JPH09236811A - Transparent conductive substrate for liquid crystal display and forming method for transparent electrode - Google Patents

Transparent conductive substrate for liquid crystal display and forming method for transparent electrode

Info

Publication number
JPH09236811A
JPH09236811A JP31713596A JP31713596A JPH09236811A JP H09236811 A JPH09236811 A JP H09236811A JP 31713596 A JP31713596 A JP 31713596A JP 31713596 A JP31713596 A JP 31713596A JP H09236811 A JPH09236811 A JP H09236811A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
zno
layer
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31713596A
Other languages
Japanese (ja)
Other versions
JP3684720B2 (en
Inventor
Masami Miyazaki
正美 宮崎
Kazuo Sato
一夫 佐藤
Satoru Takagi
悟 高木
Arinori Kawamura
有紀 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP31713596A priority Critical patent/JP3684720B2/en
Publication of JPH09236811A publication Critical patent/JPH09236811A/en
Application granted granted Critical
Publication of JP3684720B2 publication Critical patent/JP3684720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a transparent conductive substrate for a LCD having low specific resistance, excellent durability and excellent micro fabrication performance for electrodes by alternately depositing films essentially comprising ZnO and films essentially comprising Ag to form layers of an odd number as a transparent conductive film so that outermost layer is a film essentially comprising ZnO. SOLUTION: Films are alternately deposited to form (2n+1) layers, wherein n>=1, in such a manner that a film 2 essentially comprising ZnO is formed as the first layer from the substrate 1, a film 3 essentially comprising Ag is formed as the second layer and then a ZnO film 4 as the third layer. As for the film essentially comprising ZnO, a ZnO film containing Ga is preferable. As for the film essentially comprising Ag, an Ag film containing Pd or Au is preferable. The ZnO film is easily crystallized, and when the ZnO film is formed as the base film for an Ag layer, the ZnO film not only promotes crystallization of the Ag layer and prevents aggregation of Ag but improves the adhesion strength on the interface between the ZnO film and the Ag film. Thereby, moisture resistance and patterning characteristics with an acid soln. are significantly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶ディスプレイ
(以下LCDという)用透明導電基板および該基板の透
明電極形成方法に関する。
TECHNICAL FIELD The present invention relates to a transparent conductive substrate for a liquid crystal display (hereinafter referred to as LCD) and a transparent electrode forming method for the substrate.

【0002】[0002]

【従来の技術】現在、LCD用電極としてITO膜が広
く用いられている。特に、STN型のカラーLCDにお
いては、その高精細化、大画面化に伴い、液晶駆動用透
明電極の線幅もより細く、また長い形状のものが必要と
なってきている。
2. Description of the Related Art At present, an ITO film is widely used as an electrode for LCD. In particular, in the STN type color LCD, the line width of the transparent electrode for driving the liquid crystal is narrower and the shape thereof is required to be longer due to the higher definition and the larger screen.

【0003】このため、シート抵抗3Ω/□以下のきわ
めて低抵抗の透明導電膜が必要とされる。このシート抵
抗を達成するためには、透明導電膜の厚膜化(300n
m以上)または低比抵抗化(100μΩ・cm以下)を
はかる必要がある。
Therefore, a transparent conductive film having a sheet resistance of 3Ω / □ or less and having an extremely low resistance is required. In order to achieve this sheet resistance, the transparent conductive film should be thickened (300 n
m or more) or low resistivity (100 μΩ · cm or less).

【0004】しかし、厚膜化は、1)透明導電膜の成膜
コストが増加すること、2)電極パターニングの困難さ
が増加すること、3)透明導電極の有無による段差が大
きくなり、液晶の配向制御が困難になるなどの問題が生
じるため、限界がある。
However, the thicker film requires 1) an increase in the cost of forming the transparent conductive film, 2) an increase in the difficulty of electrode patterning, and 3) an increase in the step due to the presence or absence of the transparent conductive electrode. However, there is a limit because it causes a problem that it becomes difficult to control the orientation.

【0005】一方、ITO膜自体を低比抵抗化する方法
も検討されているが、100μΩ・cm以下の低抵抗I
TO膜を安定して生産する方法はまだ確立されていな
い。
On the other hand, a method for lowering the specific resistance of the ITO film itself has been studied, but a low resistance I of 100 μΩ · cm or less is obtained.
A method for stably producing a TO film has not yet been established.

【0006】他方、100μΩ・cm以下の低抵抗透明
導電膜を容易に得る方法としては、Ag層をITO層で
挟んだITO/Ag/ITOという構成が知られてい
る。しかし、この構成も低比抵抗ではあるが、室内放置
により膜剥離と思われる白色欠点を生じてしまうほど耐
久性が不充分であること、酸性水溶液を用いたエッチン
グによる電極加工の際にも、サイドエッチングが進行
し、パターンエッジ部に剥離が見られるなどその加工性
は不充分である。
On the other hand, as a method for easily obtaining a low resistance transparent conductive film of 100 μΩ · cm or less, a structure of ITO / Ag / ITO in which an Ag layer is sandwiched between ITO layers is known. However, this structure is also low in specific resistance, but the durability is insufficient enough to cause white defects that are considered to be film peeling when left indoors, and even during electrode processing by etching using an acidic aqueous solution, The workability is insufficient such that side etching progresses and peeling is observed at the pattern edge.

【0007】このため、ITO/Ag/ITO構成の基
板は低抵抗が容易に得られる利点を有しながら、LCD
用透明導電基板としてはこれまで実用化されていない。
Therefore, the ITO / Ag / ITO substrate has the advantage that low resistance can be easily obtained,
It has not been put to practical use as a transparent conductive substrate.

【0008】[0008]

【発明が解決しようとする課題】本発明は、低比抵抗
で、耐久性に優れ、微細電極加工性能に優れたLCD用
透明導電基板と該基板の透明電極形成方法の提供を目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a transparent conductive substrate for an LCD, which has low specific resistance, excellent durability, and fine electrode processing performance, and a transparent electrode forming method for the substrate.

【0009】[0009]

【課題を解決するための手段】本発明は、基体上に透明
導電積層膜が形成された液晶ディスプレイ用透明導電基
板において、透明導電積層膜は、基体側から、第1層目
にZnOを主成分とする膜、第2層目にAgを主成分と
する膜、第3層目にZnOを主成分とする膜、のごとく
交互に順に(2n+1)(ただしn≧1)層まで積層さ
れた積層膜であることを特徴とするLCD用透明導電基
板を提供する。
According to the present invention, in a transparent conductive substrate for a liquid crystal display in which a transparent conductive laminated film is formed on a substrate, the transparent conductive laminated film mainly contains ZnO as a first layer from the substrate side. A film containing a component, a film containing Ag as a main component in the second layer, and a film containing ZnO as a main component in the third layer were alternately laminated up to (2n + 1) (where n ≧ 1) layers. Provided is a transparent conductive substrate for LCD, which is a laminated film.

