JP5913809B2 - Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell - Google Patents

Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell Download PDF

Info

Publication number
JP5913809B2
JP5913809B2 JP2011000779A JP2011000779A JP5913809B2 JP 5913809 B2 JP5913809 B2 JP 5913809B2 JP 2011000779 A JP2011000779 A JP 2011000779A JP 2011000779 A JP2011000779 A JP 2011000779A JP 5913809 B2 JP5913809 B2 JP 5913809B2
Authority
JP
Japan
Prior art keywords
layer
transparent
conductive layer
transparent conductive
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011000779A
Other languages
Japanese (ja)
Other versions
JP2012142500A (en
Inventor
永春 羅
永春 羅
豪志 武藤
豪志 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2011000779A priority Critical patent/JP5913809B2/en
Priority to CN201110394002XA priority patent/CN102593194A/en
Priority to KR1020110127777A priority patent/KR101897278B1/en
Priority to TW100149395A priority patent/TWI533461B/en
Publication of JP2012142500A publication Critical patent/JP2012142500A/en
Application granted granted Critical
Publication of JP5913809B2 publication Critical patent/JP5913809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、透明電極基板、その製造方法及び該透明電極基板を有する太陽電池に関する。さらに詳しくは、本発明は、光線透過率が高い透明電極基板、その製造方法、該透明電極基板を有する電子デバイス及び太陽電池に関する。   The present invention relates to a transparent electrode substrate, a method for producing the same, and a solar cell having the transparent electrode substrate. More specifically, the present invention relates to a transparent electrode substrate having a high light transmittance, a method for producing the same, an electronic device having the transparent electrode substrate, and a solar cell.

近年、有機エレクトロルミネッセンス(有機EL)、有機太陽電池を含めた各種太陽電池、タッチパネルや携帯電話、電子ペーパー等において、透明導電層を有する透明電極基板が盛んに検討されている。
ガラス基板等の基板上に透明導電層が形成された透明電極基板は、太陽電池、有機EL素子等の電子デバイスの電極として一般的に使用されている。しかしながら、通常のスズドープ酸化インジウム(以下、ITOという)等の金属酸化物層を透明導電層として用いた透明電極基板は、ITOの体積抵抗率が高く、表面抵抗率が低くない。たとえば、5Ω/□程度以下の表面抵抗率を有する透明導電基板が求められる。
このような要求に対して、透明導電層よりも体積抵抗率の極めて低い金属材料層を補助電極として用いる透明電極基板が検討されている。
例えば、特許文献1には、基板上に、透明酸化物層、金属層、透明酸化物層がこの順に積層されてなる透明導電膜付き基体が開示されている。しかしながら、このような構成では、光線透過率が低く、薄膜デバイスの透明電極基板としては実用的でない。また、金属層が透明酸化物層の全面に積層されているため、金属層の劣化により当該透明導電膜付き基体を用いた薄膜デバイスの耐久性が問題となる場合がある。
また、特許文献2には、基板上に形成されたITOからなる第1電極上に、金属からなるストライプ状またはメッシュ状の補助電極層が形成され、その上に発光領域を画定する発光層とその上に形成された第2電極を含む電界発光パネルが開示されている。
さらに、特許文献3には、透明基板と、同透明基板上に順不同に積層された金属薄膜からなるメッシュ電極および透明電極と、前記メッシュ電極および透明電極の上に形成された光電変換層と、前記光電変換層上に形成された対向電極とを有する有機薄膜太陽電池が開示されている。
しかしながら、このような構造では、金属の腐食による劣化等の問題が起こる可能性がある。
特許文献4には、透明な基材シートの少なくとも一方の面に卑金属または卑金属からなる合金製の導電性金属メッシュ層と導電性高分子層からなる透明導電性層を有する透明導電性フィルムが、特許文献5には、透明支持体上に少なくとも一種の金属により形成されたメッシュ状の導電層を有する透明導電膜であって、該導電層の上にマイグレーション防止剤を含有する透明導電層が設置されている透明導電膜が、特許文献6には、基板上に透明導電膜が形成されてなる色素増感型太陽電池用電極において、該基板と透明導電膜との間に、該透明導電膜よりも抵抗値の低い導電体を設けた色素増感型太陽電池用電極が開示されている。
しかしながら、太陽電池、有機EL素子等の電子デバイスの電極として、透明電極基板には、透明性や導電性並びに耐久性の更なる向上が求められている。
In recent years, transparent electrode substrates having a transparent conductive layer have been actively studied in various types of solar cells including organic electroluminescence (organic EL) and organic solar cells, touch panels, mobile phones, and electronic paper.
A transparent electrode substrate in which a transparent conductive layer is formed on a substrate such as a glass substrate is generally used as an electrode for electronic devices such as solar cells and organic EL elements. However, a transparent electrode substrate using a normal metal oxide layer such as tin-doped indium oxide (hereinafter referred to as ITO) as a transparent conductive layer has a high volume resistivity of ITO and a low surface resistivity. For example, a transparent conductive substrate having a surface resistivity of about 5Ω / □ or less is required.
In response to such a demand, a transparent electrode substrate using a metal material layer having a volume resistivity much lower than that of the transparent conductive layer as an auxiliary electrode has been studied.
For example, Patent Document 1 discloses a substrate with a transparent conductive film in which a transparent oxide layer, a metal layer, and a transparent oxide layer are laminated in this order on a substrate. However, such a configuration has low light transmittance and is not practical as a transparent electrode substrate of a thin film device. Moreover, since the metal layer is laminated | stacked on the whole surface of a transparent oxide layer, durability of the thin film device using the said base | substrate with a transparent conductive film may pose a problem by deterioration of a metal layer.
Further, in Patent Document 2, a stripe-shaped or mesh-shaped auxiliary electrode layer made of metal is formed on a first electrode made of ITO formed on a substrate, and a light-emitting layer for defining a light-emitting region thereon An electroluminescent panel including a second electrode formed thereon is disclosed.
Further, in Patent Document 3, a transparent substrate, a mesh electrode and a transparent electrode made of a metal thin film laminated in random order on the transparent substrate, a photoelectric conversion layer formed on the mesh electrode and the transparent electrode, An organic thin film solar cell having a counter electrode formed on the photoelectric conversion layer is disclosed.
However, such a structure may cause problems such as deterioration due to metal corrosion.
In Patent Document 4, a transparent conductive film having a transparent conductive layer made of a conductive metal mesh layer made of a base metal or an alloy made of a base metal and a conductive polymer layer on at least one surface of a transparent base sheet, Patent Document 5 discloses a transparent conductive film having a mesh-like conductive layer formed of at least one metal on a transparent support, and a transparent conductive layer containing a migration inhibitor is disposed on the conductive layer. In the electrode for dye-sensitized solar cell in which a transparent conductive film is formed on a substrate in Patent Document 6, the transparent conductive film is interposed between the substrate and the transparent conductive film. An electrode for a dye-sensitized solar cell provided with a conductor having a lower resistance value is disclosed.
However, as an electrode of an electronic device such as a solar cell or an organic EL element, the transparent electrode substrate is required to further improve transparency, conductivity, and durability.

特開平10−241464号公報Japanese Patent Laid-Open No. 10-241464 特開2008−103305号公報JP 2008-103305 A 特開2010−157681号公報JP 2010-157681 A 特開2009−081104号公報JP 2009-081104 A 特開2009−146678号公報JP 2009-146678 A 特開2004−296669号公報JP 2004-296669 A

本発明はこのような事情に鑑みてなされたもので、本発明の目的は、上記のような問題を解決した、光線透過率が高く、導電性優れた透明電極基板、その製造方法および該透明電極基板を有する電子デバイスを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to solve the above-described problems, a transparent electrode substrate having high light transmittance and excellent electrical conductivity, a method for producing the same, and the transparent An object of the present invention is to provide an electronic device having an electrode substrate.

