したように、2.42eVに近い値を示し、本薄膜が良
質な硫化カドミウム膜であることが判った。
Embodiment 14 Ethyl trithiocarbonate cadmium, which is trithiocarbonate cadmium, was used as the metal organic compound, and the heating temperature of the substrate for forming a thin film was 440.
° C, and a cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1 except that the distance between the two substrates was adjusted so that the temperature of the substrate coated with the metal organic compound became 320 ° C. The measurement results of the optical band gap of the obtained film showed a value close to 2.42 eV as shown in (Table 1), and it was found that this thin film was a good quality cadmium sulfide film.

【0066】[0066]

【実施例15】金属有機化合物として、チオカルバミン
酸カドミウムであるジエチルチオカルバミン酸カドミウ
ムを使用し、薄膜形成用基板の加熱温度を440℃と
し、金属有機化合物塗布基板の温度が310℃となるよ
うに両基板の間隔を調整した以外、は実施例1と同様に
して硫化カドミウム半導体薄膜を形成した。得られた膜
の光学的バンドギャップの測定結果は(表1)に示した
ように、2.42eVに近い値を示し、本薄膜が良質な
硫化カドミウム膜であることが判った。
Example 15 Cadmium diethylthiocarbamate, which is cadmium thiocarbamate, was used as the metal organic compound, the heating temperature of the thin film forming substrate was 440 ° C., and the temperature of the metal organic compound coated substrate was 310 ° C. A cadmium sulfide semiconductor thin film was formed in the same manner as in Example 1 except that the distance between the two substrates was adjusted. The measurement results of the optical band gap of the obtained film showed a value close to 2.42 eV as shown in (Table 1), and it was found that this thin film was a good quality cadmium sulfide film.

【0067】[0067]

【実施例16】440℃に加熱した薄膜形成用基板と、
50℃〜630℃の範囲で所定温度に変化させて加熱あ
るいは冷却した金属有機化合物塗布基板とを、1mmの
間隔で並行に配置して5秒間で製膜した以外は、実施例
1と同様にして硫化カドミウム薄膜を形成した。その結
果得られた硫化カドミウムの製膜速度の関係を図7に示
す。図7から分かるように本膜の作製に際しては100
〜600℃において膜の製膜速度が大きく、生産性が著
しく優れていことが判った。
Embodiment 16 A substrate for forming a thin film heated to 440 ° C.
The same procedure as in Example 1 was carried out except that a metal-organic compound coated substrate heated or cooled at a predetermined temperature in the range of 50 ° C. to 630 ° C. was arranged in parallel at an interval of 1 mm and a film was formed for 5 seconds. To form a cadmium sulfide thin film. FIG. 7 shows the relationship between the resulting cadmium sulfide film formation rates. As can be seen from FIG. 7, 100
It was found that the film formation rate was high at ~ 600 ° C and the productivity was remarkably excellent.

【0068】[0068]

【実施例17】薄膜形成用基板として、厚さ1mm厚の
銅板(10cm角)を用い、銅板上に蒸着法により1.
0μmのモリブデン膜を形成し、モリブデン膜上に蒸着
法を用いてテルル化カドミウム膜を5.0μmを形成
し、そのテルル化カドミウム膜上に硫化カドミウム薄膜
を実施例1の手法で形成し、更に酸化インジウムを主体
とする透明導電膜を形成し、続いて酸化シリコン薄膜を
セル封仕用に形成し、硫化カドミウム/テルル化カドミ
ウム構造の光電変換素子を作製した。その結果、開放電
圧0.77V、短絡電流密度24.5mA/cm2変換
効率12.3%を示す光電変換素子が得られた。
Embodiment 17 A copper plate (10 cm square) having a thickness of 1 mm was used as a substrate for forming a thin film.
A 0 μm molybdenum film is formed, a cadmium telluride film is formed on the molybdenum film by a vapor deposition method to a thickness of 5.0 μm, and a cadmium sulfide thin film is formed on the cadmium telluride film by the method of Example 1. A transparent conductive film mainly composed of indium oxide was formed, and then a silicon oxide thin film was formed for cell sealing, thereby producing a photoelectric conversion element having a cadmium sulfide / cadmium telluride structure. As a result, a photoelectric conversion element having an open-circuit voltage of 0.77 V and a short-circuit current density of 24.5 mA / cm 2 having a conversion efficiency of 12.3% was obtained.

【0069】なお、この薄膜形成用基板としては鉄板、
アルミ板もしくはステンレス板でも同様に行えることが
確認されている。
The substrate for forming the thin film is an iron plate,
It has been confirmed that an aluminum plate or a stainless plate can be similarly used.