【0010】透明導電積層膜は、ZnOを主成分とする
膜とAgを主成分とする膜とが交互に順に積層され、合
計で3層、5層、7層などの奇数層となり、基体から最
も外側がZnOを主成分とする膜となる。
In the transparent conductive laminated film, a film containing ZnO as a main component and a film containing Ag as a main component are alternately laminated to form an odd number of layers such as three layers, five layers and seven layers. The outermost layer is a film containing ZnO as a main component.

【0011】[0011]

【発明の実施の形態】図1に本発明の3層系透明導電基
板の代表例の断面図を、図2に本発明の5層系透明導電
基板の代表例の断面図を示す。1は基体、2、4、6は
ZnOを主成分とする膜、3、5はAgを主成分とする
膜を示す。
1 is a sectional view of a representative example of a three-layer transparent conductive substrate of the present invention, and FIG. 2 is a sectional view of a representative example of a five-layer transparent conductive substrate of the present invention. Reference numeral 1 is a substrate, 2, 4, 6 are films containing ZnO as a main component, and 3 and 5 are films containing Ag as a main component.

【0012】図3には、図1、2の基体1に相当するも
ので、カラーLCD用の基板を示す。7は、カラー画素
となるカラーフィルタ層、8は透明樹脂保護層、9は無
機中間膜層である。この無機中間膜層9の上に、ZnO
を主成分とする膜とAgを主成分とする膜とが交互に順
に積層され、透明導電積層膜が形成される。
FIG. 3 shows a substrate for a color LCD, which corresponds to the substrate 1 shown in FIGS. Reference numeral 7 is a color filter layer to be a color pixel, 8 is a transparent resin protective layer, and 9 is an inorganic intermediate film layer. ZnO is formed on the inorganic interlayer film layer 9.
And a film containing Ag as a main component are alternately laminated in order to form a transparent conductive laminated film.

【0013】本発明における基体1としては、ガラス
板、樹脂製のフィルムや板も使用できる他、該基体上に
カラー画素となるカラーフィルタ層7を形成した基体、
さらに、該カラーフィルタ層上に、カラーフィルタ層を
保護、平滑化するための透明樹脂層8やこれら樹脂層と
透明導電膜との密着性を高めるためのシリカ、SiNx
などの無機中間膜層9を順次積層した基体を用いてもよ
い。
As the substrate 1 in the present invention, a glass plate, a resin film or plate can be used, and a substrate on which a color filter layer 7 to be a color pixel is formed,
Further, on the color filter layer, a transparent resin layer 8 for protecting and smoothing the color filter layer, silica for increasing the adhesion between these resin layers and the transparent conductive film, and SiN x.
You may use the base | substrate which laminated | stacked the inorganic intermediate film layer 9 of these.

【0014】ZnOを主成分とする膜としては、Gaを
含有するZnO膜(以下、GZO膜という)が好まし
い。その理由は、絶縁物であるZnOにAlなどの3価
のドーパントを添加すると導電性を示すが、Gaを添加
したものが最良の導電性と可視光透過率を示すからであ
る。また、成膜法として、量産性の高い直流スパッタリ
ングを想定した場合、Zn金属もターゲットとして使用
できるが、成膜条件のマージンが狭い難点がある一方
で、Gaを添加することでZnOターゲットからの直流
スパッタリングが可能となり、その成膜条件のマージン
も非常に広くなるからである。
As the film containing ZnO as a main component, a ZnO film containing Ga (hereinafter referred to as a GZO film) is preferable. The reason is that ZnO, which is an insulator, exhibits conductivity when a trivalent dopant such as Al is added, but one in which Ga is added exhibits the best conductivity and visible light transmittance. In addition, when DC sputtering with high mass productivity is assumed as the film forming method, Zn metal can be used as a target, but there is a problem that the margin of film forming conditions is narrow, but addition of Ga causes the ZnO target to be separated from the ZnO target. This is because DC sputtering becomes possible and the margin of film forming conditions becomes very wide.

【0015】特に、GZO膜におけるGaの含有割合
は、ZnとGaとの総和に対してGaが1〜15原子%
であることが好ましい。1%未満では成膜速度が遅くな
り、ドープ量が15%超では可視光透過率が低くなるの
で好ましくない。また、GZO膜の膜厚は、色調および
可視光透過率の観点から、10〜200nmが好まし
い。
Particularly, the content ratio of Ga in the GZO film is such that Ga is 1 to 15 atomic% with respect to the total of Zn and Ga.
It is preferred that If it is less than 1%, the film formation rate becomes slow, and if the doping amount exceeds 15%, the visible light transmittance becomes low, which is not preferable. The thickness of the GZO film is preferably 10 to 200 nm from the viewpoint of color tone and visible light transmittance.

【0016】Agを主成分とする膜としては、Pdを含
有するAg膜(以下、Ag−Pd膜という)またはAu
を含有するAg膜(以下、Ag−Au膜という)が好ま
しい。PdまたはAuの添加によって、Agの凝集現象
を防止し、耐久性の高いAg膜が得られる。Pdおよび
Auを含有するAg膜も好ましく用いうる。
As the film containing Ag as a main component, an Ag film containing Pd (hereinafter referred to as Ag-Pd film) or Au.
An Ag film containing (hereinafter, referred to as Ag-Au film) is preferable. By adding Pd or Au, the aggregation phenomenon of Ag can be prevented and a highly durable Ag film can be obtained. An Ag film containing Pd and Au can also be preferably used.

【0017】この場合、Ag−Pd膜は、(1)合金膜
(以下、PdAg合金膜という)のようにAg中にPd
が均一に存在している膜でも、(2)Pdが局所的に存
在している膜でも、(3)傾斜材料膜のようにPd濃度
が連続的に変化している膜でもよい。
In this case, the Ag-Pd film is formed by adding Pd in Ag like (1) alloy film (hereinafter referred to as PdAg alloy film).
May be a uniform film, a film in which (2) Pd is locally present, or a film in which the Pd concentration is continuously changed, such as (3) a gradient material film.

【0018】Ag−Au膜の場合も同様で、(1)合金
膜(以下、AuAg合金膜という)のようにAg中にA
uが均一に存在している膜でも、(2)Auが局所的に
存在している膜でも、(3)傾斜材料膜のようにAu濃
度が連続的に変化している膜でもよい。
The same applies to the case of an Ag-Au film, and as in (1) alloy film (hereinafter referred to as AuAg alloy film), A is contained in Ag.
It may be a film in which u is uniformly present, a film in which (2) Au is locally present, or a film in which the Au concentration is continuously changed like (3) a gradient material film.