上記のような問題を解決するため、本発明者らは鋭意検討した結果、下記のような層構成とすることにより、上記問題を解決することができることを見出し、本発明を完成させた。
すなわち、本発明は、下記
(1)透明基材の一方の面に、第1の透明導電層を備え、該第1の透明導電層上に導電性金属メッシュ層を備え、導電性金属メッシュ層を内部に埋設した第2の透明導電層が積層されてなる透明電極基板であって、前記第1の透明導電層及び前記第2の透明導電層の全体の厚みを100%とした場合、前記導電性金属メッシュ層が、前記第1の透明導電層及び前記第2の透明導電層の全体の厚みの透明基材側から50〜99%の距離の範囲の位置に埋設されてなり、
前記導電性金属メッシュ層の厚みが10〜50nmであり、
前記導電性金属メッシュ層を形成させるための材料が、銀単体の金属、または銀を主体とする合金を含み、
前記第1の透明導電層及び前記第2の透明導電層が、酸化インジウムを主成分とする層であり、
前記第1の透明導電層の厚みが30〜500nmであり、
前記第2の透明導電層の厚みが20〜100nmであり、
前記第2の透明導電層の厚みは、前記第1の透明導電層の厚みよりも薄い、透明電極基板、
2)前記導電性金属メッシュ層の開口部の開口率が75%以上である上記(1)に記載の透明電極基板、
3)透明基材の一方の面に第1の透明導電層を形成させ、同透明導電層上に導電性金属層を形成させ、同導電性金属層をフォットレジストパターニング処理することにより導電性金属メッシュ層を形成させ、同金属メッシュ層の面に第2の透明導電層を形成させて同導電性金属メッシュ層を同透明導電層により被覆する際、前記第1の透明導電層及び前記第2の透明導電層の全体の厚みを100%とした場合、前記導電性金属メッシュ層が前記第1の透明導電層及び前記第2の透明導電層の全体の厚みの透明基材側から50〜99%の距離の範囲の位置に埋設されてなり、かつ
前記導電性金属メッシュ層の厚みが10〜50nmであり、
前記導電性金属メッシュ層を形成させるための材料が、銀単体の金属、または銀を主体とする合金を含み、
前記第1の透明導電層及び前記第2の透明導電層が、酸化インジウムを主成分とする層であり、
前記第1の透明導電層の厚みが30〜500nmであり、
前記第2の透明導電層の厚みが20〜100nmであり、
前記第2の透明導電層の厚みは、前記第1の透明導電層の厚みよりも薄い、ことを特徴とする透明電極基板の製造方法、
4)前記第1の透明導電層及び前記第2の透明導電層が同じ材料である上記(3)に記載の製造方法、
5)前記第1の透明導電層の厚みが30〜300nm、前記第2の透明導電層の厚みが25〜50nmである上記(3)または(4)に記載の製造方法。
(6)上記(1)または(2)に記載の透明電極基板を有することを特徴とする電子デバイスおよび
7)上記(1)または(2)に記載の透明電極基板を有することを特徴とする太陽電池を提供する。
In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have found that the above-mentioned problems can be solved by using the following layer structure, and have completed the present invention.
That is, the present invention includes the following (1) a first transparent conductive layer on one surface of a transparent substrate , a conductive metal mesh layer on the first transparent conductive layer, and a conductive metal mesh layer. Is a transparent electrode substrate in which a second transparent conductive layer embedded therein is laminated, and the total thickness of the first transparent conductive layer and the second transparent conductive layer is 100%, conductive metal mesh layer, Ri Na is embedded in a position ranging from the transparent substrate side of the overall thickness 50 to 99% of the distance of the first transparent conductive layer and the second transparent conductive layer,
The conductive metal mesh layer has a thickness of 10 to 50 nm,
The material for forming the conductive metal mesh layer includes a metal of silver alone or an alloy mainly composed of silver,
The first transparent conductive layer and the second transparent conductive layer are layers mainly composed of indium oxide,
The thickness of the first transparent conductive layer is 30 to 500 nm,
The thickness of the second transparent conductive layer is 20 to 100 nm,
The thickness of the second transparent conductive layer is thinner than the thickness of the first transparent conductive layer, a transparent electrode substrate,
( 2 ) The transparent electrode substrate according to (1 ), wherein an opening ratio of the opening of the conductive metal mesh layer is 75% or more,
( 3 ) The first transparent conductive layer is formed on one surface of the transparent substrate, the conductive metal layer is formed on the transparent conductive layer, and the conductive metal layer is subjected to a photoresist resist patterning process so as to be conductive. When the metal mesh layer is formed, the second transparent conductive layer is formed on the surface of the metal mesh layer, and the conductive metal mesh layer is covered with the transparent conductive layer, the first transparent conductive layer and the first transparent conductive layer When the total thickness of the transparent conductive layer 2 is 100%, the conductive metal mesh layer is 50 to 50% from the transparent base material side of the total thickness of the first transparent conductive layer and the second transparent conductive layer. It is embedded in a position in the range of 99% of the distance Ri Na and and
The conductive metal mesh layer has a thickness of 10 to 50 nm,
The material for forming the conductive metal mesh layer includes a metal of silver alone or an alloy mainly composed of silver,
The first transparent conductive layer and the second transparent conductive layer are layers mainly composed of indium oxide,
The thickness of the first transparent conductive layer is 30 to 500 nm,
The thickness of the second transparent conductive layer is 20 to 100 nm,
The method for producing a transparent electrode substrate , wherein the thickness of the second transparent conductive layer is thinner than the thickness of the first transparent conductive layer ,
( 4 ) The manufacturing method according to ( 3), wherein the first transparent conductive layer and the second transparent conductive layer are made of the same material.
( 5 ) The manufacturing method according to (3) or (4) , wherein the thickness of the first transparent conductive layer is 30 to 300 nm, and the thickness of the second transparent conductive layer is 25 to 50 nm.
(6) and wherein a transparent electrode substrate according to the above (1) or electronic devices and (7) and having a transparent electrode substrate according to (2) above (1) or (2) Provide solar cells.

本発明の透明電極基板は、光線透過率が高く維持されるとともに、表面抵抗率が低く、導電性に優れている。また、本発明の透明電極基板を使用した太陽電池においては高い光電変換効率が得られる。   The transparent electrode substrate of the present invention maintains a high light transmittance, has a low surface resistivity, and is excellent in conductivity. Moreover, high photoelectric conversion efficiency is obtained in the solar cell using the transparent electrode substrate of the present invention.

本発明の透明電極基板を使用した太陽電池の一例である有機薄膜太陽電池の断面を示す模式図である。It is a schematic diagram which shows the cross section of the organic thin-film solar cell which is an example of the solar cell using the transparent electrode substrate of this invention. 導電性金属メッシュ層形状の一例を示す模式図である。It is a schematic diagram which shows an example of an electroconductive metal mesh layer shape.

以下、本発明について、詳細に説明する。
<透明電極基板>
本発明の透明電極基板は、透明基材の一方の面に、導電性金属メッシュ層を埋設した透明導電層が積層されてなるものである。
以下、本発明の透明電極基板の構成材料について説明する。
Hereinafter, the present invention will be described in detail.
<Transparent electrode substrate>
The transparent electrode substrate of the present invention is formed by laminating a transparent conductive layer having a conductive metal mesh layer embedded on one surface of a transparent substrate.
Hereinafter, the constituent materials of the transparent electrode substrate of the present invention will be described.

〔透明基材〕
透明基材としては、透明性の観点から、全光線透過率が85%以上のものが好ましく、このような透明基材としては、一般的には、ガラス(板)またはプラスチックフィルム等が使用される。
プラスチックフィルムの種類としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、シンジオタクチックポリスチレン、ポリフェニレンスルフィド、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエステルスルホン、ポリエーテルイミド、環状ポリオレフィン等からなるプラスチックフィルムが挙げられる。中でも機械的強度、耐久性、透明性、汎用性等に優れたものとして、ガラス(板)やポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等からなるプラスチックフィルムが好ましい。透明基材の厚さは、機械強度、耐久性、及び透明性のバランスの観点から、3μm〜5mmが好ましく、より好ましくは5μm〜3mmであり、特に好ましくは10μm〜1mmである。
(Transparent substrate)
The transparent substrate preferably has a total light transmittance of 85% or more from the viewpoint of transparency. Generally, glass (plate) or plastic film is used as such a transparent substrate. The
Examples of the plastic film include polyethylene terephthalate, polyethylene naphthalate, triacetylcellulose, syndiotactic polystyrene, polyphenylene sulfide, polycarbonate, polyarylate, polysulfone, polyestersulfone, polyetherimide, and cyclic polyolefin. Can be mentioned. Among them, a plastic film made of glass (plate), polyethylene terephthalate, polyethylene naphthalate, polyarylate or the like is preferable as a material excellent in mechanical strength, durability, transparency, versatility and the like. The thickness of the transparent substrate is preferably 3 μm to 5 mm, more preferably 5 μm to 3 mm, and particularly preferably 10 μm to 1 mm from the viewpoint of the balance of mechanical strength, durability, and transparency.

〔透明導電層〕
透明導電層の材料としては特に限定されるものではないが、導電性金属酸化物、例えば、インジウム、スズ、亜鉛、ガリウム等の酸化物、及びこれらの元素の複合酸化物等を挙げることができる。
より具体的には、スズドープ酸化インジウム(ITO)、酸化イリジウム(IrO2)、酸化インジウム(In23)、酸化スズ(SnO2)、フッ素ドープ酸化スズ(FTO)、酸化インジウム−酸化亜鉛(IZO)、酸化亜鉛(ZnO)、ガリウムドープ酸化亜鉛(GZO)、アルミニウムドープ酸化亜鉛(AZO)、酸化モリブデン(MoO3)、酸化チタン(TiO2)等が挙げられる。
透明導電層の厚さは、20〜1200nmであることが好ましく、30〜1000nmであることがさらに好ましく、35〜700nmであることが特に好ましい。
透明基材上に透明導電層を形成させる方法は、特に限定されず、公知の方法を用いることができる。例えば、これらの透明導電層の材料を、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相蒸着)、もしくは熱CVD、原子層堆積(ALD)等のCVD(化学気相蒸着)などのドライプロセス、またはウェットプロセスのインクジェット法やスクリーン印刷法等の公知の方法により形成することができ、透明基材や透明導電層の材料に応じて適宜選択される。
透明導電層は表面抵抗率が50Ω/□以下であることが好ましく、10Ω/□以下であることがさらに好ましい。
表面抵抗率が50Ω/□を超えると、たとえば、透明電極基板を薄膜太陽電池に適用した場合、内部抵抗が大きいため、光電変換効率が低下することがあるので好ましくない。
[Transparent conductive layer]
The material of the transparent conductive layer is not particularly limited, and examples thereof include conductive metal oxides such as oxides of indium, tin, zinc, gallium, and complex oxides of these elements. .
More specifically, tin-doped indium oxide (ITO), iridium oxide (IrO 2 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), fluorine-doped tin oxide (FTO), indium oxide-zinc oxide ( IZO), zinc oxide (ZnO), gallium-doped zinc oxide (GZO), aluminum-doped zinc oxide (AZO), molybdenum oxide (MoO 3 ), titanium oxide (TiO 2 ), and the like.
The thickness of the transparent conductive layer is preferably 20 to 1200 nm, more preferably 30 to 1000 nm, and particularly preferably 35 to 700 nm.
The method for forming the transparent conductive layer on the transparent substrate is not particularly limited, and a known method can be used. For example, the material of these transparent conductive layers may be PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD or atomic layer deposition (ALD). It can be formed by a known method such as a dry process or a wet process, such as an inkjet method or a screen printing method, and is appropriately selected according to the material of the transparent substrate or the transparent conductive layer.
The transparent conductive layer preferably has a surface resistivity of 50Ω / □ or less, and more preferably 10Ω / □ or less.
When the surface resistivity exceeds 50 Ω / □, for example, when a transparent electrode substrate is applied to a thin film solar cell, the internal resistance is large, so that the photoelectric conversion efficiency may be lowered, which is not preferable.