【0070】[0070]

【実施例18】薄膜形成用基板として、ソーダライムガ
ラス板を用いガラス上に蒸着法を用いてモリブデン膜を
形成し、モリブデン膜上の一部に4元蒸着法を用いて、
厚さ3.0μmのCuInxGa1-xSe2(0≦x≦
1)膜を形成する。CuInxGa 1-xSe2(0≦x≦
1)膜付基板を膜形成用基板とし、後は実施例1と同様
にして厚さ50nmの硫化カドミウム膜を形成する。硫
化カドミウム膜上にRFマグネトロンスパッタリング法
を用いて厚さ100nmの酸化亜鉛膜を形成する。酸化
亜鉛膜上にRFマグネトロンスパッタリング法を用いて
厚さ200nmの酸化インジウム膜を形成する。モリブ
デン膜上および酸化インジウム膜上に集電電極として、
銀電極を形成する。その結果、開放電圧0.55V、短
絡電流密度39.5mA/cm2、変換効率11.6%
を示す光電変換素子が得られた。
Embodiment 18 A soda lime moth was used as a thin film forming substrate.
A molybdenum film is deposited on glass using a lath plate by evaporation.
Formed on the molybdenum film using a quaternary vapor deposition method,
3.0 μm thick CuInxGa1-xSeTwo(0 ≦ x ≦
1) Form a film. CuInxGa 1-xSeTwo(0 ≦ x ≦
1) A substrate with a film is used as a substrate for film formation, and thereafter the same as in Example 1
To form a cadmium sulfide film having a thickness of 50 nm. Sulfuric acid
Magnetron sputtering on cadmium fluoride film
Is used to form a 100 nm-thick zinc oxide film. Oxidation
Using RF magnetron sputtering method on zinc film
An indium oxide film having a thickness of 200 nm is formed. Morib
As a current collecting electrode on the den film and the indium oxide film,
Form a silver electrode. As a result, the open circuit voltage is 0.55 V,
Fault current density 39.5 mA / cmTwo, Conversion efficiency 11.6%
Was obtained.

【0071】[0071]

【実施例19】薄膜形成用基板として、透明導電膜とし
て酸化インジウム膜を形成した1mm厚のポリイミド基
板を用いた以外は、実施例1と同様にして硫化カドミウ
ム薄膜を形成し、更にその上にテルル化カドミウムを形
成した後、裏面電極としてカーボン膜を形成し、硫化カ
ドミウム/テルル化カドミウム構造の光電変換素子を作
製した。その結果、開放電圧0.75V、短絡電流密度
25.5mA/cm2、変換効率12.2%を示す光電
変換素子が得られた。
Example 19 A cadmium sulfide thin film was formed in the same manner as in Example 1 except that a 1 mm-thick polyimide substrate having an indium oxide film formed thereon as a transparent conductive film was used as a thin film forming substrate. After forming cadmium telluride, a carbon film was formed as a back electrode, and a photoelectric conversion element having a cadmium sulfide / cadmium telluride structure was manufactured. As a result, a photoelectric conversion element having an open-circuit voltage of 0.75 V, a short-circuit current density of 25.5 mA / cm 2 , and a conversion efficiency of 12.2% was obtained.

【0072】なおポリイミド以外の樹脂フィルムを薄膜
形成用基板として用いた場合は薄膜形成用基板温度を低
下させる必要があるが、同様に光電変換素子を形成する
ことができた。
When a resin film other than polyimide was used as a substrate for forming a thin film, it was necessary to lower the temperature of the substrate for forming a thin film, but a photoelectric conversion element could be formed in the same manner.

【0073】[0073]

【実施例20】実施例1の製膜条件のうち、金属有機化
合物塗布基板の保持時間を10〜405秒へと変化させ
た以外は実施例1と同様にして硫化カドミウム薄膜を形
成した。その結果、得られた硫化カドミウム膜の膜厚は
20〜710nmであった。
Example 20 A cadmium sulfide thin film was formed in the same manner as in Example 1, except that the holding time of the metal organic compound coated substrate was changed to 10 to 405 seconds. As a result, the thickness of the obtained cadmium sulfide film was 20 to 710 nm.

【0074】該薄膜の膜中カーボン量について光電子分
光法を用いて分析した結果を図8に示す。図8から分か
るように、本膜の作製に際しては700nm以上の膜厚
になれば、膜中のカ−ボン量が極端に増大することが判
り、純度の高い硫化カドミウム薄膜を得るには700n
m以下の膜厚が望ましいことが判った。
FIG. 8 shows the results of analysis of the amount of carbon in the thin film using photoelectron spectroscopy. As can be seen from FIG. 8, it can be seen that when the film is formed to a thickness of 700 nm or more, the amount of carbon in the film is extremely increased.
It has been found that a film thickness of less than m is desirable.

