JPH05290635A - Transparent conductive electrode and manufacture thereof - Google Patents
Transparent conductive electrode and manufacture thereofInfo
- Publication number
- JPH05290635A JPH05290635A JP4119865A JP11986592A JPH05290635A JP H05290635 A JPH05290635 A JP H05290635A JP 4119865 A JP4119865 A JP 4119865A JP 11986592 A JP11986592 A JP 11986592A JP H05290635 A JPH05290635 A JP H05290635A
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- concentration
- conductive electrode
- conductive film
- carrier concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Liquid Crystal (AREA)
- Photovoltaic Devices (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、イメ−ジセンサ、太陽
電池等の受光素子あるいは液晶等からなる表示素子等に
用いられる透明導電電極に係り、特に、比抵抗の低減を
図った透明導電電極及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive electrode used for an image sensor, a light receiving element such as a solar cell, a display element made of liquid crystal or the like, and more particularly to a transparent conductive electrode having a reduced specific resistance. And a manufacturing method thereof.
【0002】[0002]
【従来の技術】イメ−ジセンサ、太陽電池等の受光素子
や液晶等からなる表示素子においては、受光面側に透光
性で且つ導電性を有するいわゆる透明導電電極が用いら
れている。かかる透明導電電極は、電極としての機能を
果たすものであることから、できる限り比抵抗が低いこ
とが求められる。従来、このような透明導電電極の比抵
抗を低減する技術としては、例えば、透明導電電極を製
造する過程において、基板温度、酸素分圧(流量比)、
SnO2量等の製造条件を種々組み合わせることにより
低抵抗化を図るものがあった。2. Description of the Related Art In a light-receiving element such as an image sensor or a solar cell or a display element including a liquid crystal, a so-called transparent conductive electrode having a light-transmitting property and a conductive property is used on the light-receiving surface side. Since such a transparent conductive electrode fulfills a function as an electrode, it is required that the specific resistance be as low as possible. Conventionally, as a technique for reducing the specific resistance of such a transparent conductive electrode, for example, in the process of manufacturing the transparent conductive electrode, the substrate temperature, oxygen partial pressure (flow rate ratio),
There have been attempts to reduce the resistance by combining various manufacturing conditions such as the amount of SnO 2 .
【0003】図2乃至図7には、透明導電電極の代表的
なものとして公知・周知のITO(Indium Ti
n Oxide)の比抵抗が上述のような基板温度等の
製造条件を変えた場合、どの様に変化するかの一例が示
されている。すなわち、比抵抗を基板温度との関係でみ
ると、図2に示されるように基板温度が上昇するに従っ
て比抵抗は下がる傾向にあることが知られている。ま
た、酸素分圧との関係においては、図3に示されたよう
に、ある分圧値で最小となりその前後においては分圧値
の増大又は減少と共に比抵抗は増大する傾向にあること
が知られている(例えば、「Solar Cells」
vol.21(1987) p281、「真空」 v
ol.30 No.6(1987) p548等)。FIGS. 2 to 7 show known and well-known ITO (Indium Ti) as a typical transparent conductive electrode.
An example of how the specific resistance of (n oxide) changes when the manufacturing conditions such as the substrate temperature as described above is changed is shown. That is, when the specific resistance is viewed in relation to the substrate temperature, it is known that the specific resistance tends to decrease as the substrate temperature rises as shown in FIG. As for the relationship with the oxygen partial pressure, as shown in FIG. 3, it is known that the value becomes minimum at a certain partial pressure value, and before and after that, the specific resistance tends to increase as the partial pressure value increases or decreases. (Eg “Solar Cells”)
vol. 21 (1987) p281, "vacuum" v
ol. 30 No. 6 (1987) p548).