本発明の透明電極基板において、透明導電層は、内部に導電性金属メッシュ層を埋設した形態で基材の一方の面に積層されている。
導電性金属メッシュ層を埋設した透明導電層は透明基材の一方の面に形成されており、導電性金属メッシュ層は、透明導電層の透明基材側と反対側の表面に近い方に埋設されていることが好ましい。
すなわち、導電性金属メッシュ層は、透明導電層全体の厚みを100%とした場合、透明導電層全体の厚みの透明基材側から50〜99%の距離の範囲の位置に埋設されていることが好ましい。
導電性金属メッシュ層の埋設される位置がこの範囲であれば、導電性が良好である。これは、導電性の優れる導電性金属メッシュ層が、透明導電層の透明基材と反対側の面に近い方に埋設されていることで、透明導電層の表面抵抗率を低下させ、導電性を向上させることができるためであると考えられる。
In the transparent electrode substrate of the present invention, the transparent conductive layer is laminated on one surface of the base material in a form in which a conductive metal mesh layer is embedded therein.
The transparent conductive layer in which the conductive metal mesh layer is embedded is formed on one side of the transparent substrate, and the conductive metal mesh layer is embedded in the side closer to the surface opposite to the transparent substrate side of the transparent conductive layer. It is preferable that
That is, the conductive metal mesh layer is embedded in a position in the range of a distance of 50 to 99% from the transparent substrate side of the thickness of the entire transparent conductive layer when the thickness of the entire transparent conductive layer is 100%. Is preferred.
When the position where the conductive metal mesh layer is embedded is within this range, the conductivity is good. This is because the conductive metal mesh layer with excellent conductivity is embedded near the surface of the transparent conductive layer on the opposite side of the transparent base material, thereby reducing the surface resistivity of the transparent conductive layer. It is thought that this is because it can be improved.

〔導電性金属メッシュ層〕
本発明の透明電極基板において、導電性金属メッシュ層は金属又は合金からなり、透明基材の一方の面に形成された透明導電層に埋設されている。導電性金属メッシュ層としては、金属グリッドパターンによる微細メッシュ構造の層が挙げられる。
[Conductive metal mesh layer]
In the transparent electrode substrate of the present invention, the conductive metal mesh layer is made of a metal or an alloy and is embedded in the transparent conductive layer formed on one surface of the transparent substrate. Examples of the conductive metal mesh layer include a layer having a fine mesh structure based on a metal grid pattern.

導電性金属メッシュ層は、厚み方向に貫通した開口部を有する。
開口部の開口率としては、透明性の観点から75%以上であることが好ましく、より好ましくは80%以上であり、さらに好ましくは90%以上である。開口率は以下のように求められる。
開口率(%)
=[開口部の面積/(導電性金属メッシュ層の面積+開口部の面積)]×100%
導電性金属メッシュ層の形状は開口部を有していればよく、特に限定されない。例えば、図2に示したような正方形、長方形、六角形などの周期性のあるメッシュ形状等が挙げられる。
開口部のピッチは、0.1〜10mmが好ましく、より好ましく0.5〜5mmである。開口部のピッチが0.1mm未満の場合、透明性が低下する場合があり、10mmを超えると、導電性が向上する効果が得られにくい。
導電性金属メッシュ層の線幅は、10nm〜1000μmが好ましく、20nm〜500μmがより好ましい。線幅が1000μmを超えると、開口率が低くなるため透明性が低下する場合があり、10nm未満だと、導電性が向上する効果が得られにくくなる可能性がある。
導電性金属メッシュ層の厚みは1〜100nmが好ましく、より好ましくは2〜50nm程度である。1nm以上とすることにより、導電性を維持することができ、100nm以下とすることにより、全体の厚みを薄く保つことが可能で、かつ、材料の無駄を省くことができる。
The conductive metal mesh layer has an opening that penetrates in the thickness direction.
The opening ratio of the opening is preferably 75% or more from the viewpoint of transparency, more preferably 80% or more, and still more preferably 90% or more. The aperture ratio is obtained as follows.
Aperture ratio(%)
= [Area of opening / (Area of conductive metal mesh layer + Area of opening)] × 100%
The shape of the conductive metal mesh layer is not particularly limited as long as it has an opening. For example, the mesh shape with periodicity, such as a square, a rectangle, and a hexagon as shown in FIG.
The pitch of the openings is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm. If the pitch of the openings is less than 0.1 mm, the transparency may decrease. If the pitch exceeds 10 mm, the effect of improving the conductivity is difficult to obtain.
The line width of the conductive metal mesh layer is preferably 10 nm to 1000 μm, and more preferably 20 nm to 500 μm. When the line width exceeds 1000 μm, the aperture ratio decreases, and thus the transparency may decrease. When the line width is less than 10 nm, the effect of improving the conductivity may be difficult to obtain.
The thickness of the conductive metal mesh layer is preferably 1 to 100 nm, more preferably about 2 to 50 nm. By setting the thickness to 1 nm or more, conductivity can be maintained, and by setting the thickness to 100 nm or less, the entire thickness can be kept thin, and waste of materials can be omitted.

導電性金属メッシュ層を形成させるための材料としては、金属や合金が挙げられる。例えば、金、銀、銅、アルミニウム、チタン、クロム、鉄、コバルト、ニッケル、亜鉛、錫、イリジウム、インジウム、タングステン、モリブデン、白金、イリジウム、ハフニウム、ニオブ、タンタル、タングステン、マグネシウム等の単体の金属、あるいは、これらの群から成る金属の少なくとも1種を主体とする合金等が挙げられる。これらの中でも、耐腐食性があり、導電性が高いという観点から、金、銀、銅、白金、アルミニウム、チタン、ニッケル及びクロムの金属が好ましく、金、銀、銅、白金、アルミニウム、ニッケル及びクロムがより好ましい。
合金としては、ステンレス、ニッケル-クロム、インコネル(商品名)、青銅、リン青銅、黄銅、ジュラルミン、白銅、インバール、モネル、ニッケルリン合金などの金属リン化合物、ニッケルボロンなどの金属ホウ素化合物、窒化チタンなどの窒化物など適宜選択可能である。とりわけ、銅を主体とする合金や、ニッケルを主体とする合金、コバルトを主体とする合金、クロムを主体とする合金、アルミニウムを主体とする合金は、導電性に優れ、加工性も良好なので、好ましく用いられる。
導電性金属メッシュ層は、金属や合金からなる単層であってもよく、少なくとも2種類以上の金属や合金からなる層を積層した多層構造であってもよい。
Examples of the material for forming the conductive metal mesh layer include metals and alloys. For example, simple metals such as gold, silver, copper, aluminum, titanium, chromium, iron, cobalt, nickel, zinc, tin, iridium, indium, tungsten, molybdenum, platinum, iridium, hafnium, niobium, tantalum, tungsten, magnesium Alternatively, an alloy mainly composed of at least one metal selected from these groups can be used. Among these, gold, silver, copper, platinum, aluminum, titanium, nickel and chromium metals are preferable from the viewpoint of corrosion resistance and high conductivity, and gold, silver, copper, platinum, aluminum, nickel and Chromium is more preferred.
Alloys include stainless steel, nickel-chromium, inconel (trade name), bronze, phosphor bronze, brass, duralumin, white phosphorus, invar, monel, metal phosphorous compounds such as nickel phosphorous alloys, metal boron compounds such as nickel boron, titanium nitride Nitride such as can be selected as appropriate. Especially, alloys mainly composed of copper, alloys composed mainly of nickel, alloys composed mainly of cobalt, alloys composed mainly of chromium, and alloys composed mainly of aluminum are excellent in conductivity and workability. Preferably used.
The conductive metal mesh layer may be a single layer made of metal or alloy, or may be a multilayer structure in which layers made of at least two kinds of metals or alloys are laminated.

次に、透明基材上に設けられた透明導電層の内部に導電性金属メッシュ層を埋設する方法について説明する。
導電性金属メッシュ層を埋設する方法としては、特に限定されず、導電性金属メッシュ層の材料、メッシュの形状に応じて、公知の方法を適宜選択用いることができる。例えば、透明基材上に設けられた透明導電層上に予め作製した導電性金属メッシュ層を接着剤や導電性のペースト等を用いて貼りつけ、さらにこの上に透明導電層を形成する方法や、透明基材上に設けられた透明導電層上に、インクジェット法、スクリーン印刷法等により導電性金属メッシュ層を形成し、さらにこの上に透明導電層を形成する方法、または透明基材上に設けられた透明導電層上にメッシュ加工されていない導電性金属層(以下、単に導電性金属層という場合がある)を形成し、この導電性金属層を導電性金属メッシュの形状に加工し導電性金属メッシュ層を形成し、さらにこの上に透明導電層を形成する方法等が挙げられる。
Next, a method for embedding a conductive metal mesh layer in the transparent conductive layer provided on the transparent substrate will be described.
The method for embedding the conductive metal mesh layer is not particularly limited, and a known method can be appropriately selected and used according to the material of the conductive metal mesh layer and the shape of the mesh. For example, a method of pasting a conductive metal mesh layer prepared in advance on a transparent conductive layer provided on a transparent substrate using an adhesive or a conductive paste, and further forming a transparent conductive layer thereon, A method of forming a conductive metal mesh layer on a transparent conductive layer provided on a transparent substrate by an inkjet method, a screen printing method, etc., and further forming a transparent conductive layer thereon, or on a transparent substrate A conductive metal layer that is not meshed is formed on the provided transparent conductive layer (hereinafter sometimes simply referred to as a conductive metal layer), and this conductive metal layer is processed into a conductive metal mesh shape to conduct electrical conduction. And a method of forming a conductive metal mesh layer and further forming a transparent conductive layer thereon.