【0075】また、図9に示す膜リークテストにより、
リーク電流を測定した。図9において、透明導電膜24
を設けたガラス基板23に形成した硫化カドミウム膜膜
25上に、硫化カドミウムとオーミックなコンタクトを
持たないAg電極26を形成する。Ag電極26間をプ
ローブ27より電流値を測定し、Ag電極間のリーク抵
抗を計算することにより硫化カドミウム膜膜の緻密さを
評価した。図10に膜リークテスト結果を膜厚に対する
抵抗値として示す。この結果、抵抗値は硫化カドミウム
膜膜が30nm以上では大きな抵抗値を示した。このこ
とから、硫化カドミウム膜膜厚が30nm以上であれ
ば、ピンホールがない良質な硫化カドミウム薄膜が形成
できることが確認された。さらには、50nm以上では
一定した大きな抵抗値を示し、より良質な硫化カドミウ
ム薄膜が形成できることが確認された。
The film leak test shown in FIG.
The leak current was measured. In FIG. 9, the transparent conductive film 24
An Ag electrode 26 having no ohmic contact with cadmium sulfide is formed on the cadmium sulfide film 25 formed on the glass substrate 23 provided with the above. The current value between the Ag electrodes 26 was measured by the probe 27, and the density of the cadmium sulfide film was evaluated by calculating the leak resistance between the Ag electrodes. FIG. 10 shows the results of the film leak test as resistance values with respect to the film thickness. As a result, the resistance was large when the cadmium sulfide film was 30 nm or more. From this, it was confirmed that when the cadmium sulfide film thickness was 30 nm or more, a good quality cadmium sulfide thin film without pinholes could be formed. Furthermore, it shows a constant large resistance value at 50 nm or more, and it has been confirmed that a higher quality cadmium sulfide thin film can be formed.

【0076】[0076]

【実施例21】金属有機化合物塗布基板温度を330℃
とし、薄膜形成用基板温度を100〜600℃とした以
外は実施例1と同様にして硫化カドミウム薄膜を形成し
た。形成した硫化カドミウム膜を実施例20と同様の方
法で、図9に示す膜リークテストにより評価した。図1
1に膜リークテスト結果を薄膜形成用基板温度に対する
抵抗値として示す。その結果、図11から分かるよう
に、電流値から算出した抵抗値は、硫化カドミウム薄膜
の作製に際しては薄膜形成用基板温度が300℃以上で
は一定した大きな抵抗値を示した。このことから、硫化
カドミウム薄膜の作製に際しては薄膜形成用基板温度が
300℃以上であれば、硫化カドミウム膜の緻密さが高
く高品質に形成できることが判った。
Embodiment 21 The temperature of the substrate coated with the metal organic compound was 330 ° C.
A cadmium sulfide thin film was formed in the same manner as in Example 1 except that the substrate temperature for forming a thin film was 100 to 600 ° C. The formed cadmium sulfide film was evaluated in the same manner as in Example 20 by a film leak test shown in FIG. FIG.
FIG. 1 shows the results of the film leak test as resistance values with respect to the temperature of the substrate for forming a thin film. As a result, as can be seen from FIG. 11, the resistance value calculated from the current value showed a constant large resistance value when the temperature of the thin film forming substrate was 300 ° C. or higher when the cadmium sulfide thin film was manufactured. From this, it has been found that when a cadmium sulfide thin film is prepared, if the substrate temperature for forming the thin film is 300 ° C. or higher, the cadmium sulfide film can be formed with high density and high quality.

【0077】[0077]

【実施例22】金属有機化合物塗布基板と薄膜形成用基
板の間隔を0〜50mmとした以外は実施例1と同様に
して硫化カドミウム薄膜を形成した。その結果、間隔の
大きさにより基板同士が接触することによる外観不良を
生じた。得られた硫化カドミウム膜の外観検査による良
品率を図12に示す。図12から分かるように本膜の作
製に際しては金属有機化合物塗布基板と薄膜形成用基板
の間隔を0.2mm以上とすれば不良を低減できる。
Example 22 A cadmium sulfide thin film was formed in the same manner as in Example 1 except that the distance between the substrate coated with the metal organic compound and the substrate for forming the thin film was 0 to 50 mm. As a result, poor appearance was caused by contact between the substrates due to the size of the gap. FIG. 12 shows the yield rate of the obtained cadmium sulfide film by an appearance inspection. As can be seen from FIG. 12, defects can be reduced when the distance between the metal organic compound coated substrate and the thin film forming substrate is set to 0.2 mm or more in the production of the present film.