【0004】ここで、上述のように製造条件を変えた場
合において、透明導電電極をなす材料の比抵抗の変化に
直接大きな影響を与えているものには、主に、キャリア
濃度(n)と移動度(μ)であることが一般的によく知
られている。すなわち、理想的にはキャリア濃度が高く
且つ移動度が高ければ、比抵抗を低くすることができ
る。Here, when the manufacturing conditions are changed as described above, the carrier concentration (n) and the carrier concentration (n) mainly affect the change of the specific resistance of the material forming the transparent conductive electrode. It is generally well known that it is the mobility (μ). That is, ideally, if the carrier concentration is high and the mobility is high, the specific resistance can be lowered.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、現実に
はキャリア濃度と移動度とは相反する傾向となることが
多い。例えば、図4に示すように基板温度を上昇させた
場合、キャリア濃度は比較的大きく増加する(図4にお
いて実線で示された特性線参照)が、移動度の増加の割
合はキャリア濃度のそれに比してかなり小さい(図4に
おいて二点鎖線で示された特性線参照)。また、酸素分
圧との関係で言えば、図5に示されるように、酸素分圧
の増加の伴いキャリア濃度は減少する傾向にある(図5
において実線で示された特性線参照)が、移動度は逆に
増加する傾向にある(図5において二点鎖線で示された
特性線参照)。したがって、基板温度あるいは酸素分圧
の調整により比抵抗を低くしようとしても、ある程度の
値までは低くすることができるものの、その後、低下の
度合いは頭打ちとなり比抵抗の低減に限界が生じてしま
っていた。However, in reality, carrier concentration and mobility often tend to contradict each other. For example, when the substrate temperature is raised as shown in FIG. 4, the carrier concentration increases relatively greatly (see the characteristic line shown by the solid line in FIG. 4), but the rate of increase in mobility is the same as that of the carrier concentration. In comparison, it is considerably smaller (see the characteristic line indicated by the two-dot chain line in FIG. 4). Speaking of the relationship with the oxygen partial pressure, as shown in FIG. 5, the carrier concentration tends to decrease as the oxygen partial pressure increases (FIG. 5).
In FIG. 5, the mobility tends to increase conversely (see the characteristic line indicated by the solid line in FIG. 5) (see the characteristic line indicated by the two-dot chain line in FIG. 5). Therefore, even if the specific resistance is lowered by adjusting the substrate temperature or the oxygen partial pressure, the specific resistance can be lowered to a certain value, but thereafter, the degree of the decrease reaches the limit and the specific resistance is limited. It was
【0006】また、タ−ゲット中のSnO2量について
は、その増加に対してキャリア濃度は増加傾向にある
(図6において実線で示された特性線参照)が、移動度
は減少傾向にある(図6において二点鎖線で示された特
性線参照)。そして、この場合、SnO2の増加に対し
て比抵抗は、減少する傾向を示すが、基板温度等を変化
させた場合と同様にその変化は頭打ちとなり(図7参
照)、比抵抗の十分な低下が期待できないという問題が
あった。さらに、比抵抗を調節するために基板温度を上
げることは、透明導電膜と共に設けられる他の素子をも
熱することとなり、その物理的特性を劣化させることと
なるので、できる限り低温であることが望まれている。Regarding the amount of SnO 2 in the target, the carrier concentration tends to increase with the increase (see the characteristic line shown by the solid line in FIG. 6), but the mobility tends to decrease. (Refer to the characteristic line shown by the chain double-dashed line in FIG. 6). Then, in this case, the specific resistance tends to decrease with increasing SnO 2 , but the change reaches a peak as in the case where the substrate temperature and the like are changed (see FIG. 7), and the specific resistance is sufficient. There was a problem that the decline could not be expected. Furthermore, raising the substrate temperature to adjust the specific resistance also heats other elements provided together with the transparent conductive film, deteriorating the physical characteristics thereof, so the temperature should be as low as possible. Is desired.
【0007】本発明は上記実情に鑑みてなされたもの
で、キャリア濃度と移動度とが高く且つ基板温度を比較
的低温にして製造できる比抵抗の低い透明導電電極を提
供することにある。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a transparent conductive electrode having a high carrier concentration and mobility and a low specific resistance which can be manufactured at a relatively low substrate temperature.