以下、透明導電層を形成する方法について、説明する。
まず、上述した方法により透明基材上に設けられた透明導電層上に導電性金属層を形成させる。上記方法は導電性金属層の材料に応じて適宜選択される。
次いで、形成された導電性金属層に対して、フォトリソグラフィ法を用いてエッチングし、メッシュパターンを形成する方法など各種公知の機械的処理または化学的処理等を施すことにより、導電性金属メッシュの形状に加工し、導電性金属メッシュ層が形成される。
上記のように、形成された導電性金属メッシュ層の上にさらに上述の方法により透明導電層を形成させることにより、導電性金属メッシュ層が透明導電層の内部に埋設された形態の本発明の透明電極基板が得られる。
本発明においては、透明導電層中に導電性金属メッシュ層が埋設されているので、従来のようなメッシュ加工されていない導電性金属層が透明導電層の間に設けられている構造のものと比べて透明電極基板の透明性が向上する。また、さらに、従来のような透明基材上に透明導電層のみが直接設けられている構造の透明電極基板や、導電性金属メッシュ層が透明基材上に直接設けられ、その上に透明導電層が設けられている透明電極基板(すなわち、導電性金属メッシュ層が埋設されていない透明導電層が設けられている透明電極基板)と比べて表面抵抗率が低く、導電性が優れている。
Hereinafter, a method for forming the transparent conductive layer will be described.
First, a conductive metal layer is formed on a transparent conductive layer provided on a transparent substrate by the method described above. The said method is suitably selected according to the material of an electroconductive metal layer.
Next, by etching the formed conductive metal layer using a photolithography method and performing various known mechanical treatments or chemical treatments such as a method of forming a mesh pattern, Processing into a shape forms a conductive metal mesh layer.
As described above, by forming a transparent conductive layer on the formed conductive metal mesh layer by the above-described method, the conductive metal mesh layer is embedded in the transparent conductive layer. A transparent electrode substrate is obtained.
In the present invention, since the conductive metal mesh layer is embedded in the transparent conductive layer, the conventional conductive metal layer not meshed is provided between the transparent conductive layers. In comparison, the transparency of the transparent electrode substrate is improved. Furthermore, a transparent electrode substrate having a structure in which only a transparent conductive layer is directly provided on a transparent base material as in the past, or a conductive metal mesh layer is provided directly on a transparent base material, on which a transparent conductive material is provided. Compared with a transparent electrode substrate provided with a layer (that is, a transparent electrode substrate provided with a transparent conductive layer in which a conductive metal mesh layer is not embedded), the surface resistivity is low and the conductivity is excellent.

[透明電極基板の製造方法]
次に、本発明の透明電極基板を製造する方法について説明する。
本発明の透明電極基板の製造方法は下記の通りである。
まず、透明基材の一方の面に第1の透明導電層を形成させ、同第1の透明導電層上に導電性金属層を形成させ、同導電性金属層をフォットレジストパターニング処理等により導電性金属メッシュ層を形成させ、同金属メッシュ層の面に第2の透明導電層を形成させて同導電性金属メッシュ層を同第2の透明導電層により被覆することを特徴とするものである。
ここで、フォットレジストパターニング処理とは、フォトリソグラフィ法を用いて導電性金属層をエッチングし、導電性金属層にメッシュパターンを形成するものである。
この方法によれば、透明基材の一方の面に、導電性金属メッシュ層を埋設した透明導電層が積層されてなる本発明の透明電極基板を効率的に製造することができる。
導電性金属層を形成させるための材料としては、上述した導電性金属メッシュ層を形成させる材料と同様のものが挙げられ、導電性金属層を形成する方法としては、上述した導電性金属メッシュ層を形成する方法と同様のものが挙げられ、導電性金属層の材料に応じて適宜選択される。
第1の透明導電層及び第2の透明導電層を形成させるための材料としては、上述した透明導電層を形成させる材料と同様のものが挙げられる。
透明基材の一方の面に形成される第1の透明導電層および金属メッシュ上に形成される第2の透明導電層の材料は同じものであってもよいし、異なるものであってもよいが、通常、同じ材料のものが好ましい。
第1の透明導電層及び第2の透明導電層を形成させる方法としては、上述した透明導電層を形成する方法と同様のものが挙げられ、透明導電層の材料に応じて適宜選択される。
また、通常、導電性金属メッシュ層上に形成される第2の透明導電層の厚みは、透明基材の一方の面に形成される第1の透明導電層の厚みより薄く形成されることが好ましい。
透明基材の一方の面に形成される第1の透明導電層の厚みは、透明性と導電性の観点から、通常10〜1000nm、好ましくは10〜500nm、特に30〜300nmであることが好ましい。
金属メッシュ上に形成される第2の透明導電層の厚みは、10〜200nm、好ましくは20〜100nm、特に好ましくは25〜50nmである。上記本発明の透明性電極基板は、透明性及び導電性に優れているため、各種の電子デバイスに電極として適用することができる。
[Method for producing transparent electrode substrate]
Next, a method for producing the transparent electrode substrate of the present invention will be described.
The manufacturing method of the transparent electrode substrate of this invention is as follows.
First, a first transparent conductive layer is formed on one surface of a transparent substrate, a conductive metal layer is formed on the first transparent conductive layer, and the conductive metal layer is conductive by a photoresist resist patterning process or the like. Forming a conductive metal mesh layer, forming a second transparent conductive layer on the surface of the metal mesh layer, and covering the conductive metal mesh layer with the second transparent conductive layer. .
Here, the photo resist patterning process is to form a mesh pattern on the conductive metal layer by etching the conductive metal layer using a photolithography method.
According to this method, the transparent electrode substrate of the present invention in which the transparent conductive layer in which the conductive metal mesh layer is embedded is laminated on one surface of the transparent substrate can be efficiently produced.
Examples of the material for forming the conductive metal layer include the same materials as those for forming the conductive metal mesh layer described above. The method for forming the conductive metal layer includes the above-described conductive metal mesh layer. The method similar to the method of forming is mentioned, and it selects suitably according to the material of an electroconductive metal layer.
Examples of the material for forming the first transparent conductive layer and the second transparent conductive layer include the same materials as those for forming the transparent conductive layer described above.
The materials of the first transparent conductive layer formed on one surface of the transparent substrate and the second transparent conductive layer formed on the metal mesh may be the same or different. However, the same material is usually preferred.
Examples of the method for forming the first transparent conductive layer and the second transparent conductive layer include the same methods as those for forming the transparent conductive layer described above, and are appropriately selected depending on the material of the transparent conductive layer.
In addition, the thickness of the second transparent conductive layer formed on the conductive metal mesh layer is usually thinner than the thickness of the first transparent conductive layer formed on one surface of the transparent substrate. preferable.
The thickness of the first transparent conductive layer formed on one surface of the transparent substrate is usually 10 to 1000 nm, preferably 10 to 500 nm, particularly preferably 30 to 300 nm, from the viewpoints of transparency and conductivity. .
The thickness of the second transparent conductive layer formed on the metal mesh is 10 to 200 nm, preferably 20 to 100 nm, and particularly preferably 25 to 50 nm. Since the transparent electrode substrate of the present invention is excellent in transparency and conductivity, it can be applied as an electrode to various electronic devices.

<電子デバイス>
本発明の電子デバイスは、上記本発明の透明性電極基板を有することを特徴とするものである。
本発明の透明性電極基板を適用できる電子デバイスとしては、トランジスタ、メモリー、有機EL、有機太陽電池等の有機デバイス;液晶ディスプレイ;電子ペーパー;薄膜トランジスタ;エレクトロクロミック;電気化学発光デバイス;タッチパネル;ディスプレイ;光電変換デバイス;熱電変換デバイス;圧電変換デバイス;蓄電デバイス等が挙げられる。
<Electronic device>
The electronic device of the present invention is characterized by having the transparent electrode substrate of the present invention.
Electronic devices to which the transparent electrode substrate of the present invention can be applied include organic devices such as transistors, memories, organic EL, and organic solar cells; liquid crystal displays; electronic paper; thin film transistors; electrochromic; Photoelectric conversion devices; thermoelectric conversion devices; piezoelectric conversion devices;

<太陽電池>
本発明の太陽電池は、上記本発明の透明性電極基板を有することを特徴とするものである。
本発明の透明性電極基板を適用できる太陽電池としては、有機薄膜太陽電池、薄膜シリコン型太陽電池、ハイブリッド型太陽電池、多接合型太陽電池、球状シリコン型太陽電池、電界効果型太陽電池、色素増感太陽電池等種々のものが挙げられる。なかでも本発明の太陽電池は、上記本発明の透明電極基板を有する有機薄膜太陽電池であることが好ましい。
ここでは有機薄膜太陽電池を例に挙げて説明する。
図1は、本発明の太陽電池の一例である有機薄膜太陽電池を構成する層の一例を示す断面図である。図1において、1は透明基材、2は第1の透明導電層、3は導電性金属メッシュ層、4は第2透明導電層、5は光電変換層、6は電極、7は基材層、8は導電性金属メッシュ層を埋設した透明導電層、9は本発明の透明電極基板、10が有機薄膜太陽電池である。
<Solar cell>
The solar cell of this invention has the transparent electrode substrate of the said invention, It is characterized by the above-mentioned.
Solar cells to which the transparent electrode substrate of the present invention can be applied include organic thin film solar cells, thin film silicon solar cells, hybrid solar cells, multi-junction solar cells, spherical silicon solar cells, field effect solar cells, dyes Various things, such as a sensitized solar cell, are mentioned. Especially, it is preferable that the solar cell of this invention is an organic thin film solar cell which has the transparent electrode substrate of the said invention.
Here, an organic thin film solar cell will be described as an example.
FIG. 1 is a cross-sectional view showing an example of layers constituting an organic thin film solar cell which is an example of the solar cell of the present invention. In FIG. 1, 1 is a transparent substrate, 2 is a first transparent conductive layer, 3 is a conductive metal mesh layer, 4 is a second transparent conductive layer, 5 is a photoelectric conversion layer, 6 is an electrode, and 7 is a substrate layer. , 8 is a transparent conductive layer in which a conductive metal mesh layer is embedded, 9 is a transparent electrode substrate of the present invention, and 10 is an organic thin film solar cell.

〔光電変換層〕
光電変換層(図1における5)は、光電変換を行う層であり、原料の低コスト化、柔軟性、形成の容易性、吸光係数の高さ、軽量化、耐衝撃性等の観点から有機半導体であることが好ましい。
光電変換層は、単層からなってもよいし、複数層からなってもよい。単層の場合には、光電変換層は、通常、真性半導体(i型半導体)から形成される。
また、複数層の場合、(p型半導体層/n型半導体層)の積層、または、(p型半導体層/真性半導体層/n型半導体層)等である。
光電変換層の厚さは、単層または複数層の場合で異なるが導電性、励起子拡散距離という観点から、一般的には、30nm〜2μmであることが好ましく、特に40nm〜300nmであることが好ましい。
[Photoelectric conversion layer]
The photoelectric conversion layer (5 in FIG. 1) is a layer that performs photoelectric conversion, and is organic from the viewpoints of cost reduction, flexibility, ease of formation, high extinction coefficient, weight reduction, impact resistance, etc. A semiconductor is preferable.
The photoelectric conversion layer may consist of a single layer or a plurality of layers. In the case of a single layer, the photoelectric conversion layer is usually formed from an intrinsic semiconductor (i-type semiconductor).
In the case of a plurality of layers, a stack of (p-type semiconductor layer / n-type semiconductor layer) or (p-type semiconductor layer / intrinsic semiconductor layer / n-type semiconductor layer) is used.
The thickness of the photoelectric conversion layer differs depending on whether it is a single layer or a plurality of layers, but in general, from the viewpoint of conductivity and exciton diffusion distance, it is preferably 30 nm to 2 μm, particularly 40 nm to 300 nm. Is preferred.