【0078】[0078]

【実施例23】薄膜形成用基板として200nm膜圧の
酸化インジウム膜(ITO膜)を形成した1.1mm厚
のソーダライムガラスを大気中で予め450℃に加熱し
ておく。
Embodiment 23 A soda-lime glass having a thickness of 1.1 mm on which an indium oxide film (ITO film) having a thickness of 200 nm is formed as a substrate for forming a thin film is previously heated to 450 ° C. in the atmosphere.

【0079】有機金属化合物であるジメチルジチオカル
バミン酸カドミウムを内容積0.5リットルの流入口と
排出口を有した密閉できる金属容器内に100g入れ、
350℃で加熱する。流入口より350℃に加熱した窒
素ガスを1リットル/分の流量で金属容器に導入するこ
とにより、発生したジメチルジチオカルバミン酸カドミ
ウム蒸気を排出口から350℃に加熱した配管を用いて
薄膜形成基板上まで搬送し、薄膜形成用基板上に吹き付
ける。100秒間吹き付けることにより均一な硫化カド
ミウム薄膜が得られた。得られた膜のバンドギャップは
2.42eVに近い値を示し、本膜が硫化カドミウム膜
であることが判った。
100 g of cadmium dimethyldithiocarbamate, which is an organometallic compound, is placed in a sealable metal container having an inlet and an outlet having an inner volume of 0.5 liter,
Heat at 350 ° C. By introducing nitrogen gas heated to 350 ° C. from the inflow port into the metal container at a flow rate of 1 liter / minute, the generated cadmium dimethyldithiocarbamate vapor was discharged from the outlet port onto the thin film forming substrate using a pipe heated to 350 ° C. And sprayed on the substrate for thin film formation. By spraying for 100 seconds, a uniform cadmium sulfide thin film was obtained. The band gap of the obtained film showed a value close to 2.42 eV, and it was found that this film was a cadmium sulfide film.

【0080】なお、本実施例では金属有機化合物として
ジエチルジチオカルバミン酸カドミウム、ジメチルジチ
オカルマミン酸カドミウムなどを用いたが、他の金属メ
ルカプチド、金属のチオ酸塩、金属のジチオ酸塩、金属
のチオカルボナート塩、金属のジチオカルボナート塩、
金属のトリチオカルボナート塩、金属のチオカルバミン
酸塩もしくは金属のジチオカルバミン酸塩を用いること
も可能である。
In this example, cadmium diethyldithiocarbamate, cadmium dimethyldithiocarbamate, etc. were used as the metal organic compound. However, other metal mercaptides, metal thioates, metal dithioates, metal thiolates, etc. Carbonate salts, metal dithiocarbonate salts,
It is also possible to use metal trithiocarbonate, metal thiocarbamate or metal dithiocarbamate.

【0081】なお、本実施例23では金属有機化合物と
してジメチルジチオカルバミン酸カドミウムを用いたが
他の金属ジチオカルバミン酸塩あるいは、金属メルカプ
チド、金属のチオ酸塩、金属のジチオ酸塩、金属のチオ
カルボナート塩、金属のジチオカルボナート塩、金属の
トリチオカルボナート塩または金属のチオカルバミン酸
塩などを用いることも可能である。
In Example 23, cadmium dimethyldithiocarbamate was used as the metal organic compound, but other metal dithiocarbamates or metal mercaptides, metal thioates, metal dithioates, metal thiocarbonates It is also possible to use a salt, a metal dithiocarbonate, a metal trithiocarbonate or a metal thiocarbamate.

【0082】なお、本実施例ではI−III−VI2型カルコ
パイライトとしてCuInxGa1-xSe2を用いたが、
CuInxGa1-x2を用いることも可能である。
In this example, CuIn x Ga 1 -x Se 2 was used as the I-III-VI 2- type chalcopyrite.
It is also possible to use CuIn x Ga 1-x S 2 .

【0083】なお、本実施例では光電変換素子として太
陽電池を用いたが、センサーなどとしても用いることが
できる。
Although a solar cell is used as a photoelectric conversion element in this embodiment, it can be used as a sensor or the like.

【0084】[0084]

【発明の効果】以上のように本発明によれば、高品質の
金属硫化物薄膜を極めて容易に形成することができる。
As described above, according to the present invention, a high quality metal sulfide thin film can be formed very easily.