【0019】いずれの場合でも、Ag−Pd膜、Ag−
Au膜の膜厚は3〜20nmが好ましい。3nm未満で
はシート抵抗が高くなり、20nm超では可視光透過率
の低下をもたらすので好ましくない。
In any case, Ag-Pd film, Ag-
The film thickness of the Au film is preferably 3 to 20 nm. If it is less than 3 nm, the sheet resistance becomes high, and if it exceeds 20 nm, the visible light transmittance decreases, which is not preferable.

【0020】前述したPdAg合金膜(1)中のPdの
含有割合は、AgとPdとの総和に対してPdが0.1
〜5.0原子%が好ましい。0.1原子%未満では耐久
性が不充分となり、5.0原子%超過では可視光透過率
の低下および高比抵抗化をもたらすために好ましくな
い。AuAg合金膜中のAuの含有割合についても同様
である。
The content ratio of Pd in the above-mentioned PdAg alloy film (1) is such that Pd is 0.1 with respect to the total of Ag and Pd.
˜5.0 at% is preferred. If it is less than 0.1 atom%, the durability becomes insufficient, and if it exceeds 5.0 atom%, the visible light transmittance is lowered and the specific resistance is increased, which is not preferable. The same applies to the content ratio of Au in the AuAg alloy film.

【0021】Pdが局所的に存在している膜(2)の例
としては、透明導電積層膜におけるZnOを主成分とす
る膜とAgを主成分とする膜との界面の少なくとも1つ
の界面に、厚さ0.1〜1nmのPd層を介在させるこ
とが挙げられる。
As an example of the film (2) in which Pd is locally present, at least one of the interfaces between the film containing ZnO as a main component and the film containing Ag as a main component in the transparent conductive laminated film is used. An intervening Pd layer having a thickness of 0.1 to 1 nm can be mentioned.

【0022】0.1〜1nmのPd層が介在すること
で、前記のPdを添加する効果と同様の効果が得られ
る。Pd層の厚さが0.1nm未満では耐久性が不充分
となり、1nm超では可視光透過率が低下するために好
ましくない。なおこの場合、Agを主成分とする膜とP
d層との合計膜厚を3〜20nmとすることが好まし
い。
By interposing a Pd layer of 0.1 to 1 nm, the same effect as the effect of adding Pd can be obtained. If the thickness of the Pd layer is less than 0.1 nm, the durability becomes insufficient, and if it exceeds 1 nm, the visible light transmittance decreases, which is not preferable. In this case, the film containing Ag as a main component and P
The total film thickness with the d layer is preferably 3 to 20 nm.

【0023】具体的な積層構成としては、a)基体/G
ZO膜/Ag/Pd/GZO膜、b)基体/GZO膜/
Pd/Ag/GZO膜、c)基体/GZO膜/Pd/A
g/Pd/GZO膜などが挙げられる。Auが局所的に
存在している膜についても同様である。
The specific laminated structure is as follows: a) substrate / G
ZO film / Ag / Pd / GZO film, b) substrate / GZO film /
Pd / Ag / GZO film, c) substrate / GZO film / Pd / A
Examples thereof include g / Pd / GZO film. The same applies to a film in which Au is locally present.

【0024】傾斜材料膜(3)としては、表面にPdリ
ッチ層を含むAg−Pd膜が挙げられる。Pdリッチ層
としては、AgとPdとの総和に対してPdが50原子
%以上であるような層が挙げられる。Pdリッチ層の厚
さは、0.1nmでは耐久性が不充分となり、3nm超
では可視光透過率が低下する傾向にあることから0.1
〜3nmの厚さが適当である。Auリッチ層を含むAg
−Au膜についても同様である。
An example of the gradient material film (3) is an Ag-Pd film having a Pd-rich layer on its surface. Examples of the Pd-rich layer include layers in which Pd is 50 atomic% or more with respect to the total sum of Ag and Pd. If the thickness of the Pd-rich layer is 0.1 nm, the durability becomes insufficient, and if it exceeds 3 nm, the visible light transmittance tends to decrease.
A thickness of ~ 3 nm is suitable. Ag containing Au-rich layer
The same applies to the Au film.

【0025】本発明における透明導電積層膜を構成する
それぞれの層の厚さを前述の範囲内で選択することによ
って、光学的干渉効果による透過率、色調の調整やシー
ト抵抗値の調整ができる。
By selecting the thickness of each layer constituting the transparent conductive laminated film in the present invention within the above range, it is possible to adjust the transmittance and color tone and the sheet resistance value due to the optical interference effect.

【0026】また、本発明における透明導電積層膜は、
低シート抵抗、高可視光透過率、高耐久性を示すが、さ
らに特性を向上させるために、成膜後100〜300℃
の加熱処理を施してもよい。
Further, the transparent conductive laminated film in the present invention is
Shows low sheet resistance, high visible light transmittance, and high durability, but in order to further improve the characteristics, 100-300 ° C after film formation
May be subjected to heat treatment.

【0027】本発明は、また、前記透明導電積層膜を有
する液晶ディスプレイ用透明導電基板の透明電極形成方
法において、透明導電積層膜を0.01〜0.5規定の
酸性水溶液を用いて、エッチングし、パターニングする
ことを特徴とするLCD用透明導電基板の透明電極形成
方法を提供する。
The present invention also provides a method for forming a transparent electrode of a transparent conductive substrate for a liquid crystal display having the transparent conductive laminated film, wherein the transparent conductive laminated film is etched using an acidic aqueous solution of 0.01 to 0.5 N. Then, a method for forming a transparent electrode for a transparent conductive substrate for an LCD is provided.

【0028】パターニングに際しては、透明導電積層膜
上にフォトリソグラフィ法により所望のレジストパター
ンを形成した後、0.01〜0.5規定の酸性水溶液を
用いて、エッチング、パターニングを行う。
In patterning, a desired resist pattern is formed on the transparent conductive laminated film by photolithography, and then etching and patterning are performed using an acidic aqueous solution of 0.01 to 0.5N.