【0008】[0008]
【課題を解決するための手段】上記問題点を解決するた
め請求項1記載の発明に係る透明導電電極は、二つの以
上の透明導電膜を積層してなる透明導電電極であって、
該積層方向で隣接する透明導電膜相互において、一方の
透明導電膜のキャリア濃度が他方の透明導電膜のキャリ
ア濃度に対して大となるように積層配置してなるなるも
のである。請求項2記載の発明に係る透明導電電極の製
造方法は、スパッタリングにより透明導電材料を着膜す
る透明導電膜の製造方法であって、スパッタリング中に
アルゴン(Ar)と酸素(O2)との混合ガスの流量を
調節して酸素分圧を第1の所定値に保持しつつ透明導電
材料を着膜する第1の着膜工程と、前記アルゴン(A
r)と酸素(O2)との混合ガスの流量を調整して酸素
分圧を前記第1の所定値より大きい第2の所定値の下、
前記第1の工程で着膜された透明導電材料の上にさらに
透明導電材料を着膜積層する第2の着膜工程と、を繰り
返して酸素分圧が互いに異なる透明導電膜を交互に積層
するようにしたものである。In order to solve the above problems, a transparent conductive electrode according to the invention of claim 1 is a transparent conductive electrode formed by laminating two or more transparent conductive films,
The transparent conductive films adjacent to each other in the stacking direction are stacked so that the carrier concentration of one transparent conductive film is higher than the carrier concentration of the other transparent conductive film. The method for producing a transparent conductive electrode according to the invention of claim 2 is a method for producing a transparent conductive film in which a transparent conductive material is deposited by sputtering, wherein argon (Ar) and oxygen (O 2 ) are used during sputtering. A first deposition step of depositing the transparent conductive material while adjusting the flow rate of the mixed gas to maintain the oxygen partial pressure at a first predetermined value;
r) and oxygen (O 2 ) mixed gas is adjusted to adjust the oxygen partial pressure to a second predetermined value higher than the first predetermined value,
By repeating the second film deposition step of further film-depositing the transparent conductive material on the transparent conductive material deposited in the first step, transparent conductive films having different oxygen partial pressures are alternately laminated. It was done like this.
【0009】[0009]
【作用】請求項1記載の発明に係る透明導電電極におい
ては、隣接する透明導電膜相互のキャリア濃度が相対的
に大小の関係となるように複数積層して構成してあるの
で、キャリア濃度が高い透明導電膜はキャリア生成層と
して作用する一方、キャリア濃度が低い透明導電膜にお
ていは移動度が高いのでキャリア輸送層として作用し、
結局、全体としてキャリア濃度及び移動度の両者を高く
保つことができ、それにより、従前に比して比抵抗の十
分低い透明導電電極となるものである。請求項2記載の
発明に係る透明導電電極の製造方法においては、酸素分
圧を大小二種類に設定しつつ、それぞれの酸素分圧の
下、透明導電材を着膜することによって、基板温度を極
端に上げることなくキャリア濃度が大小に異なる透明導
電膜を積層してなる透明導電電極を得ることができるも
のである。In the transparent conductive electrode according to the first aspect of the present invention, since the plurality of adjacent transparent conductive films are laminated so that the carrier concentrations thereof are relatively large or small, While the high transparent conductive film functions as a carrier generation layer, the transparent conductive film having a low carrier concentration has a high mobility and thus functions as a carrier transport layer.
In the end, both the carrier concentration and the mobility can be kept high as a whole, whereby a transparent conductive electrode having a sufficiently low specific resistance as compared with the prior art can be obtained. In the method for producing a transparent conductive electrode according to the second aspect of the present invention, the substrate temperature is controlled by setting the oxygen partial pressure to two types, large and small, and depositing the transparent conductive material under each oxygen partial pressure. It is possible to obtain a transparent conductive electrode in which transparent conductive films having different carrier concentrations are laminated without extremely increasing it.