【0085】また、本発明の実施により、比較的低い加
熱温度で薄膜形成ができるので、ソーダライムガラス、
樹脂フィルムなどの低価格の薄膜形成用基板の使用が可
能となり、これにより光電変換素子の大幅な低コスト化
と設計自由度の拡大が可能となる。
Further, by implementing the present invention, a thin film can be formed at a relatively low heating temperature.
It is possible to use a low-cost substrate for forming a thin film such as a resin film, and thereby it is possible to significantly reduce the cost of the photoelectric conversion element and expand the degree of freedom in design.

【0086】さらに、大気中で短時間に大面積の製膜が
出来るので、高速・大量生産の手段として極めて有効で
ある。同時に、膜中に空隙がなく均一な膜質の薄膜を形
成できること等の効果が得られる。
Further, since a large-area film can be formed in a short time in the atmosphere, it is extremely effective as a means for high-speed and mass production. At the same time, effects such as the ability to form a thin film of uniform film quality without voids in the film are obtained.

【0087】また、本発明による化合物半導体薄膜の形
成技術を硫化カドミウム/テルル化カドミウム構造の薄
膜光電変換素子の作製に応用することにより、変換効率
を大幅に向上させることができ、同時に、環境汚染問題
で話題になっている重金属としてのカドミウム使用量に
関しても、従来の塗布・焼結法で作製された硫化カドミ
ウム/テルル化カドミウム光電変換素子に比べて大幅に
削減できる。
Further, by applying the technology for forming a compound semiconductor thin film according to the present invention to the production of a thin film photoelectric conversion device having a cadmium sulfide / cadmium telluride structure, the conversion efficiency can be greatly improved, and at the same time, environmental pollution is reduced. The amount of cadmium used as a heavy metal, which has become a topic of concern, can also be significantly reduced as compared with cadmium sulfide / cadmium telluride photoelectric conversion elements manufactured by a conventional coating / sintering method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における製膜法を示す図FIG. 1 is a diagram showing a film forming method according to an embodiment of the present invention.

【図2】本発明の他の実施例における製膜法を示す図FIG. 2 is a view showing a film forming method according to another embodiment of the present invention.

【図3】本発明の製膜法を用いて作製した硫化カドミウ
ム/テルル化カドミウム薄膜光電変換素子の構造図
FIG. 3 is a structural diagram of a cadmium sulfide / cadmium telluride thin-film photoelectric conversion element manufactured by using the film forming method of the present invention.

【図4】本発明の製膜法を用いて作製した硫化カドミウ
ム/テルル化カドミウム薄膜光電変換素子の電圧−電流
特性図
FIG. 4 is a voltage-current characteristic diagram of a cadmium sulfide / cadmium telluride thin-film photoelectric conversion device manufactured by using the film forming method of the present invention.

【図5】従来の塗布・焼結法で作製した硫化カドミウム
/テルル化カドミウム光電変換素子の構造図
FIG. 5 is a structural diagram of a cadmium sulfide / cadmium telluride photoelectric conversion element manufactured by a conventional coating / sintering method.

【図6】従来の塗布・焼結法で作製した硫化カドミウム
/テルル化カドミウム光電変換素子の電圧−電流特性図
FIG. 6 is a voltage-current characteristic diagram of a cadmium sulfide / cadmium telluride photoelectric conversion element manufactured by a conventional coating / sintering method.

【図7】金属有機化合物塗布基板の加熱温度と硫化カド
ミウム膜の製膜速度の関係図
FIG. 7 is a diagram showing the relationship between the heating temperature of the metal organic compound coated substrate and the deposition rate of the cadmium sulfide film.

【図8】硫化カドミウム膜厚と膜中カーボン量の関係図FIG. 8 is a diagram showing the relationship between cadmium sulfide film thickness and carbon content in the film.

【図9】膜リークテストの概要図FIG. 9 is a schematic diagram of a film leak test.

【図10】膜厚とリークテストによる抵抗値の関係図FIG. 10 is a relationship diagram between a film thickness and a resistance value obtained by a leak test.

【図11】薄膜形成用基板温度とリークテストによる抵
抗値の関係図
FIG. 11 is a diagram showing a relationship between a substrate temperature for forming a thin film and a resistance value obtained by a leak test.

【図12】金属有機化合物塗布基板と薄膜形成用基板の
間隔と良品率の関係図
FIG. 12 is a graph showing the relationship between the interval between the metal organic compound coated substrate and the thin film forming substrate and the yield rate.