【0029】このとき、0.01規定未満の酸性水溶液
では、エッチングがほとんど進まず、0.5規定超の酸
性水溶液では、サイドエッチングが進行してしまう。特
に、他の酸性水溶液に比較し、速いエッチング速度とサ
イドエッチングが小さいという理由から、該エッチング
液として、塩化第二鉄(FeCl3 )を主成分とする酸
性溶液を用いるのが好ましい。
At this time, etching hardly progresses with an acidic aqueous solution of less than 0.01 N, and side etching proceeds with an acidic aqueous solution of more than 0.5 N. In particular, it is preferable to use an acidic solution containing ferric chloride (FeCl 3 ) as a main component as the etching solution because it has a higher etching rate and smaller side etching than other acidic aqueous solutions.

【0030】FeCl3 を主成分とする酸性水溶液とし
ては、第一鉄イオンを含有する酸性水溶液であることが
好ましい。例えばFeCl2 の添加で第一鉄イオンを含
有させることができる。FeCl2 を添加してエッチン
グ液の酸化還元電位をコントロールすることによって、
エッチング終点時間のマージンが広がり、電極幅を精度
良く形成できる。
The acidic aqueous solution containing FeCl 3 as a main component is preferably an acidic aqueous solution containing ferrous ions. Ferrous ions can be included, for example, by adding FeCl 2 . By adding FeCl 2 to control the redox potential of the etching solution,
The margin of the etching end time is widened, and the electrode width can be formed accurately.

【0031】第一鉄イオンの第二鉄イオンに対するモル
比は、0.1〜2であることが好ましい。0.1未満で
は前記効果が得られず、2超ではエッチング進行が阻害
され、設計寸法通りの電極が得られない。
The molar ratio of ferrous ions to ferric ions is preferably 0.1-2. If it is less than 0.1, the above effect cannot be obtained, and if it exceeds 2, the progress of etching is hindered and an electrode having a designed size cannot be obtained.

【0032】[0032]

【作用】本発明は、従来のITO膜が150℃以下の低
温成膜条件下において非結晶構造をとるのに対し、Zn
O膜は結晶化しやすく、前述のAg層の下地膜となった
とき、Ag層の結晶化を促し、Agの凝集現象を防止す
るだけでなく、ZnO膜とAg膜界面の付着力が向上
し、その結果、耐湿性と酸性水溶液によるパターニング
特性が著しく向上するという作用を有する。
In the present invention, the conventional ITO film has an amorphous structure under the low temperature film forming condition of 150 ° C. or lower,
The O film is easy to crystallize, and when it becomes the above-mentioned base film of the Ag layer, it not only promotes the crystallization of the Ag layer and prevents the aggregation phenomenon of Ag, but also improves the adhesive force between the ZnO film and the Ag film interface. As a result, it has an effect of significantly improving the humidity resistance and the patterning characteristics of the acidic aqueous solution.

【0033】[0033]

【実施例】【Example】

[例1]ソーダライムガラス板上に、カラーフィルタ層
7、およびカラーフィルタの平滑化のためのアクリル系
樹脂層保護層8とをあらかじめ形成し、さらに、その上
に、高周波スパッタリング法によりシリカ膜を10nm
形成した基板1を準備した。
[Example 1] A color filter layer 7 and an acrylic resin layer protective layer 8 for smoothing the color filter are previously formed on a soda lime glass plate, and a silica film is further formed thereon by a high frequency sputtering method. To 10 nm
The formed substrate 1 was prepared.

【0034】次に、直流スパッタリング法により、Ar
ガス、3mTorrの雰囲気下で、膜厚16nmのGZ
O膜、11nmのPdAg合金膜、38nmのGZO膜
を順次積層し、透明導電積層膜を形成した。
Next, by a DC sputtering method, Ar
GZ with a film thickness of 16 nm in an atmosphere of gas and 3 mTorr
An O film, an 11 nm PdAg alloy film, and a 38 nm GZO film were sequentially laminated to form a transparent conductive laminated film.

【0035】このとき、GZO膜の形成には、ZnとG
aとの総和に対してGaを5原子%含むZnO焼結体タ
ーゲットを用い、PdAg合金膜の形成には、AgとP
dとの総和に対してPdを1原子%含むPdAg合金タ
ーゲットを使用した。また、GZO膜成膜時のスパッタ
リング電力密度は、5.7W/cm2 、PdAg膜は
0.57W/cm2 とした。なお、成膜時に基板加熱は
行わなかった。
At this time, Zn and G are used to form the GZO film.
Using a ZnO sintered body target containing 5 atomic% of Ga with respect to the sum of a and Ag and P for forming the PdAg alloy film.
A PdAg alloy target containing 1 atomic% of Pd with respect to the total of d was used. Further, the sputtering power density at the time of forming the GZO film was set to 5.7 W / cm 2 , and the PdAg film was set to 0.57 W / cm 2 . The substrate was not heated during film formation.

【0036】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、40℃、相対湿度9
0%の雰囲気中に1週間放置する耐湿テストを実施した
ところ、直径0.5mm以上の白色欠点などは観察され
ず、良好な結果を示した。
Sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Also, 40 ° C, relative humidity 9
When a humidity resistance test was carried out by leaving it in an atmosphere of 0% for 1 week, no white defects with a diameter of 0.5 mm or more were observed and good results were shown.

【0037】[例2]例1の透明導電積層膜を次のよう
に変更した以外は例1と同様に行った。透明導電積層膜
は、膜厚40nmのGZO膜、10nmのPdAg合金
膜、85nmのGZO膜、10nmのPdAg合金膜、
40nmのGZO膜が順次積層されてなる。用いた、タ
ーゲット、スパッタリング電力密度、雰囲気も例1と同
じである。なお、成膜時に基板加熱は行わなかった。
Example 2 The procedure of Example 1 was repeated except that the transparent conductive laminated film of Example 1 was changed as follows. The transparent conductive laminated film is a GZO film having a thickness of 40 nm, a PdAg alloy film having a thickness of 10 nm, a GZO film having a thickness of 85 nm, a PdAg alloy film having a thickness of 10 nm,
A 40 nm GZO film is sequentially laminated. The target, sputtering power density, and atmosphere used are the same as in Example 1. The substrate was not heated during film formation.

【0038】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、直径0.5mm以上の白色欠点
などは観察されず、良好な結果を示した。
The sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, no white defect having a diameter of 0.5 mm or more was observed and a good result was shown.

【0039】[例3]例1の透明導電積層膜を次のよう
に変更した以外は例1と同様に行った。透明導電積層膜
は、膜厚16nmのGZO膜、11nmのPdAg合金
膜、38nmのGZO膜が順次積層されてなる。用い
た、ターゲット、スパッタリング電力密度、雰囲気も例
1と同じである。なお、成膜時に基板加熱は行わず、成
膜後に、250℃、20分の加熱処理を行った。
Example 3 The procedure of Example 1 was repeated except that the transparent conductive laminated film of Example 1 was changed as follows. The transparent conductive laminated film is formed by sequentially laminating a GZO film having a thickness of 16 nm, a PdAg alloy film having a thickness of 11 nm, and a GZO film having a thickness of 38 nm. The target, sputtering power density, and atmosphere used are the same as in Example 1. Note that the substrate was not heated during film formation, and heat treatment was performed at 250 ° C. for 20 minutes after film formation.