【0010】[0010]
【実施例】以下、図1を参照しつつ、本発明に係る透明
導電電極及びその製造方法について説明する。ここで、
図1は本発明に係る透明導電電極の一実施例を示す縦断
面図である。この透明導電電極は、酸化インジウム・ス
ズ(以下、「ITO」と言う。)からなりキャリア濃度
が低い低濃度透明導電膜1と同じくITOからなりキャ
リア濃度が高い高濃度透明導電膜2とを交互に積層して
なるもので、本実施例においては、4つの低濃度透明導
電膜1の間に3つの高濃度透明導電膜2が積層配置され
ると共に、これら低濃度透明導電膜1と高濃度透明導電
膜2とは、ガラス基板3上に配されてなるものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A transparent conductive electrode and a method for manufacturing the same according to the present invention will be described below with reference to FIG. here,
FIG. 1 is a vertical sectional view showing an embodiment of the transparent conductive electrode according to the present invention. This transparent conductive electrode alternates between a low-concentration transparent conductive film 1 made of indium tin oxide (hereinafter referred to as “ITO”) and having a low carrier concentration, and a high-concentration transparent conductive film 2 made of ITO and having a high carrier concentration. In this embodiment, three high-concentration transparent conductive films 2 are laminated between four low-concentration transparent conductive films 1 and the low-concentration transparent conductive films 1 and the high-concentration transparent conductive films 1 are stacked. The transparent conductive film 2 is arranged on the glass substrate 3.
【0011】この透明導電電極の製造プロセスは、次述
する通りである。先ず、低濃度透明導電膜1及び高濃度
透明導電膜2の両者に共通する基本的な製造プロセスに
ついて言えば、これら低濃度透明導電膜1及び高濃度透
明導電膜2は、DCマグネトロンスパッタリング法によ
り、基板温度250乃至300℃、スパッタ圧力1乃至
10mTorr、DCパワ−100乃至300W及びS
nO2組成比0乃至30%の諸条件の下に、ITO膜を
着膜することに形成される。The manufacturing process of this transparent conductive electrode is as described below. First, regarding the basic manufacturing process common to both the low-concentration transparent conductive film 1 and the high-concentration transparent conductive film 2, the low-concentration transparent conductive film 1 and the high-concentration transparent conductive film 2 are formed by a DC magnetron sputtering method. Substrate temperature 250 to 300 ° C., sputtering pressure 1 to 10 mTorr, DC power 100 to 300 W and S
It is formed by depositing an ITO film under various conditions of nO 2 composition ratio of 0 to 30%.
【0012】そして、低濃度透明導電膜1とするか高濃
度透明導電膜2とするかは、Ar(アルゴン)に対する
O2の分圧(流量比)又はタ−ゲット中のIn2O3に対
するSnO2組成比の着膜条件を変えることにより達成
されるものである。具体的にはキャリア濃度が高く移動
度が小さい高濃度透明導電膜2を形成する場合、O2の
分圧を2%以下にするか、または、SnO2組成比を1
0wt%以上に保ちつつ上述したようにしてITOを着
膜すればよい。一方、キャリア濃度が低く移動度が高い
低濃度透明導電膜1を形成する場合には、O2の分圧を
6〜7%にするか、または、SnO2組成比を5wt%
以下に保つと好適である。このような条件の下に着膜作
業を行うには、例えば、スパッタしながらAr/O2ガ
ス流量を変化させてO2分圧を制御するようにしたり、
チャンバ内にSnO2組成の異なるタ−ゲットをそれぞ
れ取り付けて、基板ホルダを回転させることによって低
濃度透明導電膜1と高濃度透明導電膜2とを交互に着膜
させるとよい。尚、膜厚としては、10乃至500オン
グストロ−ム程度の範囲において、任意に設定できる。Whether the low-concentration transparent conductive film 1 or the high-concentration transparent conductive film 2 is used depends on the partial pressure (flow rate ratio) of O 2 with respect to Ar (argon) or In 2 O 3 in the target. This is achieved by changing the film forming conditions of the SnO 2 composition ratio. Specifically, when forming a high-concentration transparent conductive film 2 having a high carrier concentration and a low mobility, the partial pressure of O 2 is set to 2% or less, or the SnO 2 composition ratio is set to 1
The ITO film may be deposited as described above while maintaining the content at 0 wt% or more. On the other hand, when forming the low-concentration transparent conductive film 1 having a low carrier concentration and a high mobility, the partial pressure of O 2 is set to 6 to 7%, or the SnO 2 composition ratio is set to 5 wt%.