【符号の説明】[Explanation of symbols]

1 金属有機化合物塗布基板 2 金属有機化合物 3 薄膜形成用基板 4 透明導電膜 5 スペーサー 6 ヒーター 7 流入口 8 排出口 9 金属容器 10 ヒーター 11 ガラス基板 12 硫化カドミウム 13 テルル化カドミウム 14 カーボン電極 15 AgIn電極 16 ガラス基板 17 酸化インジウム膜 18 硫化カドミウム 19 テルル化カドミウム 20 カーボン電極 21 AgIn電極 22 ガラス基板 23 ガラス基板 24 透明導電膜 25 硫化カドミウム膜 26 Ag電極 27 プローブ REFERENCE SIGNS LIST 1 Metal-organic compound coated substrate 2 Metal-organic compound 3 Thin film forming substrate 4 Transparent conductive film 5 Spacer 6 Heater 7 Inflow port 8 Outlet 9 Metal container 10 Heater 11 Glass substrate 12 Cadmium sulfide 13 Cadmium telluride 14 Carbon electrode 15 AgIn electrode Reference Signs List 16 glass substrate 17 indium oxide film 18 cadmium sulfide 19 cadmium telluride 20 carbon electrode 21 AgIn electrode 22 glass substrate 23 glass substrate 24 transparent conductive film 25 cadmium sulfide film 26 Ag electrode 27 probe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室園 幹夫 大阪府守口市松下町1番1号 松下電池工 業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Mikio Murosono 1-1 Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industry Co., Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】金属及び硫黄を少なくとも一つ以上含む金
属有機化合物を加熱し、この加熱により昇華、気化もし
くは蒸発した金属有機化合物を薄膜形成用基板に付着さ
せるとともに、付着した金属有機化合物を付着と同時に
もしくは付着後に熱分解させることにより金属の硫化物
薄膜を得ることを特徴とした化合物半導体薄膜の形成
法。
1. A metal-organic compound containing at least one metal and sulfur is heated, and the sublimated, vaporized or evaporated metal-organic compound is adhered to a substrate for forming a thin film by this heating, and the adhered metal-organic compound is adhered. A method for forming a compound semiconductor thin film, characterized in that a metal sulfide thin film is obtained by performing thermal decomposition simultaneously or after adhesion.
【請求項2】金属及び硫黄を少なくとも一つ以上含む金
属有機化合物を塗布した基板に所定の間隔を持って薄膜
形成用基板を配置し、前記塗布基板を所定の温度に加熱
し、加熱により昇華、気化もしくは蒸発した金属有機化
合物を所定の温度に加熱した薄膜形成用基板に付着させ
るとともに、付着した金属有機化合物を付着と同時にも
しくは付着後に熱分解させることにより金属の硫化物薄
膜を得ることを特徴とした化合物半導体薄膜の形成法。
2. A thin film forming substrate is disposed at a predetermined interval on a substrate coated with a metal organic compound containing at least one metal and sulfur, and the coated substrate is heated to a predetermined temperature, and sublimated by heating. A metal sulfide thin film of a metal is obtained by depositing the vaporized or evaporated metal organic compound on a thin film forming substrate heated to a predetermined temperature and simultaneously decomposing the deposited metal organic compound simultaneously or after the deposition. Characterized method of forming compound semiconductor thin film.
【請求項3】含まれる金属がカドミウム、亜鉛、銅、鉛
もしくは水銀である金属有機化合物を用いることを特徴
とする請求項2記載の化合物半導体薄膜の形成法。
3. The method for forming a compound semiconductor thin film according to claim 2, wherein a metal organic compound containing cadmium, zinc, copper, lead or mercury is used.
【請求項4】金属有機化合物が金属メルカプチド、金属
のチオ酸塩、金属のジチオ酸塩、金属のチオカルボナー
ト塩、金属のジチオカルボナート塩、金属のトリチオカ
ルボナート塩、金属のチオカルバミン酸塩もしくは金属
のジチオカルバミン酸塩であることを特徴とする請求項
2記載の化合物半導体薄膜の形成法。
4. The metal organic compound is a metal mercaptide, a metal thioate, a metal dithioate, a metal thiocarbonate, a metal dithiocarbonate, a metal trithiocarbonate, or a metal thiocarbamine. 3. The method for forming a compound semiconductor thin film according to claim 2, wherein the compound semiconductor is a dithiocarbamate or a metal dithiocarbamate.
【請求項5】金属有機化合物を塗布した基板の加熱温度
が100℃以上、600℃以下であることを特徴とする
請求項2記載の化合物半導体薄膜の形成法。
5. The method according to claim 2, wherein the heating temperature of the substrate coated with the metal organic compound is 100 ° C. or more and 600 ° C. or less.
【請求項6】薄膜形成用基板がガラス板、金属板もしく
は樹脂フィルムであることを特徴とする請求項2記載の
化合物半導体薄膜の形成法。
6. The method for forming a compound semiconductor thin film according to claim 2, wherein the thin film forming substrate is a glass plate, a metal plate or a resin film.
【請求項7】薄膜形成用基板温度が300℃以上である
ことを特徴とする請求項2記載の化合物半導体薄膜の形
成法。