【0040】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、直径0.1mm以上の白色欠点
などは観察されず、良好な結果を示した。
Sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, no white defect having a diameter of 0.1 mm or more was observed and good results were shown.

【0041】[例4]例1の透明導電積層膜を次のよう
に変更した以外は例1と同様に行った。透明導電積層膜
は、膜厚40nmのGZO膜、10nmのPdAg合金
膜、85nmのGZO膜、10nmのPdAg合金膜、
40nmのGZO膜が順次積層されてなる。用いた、タ
ーゲット、スパッタリング電力密度、雰囲気も例1と同
じである。なお、成膜時に基板加熱は行わず、成膜後
に、250℃、20分の加熱処理を行った。
Example 4 Example 4 was repeated except that the transparent conductive laminated film of Example 1 was changed as follows. The transparent conductive laminated film is a GZO film having a thickness of 40 nm, a PdAg alloy film having a thickness of 10 nm, a GZO film having a thickness of 85 nm, a PdAg alloy film having a thickness of 10 nm,
A 40 nm GZO film is sequentially laminated. The target, sputtering power density, and atmosphere used are the same as in Example 1. Note that the substrate was not heated during film formation, and heat treatment was performed at 250 ° C. for 20 minutes after film formation.

【0042】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、直径0.1mm以上の白色欠点
などは観察されず、良好な結果を示した。
Sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, no white defect having a diameter of 0.1 mm or more was observed and good results were shown.

【0043】[例5]例1の透明導電積層膜を次のよう
に変更した以外は例1と同様に行った。透明導電積層膜
は、膜厚16nmのGZO膜、11nmのAg膜、0.
3nmのPd膜、38nmのGZO膜が順次積層されて
なる。GZO膜については例1と同じターゲット、スパ
ッタリング電力密度を用いた。Ag膜とPd膜の形成に
は、それぞれAgターゲットとPdターゲットを使用
し、スパッタリング電力密度は、Ag膜は0.57W/
cm2 、Pd膜は0.28W/cm2 とした。雰囲気は
例1と同じである。なお、成膜時に基板加熱は行わず、
成膜後に、250℃、20分の加熱処理を行った。
Example 5 The procedure of Example 1 was repeated except that the transparent conductive laminated film of Example 1 was changed as follows. The transparent conductive laminated film includes a GZO film having a film thickness of 16 nm, an Ag film having a film thickness of 11 nm, a 0.
A 3 nm Pd film and a 38 nm GZO film are sequentially stacked. For the GZO film, the same target and sputtering power density as in Example 1 were used. An Ag target and a Pd target are used for forming the Ag film and the Pd film, respectively, and the sputtering power density is 0.57 W / for the Ag film.
cm 2 , and the Pd film was 0.28 W / cm 2 . The atmosphere is the same as in Example 1. The substrate is not heated during film formation,
After film formation, heat treatment was performed at 250 ° C. for 20 minutes.

【0044】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、直径0.1mm以上の白色欠点
などは観察されず、良好な結果を示した。
Sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, no white defect having a diameter of 0.1 mm or more was observed and good results were shown.

【0045】[例6]例1の透明導電積層膜を次のよう
に変更した以外は例1と同様に行った。透明導電積層膜
は、膜厚16nmのGZO膜、11nmのAg膜、38
nmのGZO膜が順次積層されてなる。GZO膜につい
ては例1と同じターゲット、スパッタリング電力密度を
用い、Ag膜については、例5と同じターゲット、スパ
ッタリング電力密度を用いた。雰囲気は例1と同じであ
る。なお、成膜時に基板加熱は行わず、成膜後に、25
0℃、20分の加熱処理を行った。
[Example 6] The procedure of Example 1 was repeated except that the transparent conductive laminated film of Example 1 was changed as follows. The transparent conductive laminated film includes a GZO film having a thickness of 16 nm, an Ag film having a thickness of 11 nm, a 38
nm GZO films are sequentially laminated. The same target and sputtering power density as in Example 1 were used for the GZO film, and the same target and sputtering power density as in Example 5 were used for the Ag film. The atmosphere is the same as in Example 1. Note that the substrate is not heated at the time of film formation and 25
Heat treatment was performed at 0 ° C. for 20 minutes.

【0046】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、一部に、直径0.5mm程度の
白色欠点が見られたものの、耐湿性はおおむね良好であ
った。
Sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, although a white defect having a diameter of about 0.5 mm was partially observed, the moisture resistance was generally good.

【0047】[例7]例1の透明導電積層膜を次のよう
に変更した以外は例1と同様に行った。透明導電積層膜
は、膜厚16nmのGZO膜、11nmのAuAg合金
膜、38nmのGZO膜が順次積層されてなる。GZO
膜については例1と同じターゲット、スパッタリング電
力密度を用い、AuAg合金膜の形成には、AgとAu
の総和に対してAuを1原子%含むAuAg合金ターゲ
ットを使用し、スパッタリング電力密度は0.57W/
cm2 とした。雰囲気は例1と同じである。なお、成膜
時に基板加熱は行わず、成膜後に、250℃、20分の
加熱処理を行った。
Example 7 The procedure of Example 1 was repeated except that the transparent conductive laminated film of Example 1 was changed as follows. The transparent conductive laminated film is formed by sequentially laminating a 16 nm thick GZO film, an 11 nm AuAg alloy film, and a 38 nm GZO film. GZO
The same target and sputtering power density as in Example 1 were used for the film, and Ag and Au were used for forming the AuAg alloy film.
The AuAg alloy target containing 1 atomic% of Au was used for the total of the above, and the sputtering power density was 0.57 W /
cm 2 . The atmosphere is the same as in Example 1. Note that the substrate was not heated during film formation, and heat treatment was performed at 250 ° C. for 20 minutes after film formation.

【0048】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、直径0.1mm以上の白色欠点
などは観察されず、良好な結果を示した。
Sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, no white defect having a diameter of 0.1 mm or more was observed and good results were shown.