以下、光電変換層に用いられる有機半導体について説明する。
(1)真性半導体
真性半導体の材料としては、例えば、フラーレン、フラーレン誘導体、半導体性を有するカーボンナノチューブ(CNT)およびCNT化合物の少なくとも1種類からなる第1の材料と、ポリフェニレンビニレン(PPV)の誘導体またはポリチオフェン系高分子材料からなる第2の材料とを、得られる半導体が真性半導体となるように混合した混合物を使用することができる。
フラーレン誘導体としては、例えば、[6,6]−フェニル−C61−酪酸メチル(PCBM)等を用いることができ、また、フラーレンの二量体、またはアルカリ金属もしくはアルカリ土類金属等を導入したフラーレン化合物なども用いることができる。また、CNTとしては、フラーレンまたは金属内包フラーレンを内包したカーボンナノチューブ等を用いることができる。さらに、CNTの側壁や先端に、種々の分子を付加したCNT化合物等も用いることができる。
ポリフェニレンビニレンの誘導体としては、ポリ[2−メトキシ,5−(2’−エチル−ヘキシロキシ)−p−フェニレン−ビニレン](MEH−PPV)等を用いることができ、ポリチオフェン系高分子材料としては、ポリ−3−ヘキシルチオフェン(P3HT)などのポリ(3−アルキルチオフェン),ジオクチルフルオレンエン−ビチオフェン共重合体(F8T2)、等を用いることができる。
特に好ましい真性半導体としては、PCBMとP3HTとを質量比で1:0.3〜1:4で混合した混合物が挙げられる。
Hereinafter, the organic semiconductor used for the photoelectric conversion layer will be described.
(1) Intrinsic Semiconductor As an intrinsic semiconductor material, for example, a fullerene, a fullerene derivative, a first material composed of at least one of carbon nanotubes (CNT) and CNT compounds having semiconductivity, and a derivative of polyphenylene vinylene (PPV) Alternatively, it is possible to use a mixture in which a second material made of a polythiophene polymer material is mixed so that the obtained semiconductor becomes an intrinsic semiconductor.
As the fullerene derivative, for example, [6,6] -phenyl-C61-methyl butyrate (PCBM) or the like can be used, and fullerene into which a dimer of fullerene or an alkali metal or alkaline earth metal is introduced. Compounds and the like can also be used. Further, as the CNT, carbon nanotubes or the like including fullerene or metal-encapsulated fullerene can be used. Furthermore, a CNT compound in which various molecules are added to the side wall or tip of the CNT can also be used.
As a derivative of polyphenylene vinylene, poly [2-methoxy, 5- (2′-ethyl-hexyloxy) -p-phenylene-vinylene] (MEH-PPV) or the like can be used. As a polythiophene polymer material, Poly (3-alkylthiophene) such as poly-3-hexylthiophene (P3HT), dioctylfluorene-bithiophene copolymer (F8T2), and the like can be used.
A particularly preferred intrinsic semiconductor is a mixture of PCBM and P3HT mixed at a mass ratio of 1: 0.3 to 1: 4.

(2)p型半導体
p型半導体の材料としては、例えば、ポリアルキルチオフェンおよびその誘導体、ポリフェニレンおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリシランおよびその誘導体、ポルフィリン誘導体、フタロシアニン誘導体、有機金属ポリマー等が挙げられる。中でもポリアルキルチオフェンおよびその誘導体が好ましい。また、それら有機材料の混合物であってもよい。導電性高分子化合物としては、ポリ(3,4)−エチレンジオキシチオフェン/ポリスチレンスルフォネート(PEDOT:PSS)を好ましく使用することができる。
(2) p-type semiconductor Materials for the p-type semiconductor include, for example, polyalkylthiophene and derivatives thereof, polyphenylene and derivatives thereof, polyphenylene vinylene and derivatives thereof, polysilane and derivatives thereof, porphyrin derivatives, phthalocyanine derivatives, and organometallic polymers. Can be mentioned. Of these, polyalkylthiophene and derivatives thereof are preferred. Moreover, the mixture of these organic materials may be sufficient. As the conductive polymer compound, poly (3,4) -ethylenedioxythiophene / polystyrene sulfonate (PEDOT: PSS) can be preferably used.

(3)n型半導体
n型半導体の材料としては、特にフラーレン誘導体が好ましい。フラーレン誘導体としては、例えば、[6,6]−フェニル−C61−酪酸メチル(PCBM)等を用いることができる。
光電変換層5を形成させる方法としては、真空蒸着法、スパッタリング法などのドライプロセス、ディップコーティング、スピンコーティング、スプレーコーティング、バーコーティング等の各種コーティングプロセス等が適宜選択される。
(3) n-type semiconductor As a material of the n-type semiconductor, a fullerene derivative is particularly preferable. As the fullerene derivative, for example, [6,6] -phenyl-C61-methyl butyrate (PCBM) can be used.
As a method for forming the photoelectric conversion layer 5, a dry process such as a vacuum deposition method and a sputtering method, and various coating processes such as dip coating, spin coating, spray coating, and bar coating are appropriately selected.

〔電極〕
電極(図1における6)の材料としては、対向電極となる透明導電層の材質(例えばITO電極)に比べて仕事関数の差が大きいものが好ましい。例えば、銀、アルミニウム、白金、金、イリジウム、クロム、酸化亜鉛等の金属、金属酸化物もしくは合金の他、上記金属、金属酸化物もしくは合金との複合体が挙げられる。
電極の厚さは、20nm〜1μmであることが好ましく、特に30〜100nmであることが好ましい。
光電変換層5上に電極6を形成させる方法としては、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相蒸着)が挙げられ、対向電極の材料(仕事関数など)に応じて適宜選択される。
〔electrode〕
As a material for the electrode (6 in FIG. 1), a material having a large work function difference as compared with the material of the transparent conductive layer to be the counter electrode (for example, ITO electrode) is preferable. For example, in addition to metals such as silver, aluminum, platinum, gold, iridium, chromium, and zinc oxide, metal oxides or alloys, composites with the above metals, metal oxides, or alloys can be given.
The thickness of the electrode is preferably 20 nm to 1 μm, and particularly preferably 30 to 100 nm.
Examples of the method for forming the electrode 6 on the photoelectric conversion layer 5 include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, which is appropriately selected according to the material (work function, etc.) of the counter electrode. Is done.

〔基材層〕
基材層(図1における7)としては、一般的にガラス(板)またはプラスチックフィルムが挙げられ、電子デバイスの用途に応じて適宜選択される。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、テトラアセチルセルロース、シンジオタクチックポリスチレン、ポリフェニレンスルフィド、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエステルスルホン、ポリエーテルイミド、環状ポリオレフィン等のフィルムが挙げられ、機械的強度、耐久性等に優れたものが好ましい。
[Base material layer]
Generally as a base material layer (7 in FIG. 1), glass (plate) or a plastic film is mentioned, It selects suitably according to the use of an electronic device. Examples of the plastic film include polyethylene terephthalate, polyethylene naphthalate, tetraacetylcellulose, syndiotactic polystyrene, polyphenylene sulfide, polycarbonate, polyarylate, polysulfone, polyestersulfone, polyetherimide, and cyclic polyolefin. Those excellent in mechanical strength and durability are preferred.

以下、参考例、実施例及び比較例により、本発明をさらに詳しく説明するが、本発明はこれらにより何ら限定されるものではない。   Hereinafter, although a reference example, an example, and a comparative example explain the present invention still in detail, the present invention is not limited at all by these.

参考例1>
[透明電極基板の作製]
透明基材の一方の面に第1の透明導電層が積層された基板として、ジオマテック(株)製、製品名「フラットITO」(基材として厚み0.7mmのガラスの一方の面に、ITO膜を250nm有する基板)を用意した。
次いで、この基板のITO膜上に、1×10−4Pa以下の減圧下、銀(Ag)を真空蒸着法により厚みを5nmになるように製膜し、導電性金属層を形成させた。
次いで、導電性金属層にフォトレジストでパターニング処理を行い、その後エッチング処理(フォットレジストパターニング処理)を行ない、導電性金属メッシュ層として、正方形の周期性のあるメッシュ形状(開口部のピッチ1mm、導電性金属メッシュ層の線幅30μm、開口率94.1%、厚さ5nm)を形成させた。
次いで、導電性金属メッシュ層上に1×10−4Pa以下の減圧下、スパッタリング法(ULVAC製のスパッタ装置、装置名「i-sputter」)で、厚さが30nmのITO膜を第2の透明導電層として形成させることで、導電性金属メッシュ層が透明導電層内に埋設された本発明の透明電極基板を作製した。
< Reference Example 1>
[Preparation of transparent electrode substrate]
As a substrate having a first transparent conductive layer laminated on one surface of a transparent substrate, a product name “Flat ITO” (manufactured by Geomat Co., Ltd.) A substrate having a 250 nm film) was prepared.
Next, on the ITO film of this substrate, silver (Ag) was formed to a thickness of 5 nm by vacuum deposition under a reduced pressure of 1 × 10 −4 Pa or less to form a conductive metal layer.
Next, a patterning process is performed on the conductive metal layer with a photoresist, and then an etching process (photoresist patterning process) is performed. As a conductive metal mesh layer, a mesh shape with a square periodicity (opening pitch 1 mm, conductive) The width of the conductive metal mesh layer was 30 μm, the aperture ratio was 94.1%, and the thickness was 5 nm).
Next, an ITO film having a thickness of 30 nm is formed on the conductive metal mesh layer by a sputtering method (ULVAC sputtering apparatus, apparatus name “i-sputter”) under a reduced pressure of 1 × 10 −4 Pa or less. By forming as a transparent conductive layer, the transparent electrode substrate of the present invention in which the conductive metal mesh layer was embedded in the transparent conductive layer was produced.