It is preferable to keep below. To perform the film deposition operation under such conditions, for example, the flow rate of Ar / O 2 gas may be changed while sputtering to control the O 2 partial pressure,
Targets having different SnO 2 compositions may be mounted in the chamber, and the low-concentration transparent conductive film 1 and the high-concentration transparent conductive film 2 may be alternately deposited by rotating the substrate holder. The film thickness can be arbitrarily set within the range of about 10 to 500 angstroms.
【0013】本実施例においては、透明導電電極をキャ
リア濃度が低く移動度が高い低濃度透明導電膜1とキャ
リア濃度が高く移動度が低い高濃度透明導電膜2とを交
互に複数積層してなるものとしたことにより、キャリア
濃度が高い高濃度透明導電膜2はキャリア生成層として
作用する一方、移動度が高い低濃度透明導電膜1はキャ
リア輸送層として作用する結果、全体としてキャリア数
が多く且つ移動度が速くなり、比抵抗が低下することと
なるものである。In this embodiment, a plurality of transparent conductive electrodes are alternately laminated with a low-concentration transparent conductive film 1 having a low carrier concentration and a high mobility and a high-concentration transparent conductive film 2 having a high carrier concentration and a low mobility. By doing so, the high-concentration transparent conductive film 2 having a high carrier concentration acts as a carrier generation layer, while the low-concentration transparent conductive film 1 having a high mobility acts as a carrier transport layer. A large number of them are used, the mobility is increased, and the specific resistance is lowered.
【0014】[0014]
【発明の効果】以上、述べたように、請求項1記載の発
明に係る透明導電電極においては、隣接する透明導電膜
相互のキャリア濃度が相対的に大小の関係となるように
複数積層する構成とすることにより、キャリア濃度が高
い透明導電膜はキャリア生成層として作用する一方、キ
ャリア濃度が低い透明導電膜におていは移動度が高いの
でキャリア輸送層として作用し、結局、全体としてキャ
リア濃度及び移動度の両者を高く保つことができ、それ
により、従前に比して比抵抗の十分低い透明導電電極を
得ることができるという効果を奏するものである。請求
項2記載の発明に係る透明導電電極の製造方法において
は、酸素分圧を大小二種類に設定しつつ、それぞれの酸
素分圧の下、透明導電材を着膜することによって、キャ
リア濃度が大小に異なる透明導電膜が積層されてなる透
明導電電極が形成されるようにしたので、基板温度を極
端に上げることなく全体としてキャリア濃度が高く且つ
移動度が高い明導電電極を得ることができるという効果
を奏するものである。As described above, in the transparent conductive electrode according to the invention described in claim 1, a plurality of layers are laminated so that the carrier concentrations of the adjacent transparent conductive films are relatively large and small. As a result, the transparent conductive film having a high carrier concentration acts as a carrier generation layer, while the transparent conductive film having a low carrier concentration has a high mobility and thus acts as a carrier transport layer. And the mobility can be kept high, whereby a transparent conductive electrode having a sufficiently low specific resistance as compared with the prior art can be obtained. In the method for producing a transparent conductive electrode according to the second aspect of the present invention, while the oxygen partial pressures are set to two types, large and small, the transparent conductive material is deposited under each of the oxygen partial pressures, so that the carrier concentration is increased. Since the transparent conductive electrode is formed by laminating transparent conductive films of different sizes, it is possible to obtain a bright conductive electrode having a high carrier concentration and a high mobility as a whole without extremely raising the substrate temperature. That is the effect.