【0049】[例8(比較例)]例1の透明導電積層膜
を次のように変更した以外は例1と同様に行った。透明
導電積層膜は、膜厚16nmのITO膜、11nmのP
dAg合金膜、38nmのITO膜が順次積層されてな
る。ITO膜の形成にはInとSnとの総和に対してS
nを10原子%含む酸化インジウム焼結体ターゲットを
用い、スパッタリング電力密度が5.7W/cm2 で、
3%酸素を含んだArガスで、3mTorrの雰囲気下
で成膜した。PdAg膜の形成には、例1と同じターゲ
ット、スパッタリング電力密度、雰囲気を用いた。な
お、成膜時に基板加熱は行わず、成膜後に、250℃、
20分の加熱処理を行った。
Example 8 (Comparative Example) The procedure of Example 1 was repeated except that the transparent conductive laminated film of Example 1 was changed as follows. The transparent conductive laminated film is an ITO film with a film thickness of 16 nm and a P film with a film thickness of 11 nm.
A dAg alloy film and a 38 nm ITO film are sequentially laminated. For the formation of the ITO film, the total sum of In and Sn is S
Using an indium oxide sintered body target containing 10 atomic% of n and a sputtering power density of 5.7 W / cm 2 ,
A film was formed with an Ar gas containing 3% oxygen in an atmosphere of 3 mTorr. The same target, sputtering power density, and atmosphere as in Example 1 were used for forming the PdAg film. Note that the substrate was not heated at the time of film formation, and 250 ° C. after film formation.
A heat treatment was performed for 20 minutes.

【0050】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、直径1mm以上の白色欠点が多
数発生し、耐湿性不良であった。
The sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, a large number of white defects having a diameter of 1 mm or more occurred and the moisture resistance was poor.

【0051】[例9(比較例)]例8の透明導電積層膜
を次のように変更した以外は例8と同様に行った。透明
導電積層膜は、膜厚40nmのITO膜、10nmのP
dAg合金膜、85nmのITO膜、10nmのPdA
g合金膜、40nmのITO膜が順次積層されてなる。
用いた、ターゲット、スパッタリング電力密度、雰囲気
も例8と同じである。なお、成膜時に基板加熱は行わ
ず、成膜後に、250℃、20分の加熱処理を行った。
Example 9 (Comparative Example) The procedure of Example 8 was repeated, except that the transparent conductive laminated film of Example 8 was changed as follows. The transparent conductive laminated film is an ITO film having a thickness of 40 nm and a P film having a thickness of 10 nm.
dAg alloy film, 85 nm ITO film, 10 nm PdA
A g-alloy film and a 40 nm ITO film are sequentially laminated.
The target, sputtering power density and atmosphere used are the same as in Example 8. Note that the substrate was not heated during film formation, and heat treatment was performed at 250 ° C. for 20 minutes after film formation.

【0052】得られた透明導電積層膜のシート抵抗値、
可視光透過率を表1に示す。また、例1と同様な耐湿テ
ストを実施したところ、直径1mm以上の白色欠点が多
数発生し、耐湿性不良であった。
The sheet resistance value of the obtained transparent conductive laminated film,
The visible light transmittance is shown in Table 1. Further, when a moisture resistance test similar to that of Example 1 was carried out, a large number of white defects having a diameter of 1 mm or more occurred and the moisture resistance was poor.

【0053】[パターニング性]さらに、例1〜9の透
明導電積層膜のパターニング性についても調査した。透
明導電積層膜上にフォトリソグラフィ法により所望のレ
ジストパターンを形成した後、各種濃度のA)塩酸水溶
液を用いてエッチングし、ライン幅130μm、スペー
ス幅20μmの微細電極パターンを形成した。
[Patternability] Further, the patternability of the transparent conductive laminated films of Examples 1 to 9 was also investigated. After forming a desired resist pattern on the transparent conductive laminated film by a photolithography method, etching was performed using A) hydrochloric acid aqueous solution of various concentrations to form a fine electrode pattern having a line width of 130 μm and a space width of 20 μm.

【0054】図4において、太いストライプの部分がエ
ッチングされずに残った透明導電積層膜の部分(すなわ
ち、透明電極となる部分)であり、細いストライプの部
分がエッチングされた部分である。図5も同様である。
In FIG. 4, the thick stripe portion is the portion of the transparent conductive laminated film which remains without being etched (that is, the portion which becomes the transparent electrode), and the thin stripe portion is the etched portion. The same applies to FIG.

【0055】例1〜7の透明導電積層膜については、
0.1規定の塩酸水溶液を用いた場合に、図4に示すよ
うに、サイドエッチングが小さく、パターンエッジ形状
もシャープな良好な電極パターニングが得られた。0.
01〜0.5規定の各種濃度の塩酸水溶液を用いた場合
にも同様の結果が得られた。0.01規定未満のエッチ
ング液では、エッチングがほとんど進まず、0.5規定
超の液では、サイドエッチングが進行した。
Regarding the transparent conductive laminated films of Examples 1 to 7,
When a 0.1 N hydrochloric acid aqueous solution was used, as shown in FIG. 4, good electrode patterning was obtained in which side etching was small and the pattern edge shape was sharp. 0.
Similar results were obtained when hydrochloric acid aqueous solutions having various concentrations of 01 to 0.5 N were used. With an etching solution of less than 0.01 N, etching hardly progressed, and with a solution of more than 0.5 N, side etching proceeded.

【0056】エッチング液として、A)塩酸水溶液に代
えて、B)硝酸水溶液、C)硫酸水溶液、D)塩化第二
鉄水溶液またはE)塩化第一鉄含有塩化第二鉄水溶液
(第一鉄イオンの第二鉄イオンに対するモル比が0.
7)、を各種濃度で用いたところ、同様の結果が得られ
た。また、前述のエッチング液A)〜E)のうちでは、
E)液が、サイドエッチング量が最も小さかった。
Instead of A) hydrochloric acid aqueous solution, B) nitric acid aqueous solution, C) sulfuric acid aqueous solution, D) ferric chloride aqueous solution or E) ferrous chloride-containing ferric chloride aqueous solution (ferrous ion) The molar ratio of iron to ferric ion is 0.
When 7) was used at various concentrations, similar results were obtained. Further, among the above-mentioned etching solutions A) to E),
The solution E) had the smallest side etching amount.

【0057】一方、例8〜9の透明導電積層膜について
は、いずれのエッチング液を用いても、また、いずれの
濃度で用いても、図5に示すような10μm以上のサイ
ドエッチングが進行し、パターンエッジ付近では、Pd
Ag膜の剥離が見られた。
On the other hand, with regard to the transparent conductive laminated films of Examples 8 to 9, side etching of 10 μm or more as shown in FIG. , Pd near the pattern edge
Peeling of the Ag film was observed.