7. The method for forming a compound semiconductor thin film according to claim 2, wherein the substrate temperature for forming the thin film is 300 ° C. or higher.
【請求項8】金属有機化合物を塗布した基板と薄膜形成
用基板の間隔が0.2mm以上であることを特徴とする
請求項2記載の化合物半導体薄膜の形成法。
8. The method for forming a compound semiconductor thin film according to claim 2, wherein a distance between the substrate coated with the metal organic compound and the substrate for forming the thin film is 0.2 mm or more.
【請求項9】金属の硫化物薄膜の膜厚が700nm以下
であることを特徴とする請求項2記載の化合物半導体薄
膜の形成法。
9. The method according to claim 2, wherein the thickness of the metal sulfide thin film is 700 nm or less.
【請求項10】金属及び硫黄を少なくとも一つ以上含む
金属有機化合物を加熱し、この加熱により昇華、気化も
しくは蒸発した金属有機化合物を薄膜形成用基板表面に
搬送し、薄膜形成用基板に付着させるとともに、付着し
た金属有機化合物を付着と同時にもしくは付着後に熱分
解させることにより金属の硫化物薄膜を得ることを特徴
とした化合物半導体薄膜の形成法。
10. A metal-organic compound containing at least one metal and sulfur is heated, and the sublimated, vaporized or evaporated metal-organic compound is conveyed to the surface of the substrate for thin film formation and adhered to the substrate for thin film formation by heating. A method for forming a compound semiconductor thin film, wherein a metal sulfide thin film is obtained by thermally decomposing the attached metal organic compound simultaneously with or after the attachment.
【請求項11】含まれる金属がカドミウム、亜鉛、銅、
鉛もしくは水銀である金属有機化合物を用いることを特
徴とする請求項10記載の化合物半導体薄膜の形成法。
11. The metal contained is cadmium, zinc, copper,
The method for forming a compound semiconductor thin film according to claim 10, wherein a metal organic compound which is lead or mercury is used.
【請求項12】金属有機化合物が金属メルカプチド、金
属のチオ酸塩、金属のジチオ酸塩、金属のチオカルボナ
ート塩、金属のジチオカルボナート塩、金属のトリチオ
カルボナート塩、金属のチオカルバミン酸塩もしくは金
属のジチオカルバミン酸塩であることを特徴とする請求
項10記載の化合物半導体薄膜の形成法。
12. The metal organic compound is a metal mercaptide, a metal thioate, a metal dithioate, a metal thiocarbonate, a metal dithiocarbonate, a metal trithiocarbonate, or a metal thiocarbamine. 11. The method for forming a compound semiconductor thin film according to claim 10, wherein the compound semiconductor is a metal salt or a metal dithiocarbamate.
【請求項13】金属有機化合物を塗布した基板の加熱温
度が100℃以上、600℃以下であることを特徴とす
る請求項10記載の化合物半導体薄膜の形成法。
13. The method according to claim 10, wherein the heating temperature of the substrate coated with the metal organic compound is 100 ° C. or more and 600 ° C. or less.
【請求項14】薄膜形成用基板温度が300℃以上であ
ることを特徴とする請求項10記載の化合物半導体薄膜
の形成法。
14. The method for forming a compound semiconductor thin film according to claim 10, wherein the substrate temperature for forming the thin film is 300 ° C. or higher.
【請求項15】請求項1、2あるいは10記載の化合物
半導体薄膜の形成法により形成した化合物半導体薄膜を
窓層として用いることを特徴とする光電変換素子。
15. A photoelectric conversion element, wherein a compound semiconductor thin film formed by the method for forming a compound semiconductor thin film according to claim 1, 2 or 3 is used as a window layer.
【請求項16】光電変換素子の光吸収層がテルル化カド
ミウム膜からなることを特徴とする請求項15記載の光
電変換素子。
16. The photoelectric conversion device according to claim 15, wherein the light absorption layer of the photoelectric conversion device is made of a cadmium telluride film.
【請求項17】光電変換素子の光吸収層がI−III−VI2
型カルコパイライトからなることを特徴とする請求項1
5記載の光電変換素子。
17. The light-absorbing layer of the photoelectric conversion element may be made of I-III-VI 2
2. The method according to claim 1, wherein the chalcopyrite is formed.
6. The photoelectric conversion element according to 5.
JP9014938A 1996-01-29 1997-01-29 Compound semiconductor thin film forming method and optoelectric transducer using the thin film Pending JPH104206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9014938A JPH104206A (en) 1996-01-29 1997-01-29 Compound semiconductor thin film forming method and optoelectric transducer using the thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-12550 1996-01-29
JP1255096 1996-01-29
JP9014938A JPH104206A (en) 1996-01-29 1997-01-29 Compound semiconductor thin film forming method and optoelectric transducer using the thin film