【図1】 本発明に係る透明導電電極の実施例における
縦断面図である。FIG. 1 is a vertical sectional view of an example of a transparent conductive electrode according to the present invention.
【図2】 基板温度と比抵抗の関係を示す特性線図であ
る。FIG. 2 is a characteristic diagram showing a relationship between substrate temperature and specific resistance.
【図3】 酸素分圧と比抵抗の関係を示す特性線図であ
る。FIG. 3 is a characteristic diagram showing the relationship between oxygen partial pressure and specific resistance.
【図4】 基板温度とキャリア濃度との関係を示す特性
線図である。FIG. 4 is a characteristic diagram showing the relationship between substrate temperature and carrier concentration.
【図5】 酸素分圧とキャリア濃度及び移動度との関係
を示す特性線図である。FIG. 5 is a characteristic diagram showing the relationship between oxygen partial pressure, carrier concentration and mobility.
【図6】 SnO2の組成比とキャリア濃度及び移動度
との関係を示す特性線図である。FIG. 6 is a characteristic diagram showing the relationship between the composition ratio of SnO 2 and the carrier concentration and mobility.
【図7】 SnO2の組成比と比抵抗との関係を示す特
性線図である。FIG. 7 is a characteristic diagram showing the relationship between the composition ratio of SnO 2 and the specific resistance.
1…低濃度透明導電膜、 2…高濃度透明導電膜 1 ... Low concentration transparent conductive film, 2 ... High concentration transparent conductive film
Claims (2)
明導電電極であって、該積層方向で隣接する透明導電膜
相互において、一方の透明導電膜のキャリア濃度が他方
の透明導電膜のキャリア濃度に対して大となるように積
層配置してなることを特徴とする透明導電電極。1. A transparent conductive electrode formed by stacking two or more transparent conductive films, wherein one transparent conductive film has a carrier concentration of another transparent conductive film which is adjacent to each other in the stacking direction. A transparent conductive electrode, wherein the transparent conductive electrodes are laminated and arranged so as to have a large carrier concentration.
膜する透明導電電極の製造方法であって、スパッタリン
グ中にアルゴン(Ar)と酸素(O2)との混合ガスの
流量を調節して酸素分圧を第1の所定値に保持しつつ透
明導電材料を着膜する第1の着膜工程と、前記アルゴン
(Ar)と酸素(O2)との混合ガスの流量を調整して
酸素分圧を前記第1の所定値より大きい第2の所定値に
保持し、前記第1の工程で着膜された透明導電材料の上
にさらに透明導電材料を着膜積層する第2の着膜工程
と、を繰り返し、酸素分圧が互いに異なる透明導電膜を
交互に積層するようにしたことを特徴とする透明導電電
極の製造方法。2. A method for producing a transparent conductive electrode in which a transparent conductive material is deposited by sputtering, wherein the flow rate of a mixed gas of argon (Ar) and oxygen (O 2 ) is adjusted during sputtering to obtain an oxygen partial pressure. Is held at a first predetermined value while a transparent conductive material is deposited, and the oxygen partial pressure is adjusted by adjusting the flow rate of the mixed gas of argon (Ar) and oxygen (O 2 ). A second film deposition step of holding a second predetermined value larger than the first predetermined value, and further stacking a transparent conductive material on the transparent conductive material deposited in the first step; The method for producing a transparent conductive electrode is characterized in that transparent conductive films having different oxygen partial pressures are alternately laminated by repeating the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119865A JPH05290635A (en) | 1992-04-15 | 1992-04-15 | Transparent conductive electrode and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119865A JPH05290635A (en) | 1992-04-15 | 1992-04-15 | Transparent conductive electrode and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05290635A true JPH05290635A (en) | 1993-11-05 |
Family
ID=14772189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4119865A Pending JPH05290635A (en) | 1992-04-15 | 1992-04-15 | Transparent conductive electrode and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05290635A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001026161A1 (en) * | 1999-10-05 | 2001-04-12 | Matsushita Battery Industrial Co., Ltd. | Compound semiconductor solar cell and method of manufacture thereof |