【0058】これらの結果を表1に示す。なお、表1に
おいてA欄はパターニング性を、B欄は耐湿性を示す。
A欄における◎は、エッチング液A)〜E)のどれを用
いても、ア)エッジ形状がシャープである、イ)残渣が
ない、ウ)サイドエッチングが10μm未満である、こ
とを意味し、×は、前記ア)〜ウ)のすべては満足でき
ないことを意味する。B欄における◎は、直径0.1m
m以上の白色欠点が観察されないこと、○は、直径0.
1〜1mmの白色欠点がわずかに観察されること、×
は、1mm以上の白色欠点が多数観察されることを意味
する。
The results are shown in Table 1. In Table 1, column A shows patterning property, and column B shows moisture resistance.
⊚ in the column A means that no matter which of the etching solutions A) to E) is used, a) the edge shape is sharp, b) there is no residue, and c) the side etching is less than 10 μm, X means that all of the above a) to c) cannot be satisfied. ◎ in column B is 0.1 m in diameter
No white defects with a diameter of 0.
A slight white defect of 1 to 1 mm is observed, ×
Means that many white defects of 1 mm or more are observed.

【0059】また、例2、4、7および9の透明導電積
層膜については、前述のエッチング液A)〜E)を0.
1規定の濃度で用いた場合のサイドエッチング量に関す
る詳細データを表2に示す。
For the transparent conductive laminated films of Examples 2, 4, 7 and 9, the above-mentioned etching solutions A) to E) were added in the amount of 0.
Table 2 shows detailed data regarding the amount of side etching when used at a concentration of 1 normal.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【発明の効果】本発明によれば、ガラス上はもちろんの
こと、成膜温度の低い(100℃以下)プラスチック上
や、カラーLCD用のカラーフィルタ付き基板上(25
0℃以下)に透明導電積層膜が形成されたLCD用透明
導電基板を提供できる。
According to the present invention, not only on glass, but also on plastic having a low film forming temperature (100 ° C. or lower) or on a substrate with a color filter for color LCD (25
A transparent conductive substrate for LCD having a transparent conductive laminated film formed at 0 ° C. or lower can be provided.

【0063】しかも透明導電積層膜の合計膜厚は300
nm以下で、シート抵抗値3Ω/□以下という低比抵抗
であり、また、耐久性に優れ、酸性水溶液による微細電
極加工性能にも優れる。
Moreover, the total thickness of the transparent conductive laminated film is 300.
It has a sheet resistance value of 3 Ω / □ or less and a low specific resistance of not more than nm, and also has excellent durability and excellent fine electrode processing performance with an acidic aqueous solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶ディスプレイ用透明導電基板の一
例の断面模式図。
FIG. 1 is a schematic sectional view of an example of a transparent conductive substrate for a liquid crystal display of the present invention.

【図2】本発明の液晶ディスプレイ用透明導電基板の他
の一例の断面模式図。
FIG. 2 is a schematic sectional view of another example of the transparent conductive substrate for a liquid crystal display of the present invention.

【図3】本発明に使用されるカラー液晶ディスプレイ用
基板の断面模式図。
FIG. 3 is a schematic cross-sectional view of a color liquid crystal display substrate used in the present invention.

【図4】例1〜6の透明導電積層膜についてのパターニ
ング状態を示す顕微鏡写真。
FIG. 4 is a micrograph showing a patterning state of transparent conductive laminated films of Examples 1 to 6.

【図5】例7〜8の透明導電積層膜についてのパターニ
ング状態を示す顕微鏡写真。
FIG. 5 is a photomicrograph showing a patterning state of transparent conductive laminated films of Examples 7 to 8.

【符号の説明】[Explanation of symbols]

1:基体 2:ZnOを主成分とする膜 3:Agを主成分とする膜 4:ZnOを主成分とする膜 5:Agを主成分とする膜 6:ZnOを主成分とする膜 7:カラーフィルタ層 8:樹脂保護層 9:シリカなどの無機中間膜層 1: Substrate 2: ZnO-based film 3: Ag-based film 4: ZnO-based film 5: Ag-based film 6: ZnO-based film 7: Color filter layer 8: Resin protective layer 9: Inorganic interlayer film such as silica