<実施例2〜4>
導電性金属メッシュ層(Ag)の厚さを表1に記載の厚さに変更した以外は実施例1と同様に本発明の透明電極基板を作製した。
<Examples 2 to 4>
A transparent electrode substrate of the present invention was produced in the same manner as in Example 1 except that the thickness of the conductive metal mesh layer (Ag) was changed to the thickness shown in Table 1.

<比較例1〜4>
導電性金属層(Ag)の厚さを表1に記載の厚さに変更し、導電性金属にフォットレジストパターニング処理を行なわなかった以外は、実施例1と同様にして、比較用の透明電極基板を作製した。すなわち、メッシュ加工されていない導電性金属層が透明導電層内に埋設された比較用の透明電極基板を作製した。
<Comparative Examples 1-4>
Transparent electrode for comparison as in Example 1, except that the thickness of the conductive metal layer (Ag) was changed to the thickness shown in Table 1 and the conductive metal was not subjected to the photoresist resist patterning treatment. A substrate was produced. That is, a comparative transparent electrode substrate in which a conductive metal layer not meshed was embedded in the transparent conductive layer was produced.

<比較例5>
導電性金属層(Ag)を形成しない以外は実施例1と同様にして、第1の透明導電層としての厚さ250nmのITO膜上に、直接、第2の透明導電層として厚さ30nmのITO膜を形成させ、比較用の透明電極基板を作製した。すなわち、透明導電層のみが設けられている構造の比較用の透明電極基板を作製した。
<Comparative Example 5>
Except for not forming the conductive metal layer (Ag), the same procedure as in Example 1 was performed, directly on the ITO film with a thickness of 250 nm as the first transparent conductive layer, with a thickness of 30 nm as the second transparent conductive layer. An ITO film was formed to produce a comparative transparent electrode substrate. That is, a comparative transparent electrode substrate having a structure in which only the transparent conductive layer is provided was produced.

<比較例6>
透明基材としてガラス板(河村久三商店社製、厚み3mm)の一方の面に、直接、実施例2と同じ条件で厚さ10nmの導電性金属層を形成させて、導電性金属層のフォットレジストパターニング処理を行い、開口率94.1%の導電性金属メッシュ層を形成させた。次いで、実施例2と同様の方法で、導電性金属メッシュ層の面に厚さ150nmの透明導電層としてITO膜を形成させて比較用の透明電極基板を作製した。すなわち、導電性金属メッシュ層が埋設されていない透明導電層が設けられている比較用の透明電極基板を作製した。
<Comparative Example 6>
As a transparent substrate, a conductive metal layer having a thickness of 10 nm was formed directly on one surface of a glass plate (manufactured by Kawamura Hisami Shoten Co., Ltd., thickness 3 mm) under the same conditions as in Example 2. A photoresist resist patterning process was performed to form a conductive metal mesh layer having an aperture ratio of 94.1%. Next, an ITO film was formed as a transparent conductive layer having a thickness of 150 nm on the surface of the conductive metal mesh layer in the same manner as in Example 2 to produce a comparative transparent electrode substrate. That is, a comparative transparent electrode substrate provided with a transparent conductive layer in which the conductive metal mesh layer was not embedded was produced.

<比較例7>
比較例6において、導電性金属層(Ag)の厚さを20nmに変更した以外は同様に比較用の透明電極基板を作製した。すなわち、導電性金属メッシュ層が埋設されていない透明導電層が設けられている比較用の透明電極基板を作製した。
<Comparative Example 7>
A comparative transparent electrode substrate was prepared in the same manner as in Comparative Example 6, except that the thickness of the conductive metal layer (Ag) was changed to 20 nm. That is, a comparative transparent electrode substrate provided with a transparent conductive layer in which the conductive metal mesh layer was not embedded was produced.

<比較例8>
比較例6において、導電性金属層(Ag)の厚さを30nmに変更した以外は同様に比較用の透明電極基板を作製した。すなわち、導電性金属メッシュ層が埋設されていない透明導電層が設けられている比較用の透明電極基板を作製した。
<Comparative Example 8>
A comparative transparent electrode substrate was prepared in the same manner as in Comparative Example 6 except that the thickness of the conductive metal layer (Ag) was changed to 30 nm. That is, a comparative transparent electrode substrate provided with a transparent conductive layer in which the conductive metal mesh layer was not embedded was produced.

<比較例9>
比較例6において、導電性金属層(Ag)の厚さを50nmに変更した以外はと同様に比較用の透明電極基板を作製した。すなわち、導電性金属メッシュ層が埋設されていない透明導電層が設けられている比較用の透明電極基板を作製した。
<Comparative Example 9>
A comparative transparent electrode substrate was prepared in the same manner as in Comparative Example 6 except that the thickness of the conductive metal layer (Ag) was changed to 50 nm. That is, a comparative transparent electrode substrate provided with a transparent conductive layer in which the conductive metal mesh layer was not embedded was produced.

<比較例10>
比較例6において、導電性金属メッシュ層(Ag)を形成せず、透明基材に直接、厚さ150nmの透明導電層としてITO膜形成し、比較用の透明電極基板を作製した。すなわち、透明基材に透明導電層のみが設けられている構造の比較用の透明電極基板を作製した。
<Comparative Example 10>
In Comparative Example 6, the conductive metal mesh layer (Ag) was not formed, and an ITO film was formed directly on the transparent base material as a transparent conductive layer having a thickness of 150 nm to produce a comparative transparent electrode substrate. That is, a comparative transparent electrode substrate having a structure in which only a transparent conductive layer is provided on a transparent substrate was produced.

<比較例11>
透明導電層の厚さ250nmのとした以外は比較例10と同様にして比較用の透明電極基板を作製した。すなわち、透明導電層のみが設けられている構造の比較用の透明電極基板を作製した。
参考例1、実施例〜4で得られた本発明の透明電極基板および比較例1〜11で得られた比較用の透明電極基板の各特性を表1にまとめて記載する。
<Comparative Example 11>
A comparative transparent electrode substrate was produced in the same manner as in Comparative Example 10 except that the thickness of the transparent conductive layer was 250 nm. That is, a comparative transparent electrode substrate having a structure in which only the transparent conductive layer is provided was produced.
The characteristics of the transparent electrode substrate of the present invention obtained in Reference Example 1 and Examples 2 to 4 and the comparative transparent electrode substrate obtained in Comparative Examples 1 to 11 are collectively shown in Table 1.

表1に記載の材料の物性および透明電極基板の特性は下記のようにして測定した。
(1)厚み
透明導電層、導電性金属メッシュ層および導電性金属層の厚みは、触針式表面形状測定装置(ULVAC社製、製品名「Dektak 150」)により測定した。
(2)表面抵抗率の測定
得られた透明電極基板の透明導電層の表面を、表面抵抗測定装置〔三菱化学社製、製品名「ロレスタGP MCP−T600」〕により、四端子法で表面抵抗率を測定した。
(3)光線透過率
光線透過率測定装置〔日本電色工業社製、製品名「NDH−5000」〕を用いてJIS K7361−1に準じて、透明電極基板の全光線透過率を測定した。
The physical properties of the materials listed in Table 1 and the characteristics of the transparent electrode substrate were measured as follows.
(1) Thickness The thicknesses of the transparent conductive layer, the conductive metal mesh layer, and the conductive metal layer were measured with a stylus type surface shape measuring device (manufactured by ULVAC, product name “Dektak 150”).
(2) Measurement of surface resistivity The surface of the transparent conductive layer of the obtained transparent electrode substrate was subjected to a surface resistance measurement by a four-terminal method using a surface resistance measuring device [Mitsubishi Chemical Corporation, product name “Loresta GP MCP-T600”]. The rate was measured.
(3) Light transmittance The total light transmittance of the transparent electrode substrate was measured according to JIS K7361-1, using a light transmittance measuring device [manufactured by Nippon Denshoku Industries Co., Ltd., product name "NDH-5000"].

<実施例5>
[太陽電池の作製]
実施例3で作製された本発明の透明電極基板を用いて太陽電池を作製した。
透明電極基板の透明導電層の表面に、まずポリチオフェン系導電性ポリマーであるポリ(3,4−エチレンオキサイドチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)の混合物(PEDOT:PSS、エイチ・シー・スタルク社製、製品名「AI4083」)をスピンコート法により厚さ50nmの膜を形成させた。続いて、ポリ-3-ヘキシルチオフェン(P3HT)と[6,6]−フェニル−C61−酪酸メチル(PCBM)の2種類の有機材料の混合溶液(モル比1:1)を用いてスピンコート法により厚さが80nmになるように成膜した。陰極は真空蒸着で金属アルミニウムを厚さが100nmになるように成膜した。最後にガラスキャップにより封止し、本発明の太陽電池を作製した。
<Example 5>
[Production of solar cells]
A solar cell was produced using the transparent electrode substrate of the present invention produced in Example 3.
First, on the surface of the transparent conductive layer of the transparent electrode substrate, a mixture of poly (3,4-ethylene oxide thiophene) (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOT: PSS, H.C. A film having a thickness of 50 nm was formed by a spin coating method using a product name “AI4083” manufactured by Starck Co., Ltd. Subsequently, a spin coating method using a mixed solution (molar ratio 1: 1) of two organic materials of poly-3-hexylthiophene (P3HT) and [6,6] -phenyl-C61-methylbutyrate (PCBM) The film was formed to a thickness of 80 nm. The cathode was formed by vacuum evaporation so that metal aluminum had a thickness of 100 nm. Finally, it was sealed with a glass cap to produce the solar cell of the present invention.

<比較例12>
比較例5の透明電極基板を用いて、実施例5と同様にして比較用の太陽電池を作製した。
<Comparative Example 12>
Using the transparent electrode substrate of Comparative Example 5, a comparative solar cell was produced in the same manner as in Example 5.