Publications (1)

Publication Number Publication Date
JPH104206A true JPH104206A (en) 1998-01-06

Family

ID=26348176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9014938A Pending JPH104206A (en) 1996-01-29 1997-01-29 Compound semiconductor thin film forming method and optoelectric transducer using the thin film

Country Status (1)

Country Link
JP (1) JPH104206A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776699A (en) * 1985-07-05 1988-10-11 Matsushita Electric Industrial Co., Ltd Optical measuring device
US6211043B1 (en) 1997-09-05 2001-04-03 Matsushita Battery Industrial Co., Ltd. Method of manufacturing a compound semiconductor thin film on a substrate
US6775026B1 (en) 1999-09-29 2004-08-10 Brother Kogyo Kabushiki Kaisha Internet facsimile system capable of data communication over the internet
JP2008518104A (en) * 2004-10-26 2008-05-29 アーエスエム インターナショナル エヌ ヴィ Method for depositing lead-containing oxide film
US9359198B2 (en) 2013-08-22 2016-06-07 Massachusetts Institute Of Technology Carrier-substrate adhesive system
US10046550B2 (en) 2013-08-22 2018-08-14 Massachusetts Institute Of Technology Carrier-substrate adhesive system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776699A (en) * 1985-07-05 1988-10-11 Matsushita Electric Industrial Co., Ltd Optical measuring device
US6211043B1 (en) 1997-09-05 2001-04-03 Matsushita Battery Industrial Co., Ltd. Method of manufacturing a compound semiconductor thin film on a substrate
US6775026B1 (en) 1999-09-29 2004-08-10 Brother Kogyo Kabushiki Kaisha Internet facsimile system capable of data communication over the internet
JP2008518104A (en) * 2004-10-26 2008-05-29 アーエスエム インターナショナル エヌ ヴィ Method for depositing lead-containing oxide film
US9359198B2 (en) 2013-08-22 2016-06-07 Massachusetts Institute Of Technology Carrier-substrate adhesive system
US10046550B2 (en) 2013-08-22 2018-08-14 Massachusetts Institute Of Technology Carrier-substrate adhesive system

Similar Documents

Publication Publication Date Title
US5920798A (en) Method of preparing a semiconductor layer for an optical transforming device
JP3221089B2 (en) Method of manufacturing pnCdTe / CdS thin film solar cell
US7605328B2 (en) Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
US8163090B2 (en) Methods structures and apparatus to provide group VIA and IA materials for solar cell absorber formation
Veluchamy et al. A pyrosol process to deposit large-area SnO2: F thin films and its use as a transparent conducting substrate for CdTe solar cells
JP3681870B2 (en) Method for producing compound semiconductor film and solar cell
WO2019218567A1 (en) Device and method for preparing organic ammonium metal halide film, and representation method
JPH104206A (en) Compound semiconductor thin film forming method and optoelectric transducer using the thin film
EP2402478B1 (en) Method of forming a conductive transparent oxide film.
JPH1045409A (en) Production of silicon-base fine particles and formation of thin film using produced silicon-base fine particles
JP2009021607A (en) Method for production of transparent conductive oxide coating
JP4997611B2 (en) Method for manufacturing thin film solar cell
JPH10229208A (en) Manufacture of compound semiconductor
JP2000004036A (en) Forming method of fine crystal semiconductor layer and photovoltaic element
JPH11121778A (en) Manufacture of compound semiconductor film and solar cell
JP2726323B2 (en) Thin-film solar cell fabrication method
CN108682747A (en) A kind of double heterojunction perovskite photoelectric device and preparation method thereof
WO1988003330A1 (en) Cadmium sulphide solar cells
CN112941479B (en) Method for adjusting thickness of silver layer by tin dioxide/silver/tin dioxide transparent conductive film and application
JP2001119046A (en) Substrate for photovoltaic device
CN108598266B (en) Perovskite photoelectric device based on tunneling effect and preparation method thereof
Chopra et al. Thin film deposition techniques
JPH10183374A (en) Production of semiconductor layer for photoelectric conversion element
CN116994957A (en) preparation method of p-type tellurium oxide film
JPH1131826A (en) Method for depositing cadmium sulfide and fabrication of photoelectric conversion element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308