JP2007073965A (en) * | 2005-09-08 | 2007-03-22 | Samsung Electro Mech Co Ltd | Nitride semiconductor light emitting device and method for manufacturing the same |
JP2014175441A (en) * | 2013-03-08 | 2014-09-22 | Kaneka Corp | Crystal silicon-based solar battery, and method for manufacturing the same |
JP2018139329A (en) * | 2018-06-11 | 2018-09-06 | 株式会社カネカ | Manufacturing method for crystalline silicon-based solar battery |
CN113224182A (en) * | 2021-05-28 | 2021-08-06 | 中威新能源(成都)有限公司 | Heterojunction solar cell and preparation method thereof |
-
1992
- 1992-04-15 JP JP4119865A patent/JPH05290635A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001026161A1 (en) * | 1999-10-05 | 2001-04-12 | Matsushita Battery Industrial Co., Ltd. | Compound semiconductor solar cell and method of manufacture thereof |
JP2007073965A (en) * | 2005-09-08 | 2007-03-22 | Samsung Electro Mech Co Ltd | Nitride semiconductor light emitting device and method for manufacturing the same |
JP2014175441A (en) * | 2013-03-08 | 2014-09-22 | Kaneka Corp | Crystal silicon-based solar battery, and method for manufacturing the same |
JP2018139329A (en) * | 2018-06-11 | 2018-09-06 | 株式会社カネカ | Manufacturing method for crystalline silicon-based solar battery |
CN113224182A (en) * | 2021-05-28 | 2021-08-06 | 中威新能源(成都)有限公司 | Heterojunction solar cell and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090269588A1 (en) | Transparent conductive film and method of producing transparent conductive film | |
KR101700884B1 (en) | Maganese tin oxide Transparent Conducting Oxide and transparent conductive film using the same and method for fabricating transparent conductive film | |
JPH05290635A (en) | Transparent conductive electrode and manufacture thereof | |
US20240215407A1 (en) | Display panel and manufacturing method thereof | |
JPH0784654B2 (en) | Method for manufacturing sputtering target for ITO transparent conductive film | |
EP0047651B1 (en) | Method of producing image sensor | |
JP2001135149A (en) | Zinc oxide-based transparent electrode | |
JP3837903B2 (en) | Transparent conductive film and manufacturing method thereof | |
JPH06103817A (en) | Conductive thin film | |
JP2003027216A (en) | Method and apparatus for producing transparent electrically conductive film | |
US11930649B2 (en) | Transparent top electrode composite film for organic optoelectronic devices and its preparation method | |
JPH0765167B2 (en) | Sputtering target for ITO transparent conductive film | |
JP2686170B2 (en) | Thin film EL element | |
JP3193722B2 (en) | Photoconductivity reduction of light blocking cadmium telluride film using nitrogen blend | |
JPH09118544A (en) | Transparent electrically conductive film, its production and material for production | |
JPH07224374A (en) | Method for making tin doped indium oxide film high resistant | |
JPH07224383A (en) | Method for making indium-tin oxide film high in resistance | |
KR20080006812A (en) | Bi-layer ito film deposition method and bi-layer ito film prepared by the same | |
JPH03199373A (en) | Sputtering target for forming electrically conductive transparent ito film | |
KR101807957B1 (en) | Highly conductive flexible transparent electrodes based oxide and method for manufacturing thereof | |
JPH02213090A (en) | Thin film el panel and manufacture thereof | |
JP3006749B2 (en) | Spatial light modulator | |
JP2005217067A (en) | Solar cell and its manufacturing method | |
JPH05346586A (en) | Ito film and its production | |
JPS6260798B2 (en) |