[太陽電池の評価]
実施例5及び比較例12で作製した太陽電池の素子有効面積12cm2に、ソーラーシミュレーター[ワコム電創(株)製、WXS−50S−1.5]により擬似太陽光(AM1.5)を照射して、光電変換効率を測定した。太陽電池の評価結果を表2に示す。
[Solar cell evaluation]
Irradiating the effective device area 12cm 2 of the solar cell manufactured in Example 5 and Comparative Example 12, a solar simulator [Wacom DenSo Co., WXS-50S-1.5] artificial sunlight (AM 1.5) by Then, the photoelectric conversion efficiency was measured. The evaluation results of the solar cell are shown in Table 2.

表1および2から、以下のことが確認される。
(1)表1の実施例1〜4で示されているように、本発明の透明電極基板は、全光線透過率が高く、透明性に優れており、さらに、表面抵抗率の値も低く、優れた導電性を有していることが確認された。
(2)一方、メッシュ加工されていない導電性金属層が透明導電層内に埋設された比較例1〜4の透明電極基板は、全光線透過率が低く、実施例1〜4に比べて透明性が悪かった。
また、透明基材に透明導電層のみが設けられている構造の比較例5、10及び11の透明電極基板は、実施例1〜4に比べ、表面抵抗率の値が高く、導電性に劣っている。
また、比較例6〜9で示されているように、透明基材に直接導電性金属メッシュが直接設けられ、導電性金属メッシュ層が埋設されていない場合、全光線透過率は実施例1〜3に比べて低く、また表面抵抗率の値も高く、透明性及び導電性に劣っていることが分かる。
表2の結果で示されているように、本発明の透明電極基板を用いた実施例5の太陽電池は、比較例12の太陽電池と比較して、変換効率が高く、17%程度の効率向上が得られた。これは、本発明の透明性が高く、表面抵抗率が低い透明電極基板を用いたことで、有機太陽電池の内部抵抗の低下により光電変換効率が向上した結果である。
From Tables 1 and 2, the following is confirmed.
(1) As shown in Examples 1 to 4 in Table 1, the transparent electrode substrate of the present invention has high total light transmittance, excellent transparency, and low surface resistivity. It was confirmed that it has excellent conductivity.
(2) On the other hand, the transparent electrode substrates of Comparative Examples 1 to 4 in which a conductive metal layer that is not meshed is embedded in the transparent conductive layer has a low total light transmittance and is more transparent than Examples 1 to 4. The nature was bad.
In addition, the transparent electrode substrates of Comparative Examples 5, 10 and 11 having a structure in which only the transparent conductive layer is provided on the transparent base material have a higher surface resistivity value and inferior conductivity than Examples 1 to 4. ing.
Further, as shown in Comparative Examples 6 to 9, when the conductive metal mesh is directly provided on the transparent base material and the conductive metal mesh layer is not embedded, the total light transmittance is as described in Examples 1 to 9. It is lower than 3 and also has a high surface resistivity, indicating that the transparency and conductivity are poor.
As shown in the results of Table 2, the solar cell of Example 5 using the transparent electrode substrate of the present invention has a higher conversion efficiency than the solar cell of Comparative Example 12, and an efficiency of about 17%. An improvement was obtained. This is a result of improvement in photoelectric conversion efficiency due to a decrease in internal resistance of the organic solar cell by using the transparent electrode substrate having high transparency and low surface resistivity of the present invention.

本発明の透明電極基板は、透明性が高く、表面抵抗率が低いため、透明性と導電性のバランスに優れている。本発明の透明電極基板は、有機薄膜太陽電池等の太陽電池;トランジスタ、メモリー、有機EL等の有機デバイス;液晶ディスプレイ;電子ペーパー;薄膜トランジスタ;エレクトロクロミック;電気化学発光デバイス;タッチパネル;ディスプレイ;熱電変換デバイス;圧電変換デバイス;蓄電デバイス;等の電子デバイスに使用可能である。   Since the transparent electrode substrate of the present invention has high transparency and low surface resistivity, it has an excellent balance between transparency and conductivity. The transparent electrode substrate of the present invention is a solar cell such as an organic thin film solar cell; an organic device such as a transistor, a memory, or an organic EL; a liquid crystal display; an electronic paper; a thin film transistor; an electrochromic; It can be used for electronic devices such as devices; piezoelectric conversion devices;

1:透明基材
2:第1の透明導電層
3:導電性金属メッシュ層
4:第2の透明導電層
5:光電変換層
6:電極
7:基材
8:透明導電層
9:透明電極基板
10:太陽電池
1: transparent base material 2: first transparent conductive layer 3: conductive metal mesh layer 4: second transparent conductive layer 5: photoelectric conversion layer 6: electrode 7: base material 8: transparent conductive layer 9: transparent electrode substrate 10: Solar cell

Claims (6)

透明基材の一方の面に第1の透明導電層を備え、該第1の透明導電層上に導電性金属メッシュ層を備え、導電性金属メッシュ層を内部に埋設した第2の透明導電層が積層されてなる透明電極基板であって、前記第1の透明導電層及び前記第2の透明導電層の全体の厚みを100%とした場合、前記導電性金属メッシュ層が、前記第1の透明導電層及び前記第2の透明導電層の全体の厚みの透明基材側から50〜99%の距離の範囲の位置に埋設されてなり、
前記導電性金属メッシュ層の厚みが10〜50nmであり、
前記導電性金属メッシュ層を形成させるための材料が、銀単体の金属、または銀を主体とする合金を含み、
前記第1の透明導電層及び前記第2の透明導電層が、スズドープ酸化インジウム(ITO)の層であり、
前記第1の透明導電層の厚みが30〜500nmであり、
前記第2の透明導電層の厚みが20〜100nmであり、
前記第2の透明導電層の厚みは、前記第1の透明導電層の厚みよりも薄い、透明電極基板。
A second transparent conductive layer comprising a first transparent conductive layer on one side of the transparent substrate, a conductive metal mesh layer on the first transparent conductive layer, and the conductive metal mesh layer embedded therein When the total thickness of the first transparent conductive layer and the second transparent conductive layer is 100%, the conductive metal mesh layer is formed of the first transparent conductive layer. Embedded in a position in the range of a distance of 50 to 99% from the transparent substrate side of the entire thickness of the transparent conductive layer and the second transparent conductive layer,
The conductive metal mesh layer has a thickness of 10 to 50 nm,
The material for forming the conductive metal mesh layer includes a metal of silver alone or an alloy mainly composed of silver,
The first transparent conductive layer and the second transparent conductive layer are layers of tin-doped indium oxide (ITO) ,
The thickness of the first transparent conductive layer is 30 to 500 nm,
The thickness of the second transparent conductive layer is 20 to 100 nm,
The thickness of the second transparent conductive layer is a transparent electrode substrate that is thinner than the thickness of the first transparent conductive layer.
前記導電性金属メッシュ層の開口部の開口率が75%以上である請求項1に記載の透明電極基板。   The transparent electrode substrate according to claim 1, wherein the opening ratio of the opening of the conductive metal mesh layer is 75% or more. 透明基材の一方の面に第1の透明導電層を形成させ、同透明導電層上に導電性金属層を形成させ、同導電性金属層をフォットレジストパターニング処理することにより導電性金属メッシュ層を形成させ、同金属メッシュ層の面に第2の透明導電層を形成させて同導電性金属メッシュ層を同透明導電層により被覆する際、前記第1の透明導電層及び前記第2の透明導電層の全体の厚みを100%とした場合、前記導電性金属メッシュ層が前記第1の透明導電層及び前記第2の透明導電層の全体の厚みの透明基材側から50〜99%の距離の範囲の位置に埋設されてなり、かつ
前記導電性金属メッシュ層の厚みが10〜50nmであり、
前記導電性金属メッシュ層を形成させるための材料が、銀単体の金属、または銀を主体とする合金を含み、
前記第1の透明導電層及び前記第2の透明導電層が、スズドープ酸化インジウム(ITO)の層であり、
前記第1の透明導電層の厚みが30〜500nmであり、
前記第2の透明導電層の厚みが20〜100nmであり、
前記第2の透明導電層の厚みは、前記第1の透明導電層の厚みよりも薄い、ことを特徴とする透明電極基板の製造方法。
A conductive metal mesh layer is formed by forming a first transparent conductive layer on one surface of a transparent substrate, forming a conductive metal layer on the transparent conductive layer, and subjecting the conductive metal layer to a photoresist resist patterning process. When forming the second transparent conductive layer on the surface of the metal mesh layer and covering the conductive metal mesh layer with the transparent conductive layer, the first transparent conductive layer and the second transparent conductive layer are formed. When the total thickness of the conductive layer is 100%, the conductive metal mesh layer is 50 to 99% of the total thickness of the first transparent conductive layer and the second transparent conductive layer from the transparent substrate side. Embedded in a distance range, and the conductive metal mesh layer has a thickness of 10 to 50 nm,
The material for forming the conductive metal mesh layer includes a metal of silver alone or an alloy mainly composed of silver,
The first transparent conductive layer and the second transparent conductive layer are layers of tin-doped indium oxide (ITO) ,
The thickness of the first transparent conductive layer is 30 to 500 nm,
The thickness of the second transparent conductive layer is 20 to 100 nm,
The method of manufacturing a transparent electrode substrate, wherein the thickness of the second transparent conductive layer is thinner than the thickness of the first transparent conductive layer.
前記第1の透明導電層の厚みが30〜300nm、前記第2の透明導電層の厚みが25〜50nmである請求項3に記載の製造方法。 The manufacturing method according to claim 3 , wherein the thickness of the first transparent conductive layer is 30 to 300 nm, and the thickness of the second transparent conductive layer is 25 to 50 nm. 請求項1または2に記載の透明電極基板を有することを特徴とする電子デバイス。   An electronic device comprising the transparent electrode substrate according to claim 1. 請求項1または2に記載の透明電極基板を有することを特徴とする太陽電池。   A solar cell comprising the transparent electrode substrate according to claim 1.
JP2011000779A 2011-01-05 2011-01-05 Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell Active JP5913809B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011000779A JP5913809B2 (en) 2011-01-05 2011-01-05 Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell
CN201110394002XA CN102593194A (en) 2011-01-05 2011-12-01 Transparent electrode base plate, manufacture method thereof and electric device and solar cell with the transparent electrode base plate
KR1020110127777A KR101897278B1 (en) 2011-01-05 2011-12-01 Transparent electrode substrate, method for producing the same, and electric device and solar battery having the transparent electrode substrate
TW100149395A TWI533461B (en) 2011-01-05 2011-12-29 Transparent electrode substrate, method for producing the same, electronic device and solar cell having the transparent electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000779A JP5913809B2 (en) 2011-01-05 2011-01-05 Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell

Publications (2)

Publication Number Publication Date
JP2012142500A JP2012142500A (en) 2012-07-26
JP5913809B2 true JP5913809B2 (en) 2016-04-27

Family

ID=46481609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000779A Active JP5913809B2 (en) 2011-01-05 2011-01-05 Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell

Country Status (4)

Country Link
JP (1) JP5913809B2 (en)
KR (1) KR101897278B1 (en)
CN (1) CN102593194A (en)
TW (1) TWI533461B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328483B1 (en) * 2012-05-10 2013-11-13 전자부품연구원 Transparent electrode thin-film with metal mesh structure and method thereof
JP2014052435A (en) * 2012-09-05 2014-03-20 Nitto Denko Corp Transparent electrode substrate, method of producing the same, and image display device
KR101366737B1 (en) * 2012-10-25 2014-02-26 한국생산기술연구원 Method for fabricating solar cell with increased reflection characteristic of silicon nano and micro structure through removing bundle and solar cell thereof
KR101375738B1 (en) * 2012-10-25 2014-03-26 한국생산기술연구원 Method for fabricating polycrystalline silicon thin film nano structure using ag nano particle, polycrystalline silicon nano structure fabibricated by the same and polycrystalline silicon thin film solar cell including polycrystalline silicon nano structure
KR101375781B1 (en) * 2012-10-25 2014-03-19 한국생산기술연구원 Method for fabricating solar cell with increase carrier life through sod doping and passivation lf nano and micro silicon complex structure and solar cell thereof
KR101366740B1 (en) * 2012-10-25 2014-02-26 한국생산기술연구원 Method for fabricating nano/micro composite solar cell formed by pocl_3 doping and solar cell thereof
KR101504839B1 (en) * 2012-11-30 2015-03-23 주식회사 엘지화학 Conducting substrate and method for preparing the same
CN103971787B (en) * 2013-02-04 2016-06-22 深圳欧菲光科技股份有限公司 Transparent conductive body and preparation method thereof
TWI483411B (en) * 2013-02-20 2015-05-01 Motech Ind Inc Solar cell and module comprising the same
WO2015016598A1 (en) 2013-08-01 2015-02-05 주식회사 엘지화학 Transparent conductive laminate, transparent electrode including transparent conductive laminate, and method for manufacturing transparent conductive laminate
MX2016002432A (en) 2013-08-30 2016-12-07 Basf Coatings Gmbh Hybrid organic/inorganic thin films and method of manufacturing same.
CN103885191B (en) * 2014-03-12 2016-02-24 京东方科技集团股份有限公司 3D raster box and preparation method thereof, color membrane substrates and display device
JP2015195341A (en) * 2014-03-24 2015-11-05 三菱電機株式会社 Photoelectric conversion element and method of manufacturing photoelectric conversion element
KR101541517B1 (en) * 2014-03-26 2015-08-03 부산대학교 산학협력단 Transparent electrode using single crystal copper with nano-netted multi-layer and fabricating method thereof
KR101760252B1 (en) 2014-05-15 2017-07-31 엘지디스플레이 주식회사 Organic light emitting device
CN105702875B (en) 2014-12-11 2018-04-27 财团法人工业技术研究院 Light-emitting element, electrode structure and manufacturing method thereof
JP2016178117A (en) * 2015-03-18 2016-10-06 積水化学工業株式会社 Transparent electrode for solar cell and electrode laminate for solar cell
US20180098422A1 (en) * 2015-04-06 2018-04-05 Kaneka Corporation Transparent conductive film and display device
CN104834134B (en) * 2015-05-21 2017-08-04 哈尔滨工业大学 A kind of electrochomeric glass
KR102456121B1 (en) * 2015-12-15 2022-10-17 엘지디스플레이 주식회사 Light controlling device, transparent display device including the same and method for manufacturing the same
CN105449106B (en) * 2015-12-28 2018-10-23 中国科学院重庆绿色智能技术研究院 A kind of transparent electrode and preparation method thereof based on super thin metal
ITUA20162095A1 (en) * 2016-03-30 2016-06-30 Fabrizio Chiara COATING PROCEDURE OF A PHOTOVOLTAIC SURFACE AND PHOTOVOLTAIC SURFACE REALIZED BY SUCH A PROCEDURE.
WO2018004280A1 (en) * 2016-06-30 2018-01-04 부산대학교 산학협력단 Copper oxide thin film structure using flawless single crystal copper thin film, and manufacturing method therefor
US20190218427A1 (en) * 2016-09-30 2019-07-18 Nitto Denko Corporation Adhesive composition, adhesive layer, polarizing film coated with adhesive layer, liquid crystal panel, and image display device
KR102035689B1 (en) * 2017-02-23 2019-10-23 동우 화인켐 주식회사 Film type antenna and display device comprising the same
CN108630818A (en) * 2017-03-15 2018-10-09 Tcl集团股份有限公司 Light emitting diode with quantum dots device and preparation method thereof with Novel anode structure
US11382245B2 (en) * 2019-03-01 2022-07-05 The Regents Of The University Of Michigan Ultra-thin conductor based semi-transparent electromagnetic interference shielding
US20200309995A1 (en) * 2019-03-26 2020-10-01 Facebook Technologies, Llc Anti-reflective coatings for transparent electroactive transducers
JP7336305B2 (en) * 2019-08-06 2023-08-31 日東電工株式会社 transparent conductive film
JP2021026902A (en) * 2019-08-06 2021-02-22 日東電工株式会社 Transparent conductive film
CN112908519B (en) * 2021-01-19 2022-04-12 大正(江苏)微纳科技有限公司 Chemical corrosion resistant transparent conductive film and preparation method thereof
CN113284957B (en) 2021-04-21 2022-09-23 华为技术有限公司 Solar cell and electronic device
KR102634852B1 (en) * 2021-10-27 2024-02-06 인천대학교 산학협력단 Bifacial Color-Tunable Transparent Photovoltaics and their manufacturing methods
CN114283994B (en) * 2021-11-23 2023-05-09 华中科技大学 Embedded metal grid flexible electrode film and preparation method and application thereof
JPWO2023210660A1 (en) * 2022-04-25 2023-11-02

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241464A (en) 1996-12-26 1998-09-11 Asahi Glass Co Ltd Substrate with transparent conductive film and manufacture thereof
JP2004296669A (en) 2003-03-26 2004-10-21 Bridgestone Corp Dye-sensitized solar cell and electrode therefor
US8513878B2 (en) * 2006-09-28 2013-08-20 Fujifilm Corporation Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode
KR100811473B1 (en) 2006-10-17 2008-03-07 엘지전자 주식회사 Light emitting panel and light source comprising the same
KR101352779B1 (en) * 2007-02-28 2014-01-16 주식회사 동진쎄미켐 Transparent electrode for solar cell and method for preparing the same
JP2009081104A (en) 2007-09-27 2009-04-16 Konica Minolta Holdings Inc Transparent conductive film
JP5651910B2 (en) 2007-12-13 2015-01-14 コニカミノルタ株式会社 Transparent conductive film and method for producing transparent conductive film
JP4985717B2 (en) * 2008-12-04 2012-07-25 大日本印刷株式会社 Organic thin film solar cell and method for producing the same

Also Published As

Publication number Publication date
TWI533461B (en) 2016-05-11
KR101897278B1 (en) 2018-09-11
CN102593194A (en) 2012-07-18
TW201246578A (en) 2012-11-16
JP2012142500A (en) 2012-07-26
KR20120079803A (en) 2012-07-13

Similar Documents

Publication Publication Date Title
JP5913809B2 (en) Transparent electrode substrate, method for producing the same, electronic device having the transparent electrode substrate, and solar cell
WO2012093530A1 (en) Transparent conductive laminate body and organic thin film device
Xia et al. Review on applications of PEDOTs and PEDOT: PSS in perovskite solar cells
Wang et al. Modification of the highly conductive PEDOT: PSS layer for use in silver nanogrid electrodes for flexible inverted polymer solar cells
CN103000817B (en) A kind of flexible Organic Light Emitting Diode
KR101519888B1 (en) Hybrid transparent electrode and the fabricating method thereof
US20140256081A1 (en) Methods For Producing Thin Film Charge Selective Transport Layers
US20160111223A1 (en) A laminated opto-electronic device and method for manufacturing the same
KR20150016119A (en) Transparent cunductive film, transparent electrode comprinsing transparent cunductive film, and manufacturing for transparent cunductive film
Zhang et al. Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide–Assisted silver nanowire transparent electrode
TWI695526B (en) Organic photovoltaic device and method for forming the same
Cho et al. Efficient ITO-free semitransparent perovskite solar cells with metal transparent electrodes
Lee et al. Transparent and flexible PEDOT: PSS electrodes passivated by thin IZTO film using plasma-damage free linear facing target sputtering for flexible organic solar cells
Li et al. Room-temperature sputtered aluminum-doped zinc oxide for semitransparent perovskite solar cells
Cattin et al. New dielectric/metal/dielectric electrode for organic photovoltaic cells using Cu: Al alloy as metal
Park et al. Bifunctional graphene oxide hole-transporting and barrier layers for transparent bifacial flexible perovskite solar cells
WO2008051205A2 (en) Carbon nanotube use in solar cell applications
Jiang et al. Indium-free flexible perovskite solar cells with AZO/Cu/Ag/AZO multilayer transparent electrodes
Chang et al. Top-illuminated organic solar cells fabricated by vacuum-free and all-solution processes
KR20140133317A (en) Transparent conductor comprising silver nanowire and silver grid complex pattern and method of manufacturing the same
US11489081B2 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
Cho et al. Hierarchical silver network transparent conducting electrodes for thin-film solar cells
Raman et al. Inverted organic photovoltaics using highly transparent and flexible InGaON/AgTi/InGaON multilayer electrodes
NL2006756C2 (en) Method for forming an electrode layer with a low work function, and electrode layer.
KR20220077980A (en) Perovskite photovoltaic cell with high-efficiency and preparing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140825

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5913809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250