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河村 有紀 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuki Kawamura 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基体上に透明導電積層膜が形成された液晶
ディスプレイ用透明導電基板において、透明導電積層膜
は、基体側から、第1層目にZnOを主成分とする膜、
第2層目にAgを主成分とする膜、第3層目にZnOを
主成分とする膜、のごとく交互に順に(2n+1)(た
だしn≧1)層まで積層された積層膜であることを特徴
とする液晶ディスプレイ用透明導電基板。
1. A transparent conductive substrate for a liquid crystal display having a transparent conductive laminated film formed on a substrate, wherein the transparent conductive laminated film is a film containing ZnO as a main component as a first layer from the substrate side,
The second layer is a film containing Ag as a main component, and the third layer is a film containing ZnO as a main component. A transparent conductive substrate for a liquid crystal display, which is characterized by:
【請求項2】ZnOを主成分とする膜が、Gaを含有す
るZnO膜である請求項1の液晶ディスプレイ用透明導
電基板。
2. The transparent conductive substrate for a liquid crystal display according to claim 1, wherein the film containing ZnO as a main component is a ZnO film containing Ga.
【請求項3】Gaを含有するZnO膜中のGaの含有割
合が、ZnとGaとの総和に対して1〜15原子%であ
る請求項2の液晶ディスプレイ用透明導電基板。
3. The transparent conductive substrate for a liquid crystal display according to claim 2, wherein the content ratio of Ga in the ZnO film containing Ga is 1 to 15 atomic% with respect to the total sum of Zn and Ga.
【請求項4】Agを主成分とする膜が、Pdおよび/ま
たはAuを含有する請求項1、2または3の液晶ディス
プレイ用透明導電基板。
4. A transparent conductive substrate for a liquid crystal display according to claim 1, wherein the film containing Ag as a main component contains Pd and / or Au.
【請求項5】Agを主成分とする膜中のPdおよび/ま
たはAuの含有割合が、Agとの総和に対して0.1〜
5.0原子%である請求項4の液晶ディスプレイ用透明
導電基板。
5. The content ratio of Pd and / or Au in a film containing Ag as a main component is 0.1 to the total amount of Ag and Ag.
It is 5.0 atomic%, The transparent conductive substrate for liquid crystal displays of Claim 4.
【請求項6】透明導電積層膜におけるZnOを主成分と
する膜とAgを主成分とする膜との界面の少なくとも1
つの界面には、厚さ0.1〜1nmのPd層および/ま
たはAu層が介在する請求項1、2、3、4または5の
液晶ディスプレイ用透明導電基板。
6. At least one of the interfaces between a film containing ZnO as a main component and a film containing Ag as a main component in a transparent conductive laminated film.
The transparent conductive substrate for a liquid crystal display according to claim 1, 2, 3, 4 or 5, wherein a Pd layer and / or an Au layer having a thickness of 0.1 to 1 nm is interposed at one interface.
【請求項7】請求項1、2、3、4、5または6の液晶
ディスプレイ用透明導電基板の透明電極形成方法におい
て、透明導電積層膜を0.01〜0.5規定の酸性水溶
液を用いて、エッチングし、パターニングすることを特
徴とする液晶ディスプレイ用透明導電基板の透明電極形
成方法。
7. The method for forming a transparent electrode of a transparent conductive substrate for a liquid crystal display according to claim 1, 2, 3, 4, 5 or 6, wherein the transparent conductive laminated film is an acidic aqueous solution of 0.01 to 0.5N. A method of forming a transparent electrode for a transparent conductive substrate for a liquid crystal display, which comprises: etching, patterning.
【請求項8】酸性水溶液として、塩化第二鉄を主成分と
する酸性水溶液を用いる請求項7の液晶ディスプレイ用
透明導電基板の透明電極形成方法。
8. The method for forming a transparent electrode of a transparent conductive substrate for a liquid crystal display according to claim 7, wherein an acidic aqueous solution containing ferric chloride as a main component is used as the acidic aqueous solution.
【請求項9】塩化第二鉄を主成分とする酸性水溶液とし
て、第一鉄イオンを含有する酸性水溶液を用いる請求項
8の液晶ディスプレイ用透明導電基板の透明電極形成方
法。
9. The method for forming a transparent electrode of a transparent conductive substrate for a liquid crystal display according to claim 8, wherein an acidic aqueous solution containing ferrous ions is used as the acidic aqueous solution containing ferric chloride as a main component.
【請求項10】第一鉄イオンの第二鉄イオンに対するモ
ル比が、0.1〜2である酸性水溶液を用いる請求項9
の液晶ディスプレイ用透明導電基板の透明電極形成方
法。
10. An acidic aqueous solution having a molar ratio of ferrous ions to ferric ions of 0.1 to 2 is used.
For forming a transparent electrode on a transparent conductive substrate for a liquid crystal display.
JP31713596A 1995-12-27 1996-11-13 Transparent conductive substrate for liquid crystal display and method for forming transparent electrode Expired - Fee Related JP3684720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31713596A JP3684720B2 (en) 1995-12-27 1996-11-13 Transparent conductive substrate for liquid crystal display and method for forming transparent electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35192995 1995-12-27
JP7-351929 1995-12-27
JP31713596A JP3684720B2 (en) 1995-12-27 1996-11-13 Transparent conductive substrate for liquid crystal display and method for forming transparent electrode

Publications (2)

Publication Number Publication Date
JPH09236811A true JPH09236811A (en) 1997-09-09
JP3684720B2 JP3684720B2 (en) 2005-08-17

Family

ID=26568932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31713596A Expired - Fee Related JP3684720B2 (en) 1995-12-27 1996-11-13 Transparent conductive substrate for liquid crystal display and method for forming transparent electrode

Country Status (1)

Country Link
JP (1) JP3684720B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747723B2 (en) 2000-05-25 2004-06-08 Seiko Epson Corporation Liquid crystal device having multi-layer electrode, method of making the same, and electronic apparatus
US6798476B2 (en) 2000-05-25 2004-09-28 Seiko Epson Corporation Liquid crystal device, method for making the same, and electronic apparatus
WO2005081055A1 (en) * 2004-02-23 2005-09-01 Shin An Snp Taiwan Co. Ltd Double layer transparent conductor scheme having improved etching properties for transparent electrodes in electro-optic displays
WO2009078682A3 (en) * 2007-12-18 2009-10-08 Electronics And Telecommunications Research Institute Transparent conductive film and method for preparing the same
WO2010003066A2 (en) * 2008-07-03 2010-01-07 University Of Florida Research Foundation, Inc. Transparent conducting electrode
WO2013167270A1 (en) * 2012-05-08 2013-11-14 Agc Glass Europe Organic photonic device
US9891484B2 (en) 2015-10-05 2018-02-13 Samsung Display Co., Ltd. Transparent conductive film and liquid crystal display (LCD) comprising the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747723B2 (en) 2000-05-25 2004-06-08 Seiko Epson Corporation Liquid crystal device having multi-layer electrode, method of making the same, and electronic apparatus
US6798476B2 (en) 2000-05-25 2004-09-28 Seiko Epson Corporation Liquid crystal device, method for making the same, and electronic apparatus
US6831717B2 (en) 2000-05-25 2004-12-14 Seiko Epson Corporation Liquid crystal device, method for making the same, and electronic apparatus
WO2005081055A1 (en) * 2004-02-23 2005-09-01 Shin An Snp Taiwan Co. Ltd Double layer transparent conductor scheme having improved etching properties for transparent electrodes in electro-optic displays
WO2009078682A3 (en) * 2007-12-18 2009-10-08 Electronics And Telecommunications Research Institute Transparent conductive film and method for preparing the same
WO2010003066A3 (en) * 2008-07-03 2010-04-15 University Of Florida Research Foundation, Inc. Transparent conducting electrode
WO2010003066A2 (en) * 2008-07-03 2010-01-07 University Of Florida Research Foundation, Inc. Transparent conducting electrode
WO2013167270A1 (en) * 2012-05-08 2013-11-14 Agc Glass Europe Organic photonic device
CN104321897A (en) * 2012-05-08 2015-01-28 旭硝子欧洲玻璃公司 Organic photonic device
US9397304B2 (en) 2012-05-08 2016-07-19 Agc Glass Europe Organic photonic device
EA028689B1 (en) * 2012-05-08 2017-12-29 Агк Гласс Юроп Organic electroluminescent device
CN104321897B (en) * 2012-05-08 2018-03-02 旭硝子欧洲玻璃公司 Organic photon device
US9891484B2 (en) 2015-10-05 2018-02-13 Samsung Display Co., Ltd. Transparent conductive film and liquid crystal display (LCD) comprising the same
US10151956B2 (en) 2015-10-05 2018-12-11 Samsung Display Co., Ltd. Transparent conductive film and liquid crystal display (LCD) comprising the same

Also Published As

Publication number Publication date
JP3684720B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JPH1170610A (en) Transparent conductive film and formation of transparent electrode
JP2839829B2 (en) Transparent conductive film, method for forming the same, and method for processing transparent conductive film
US6014196A (en) Transparent electrically conductive film-attached substrate
US6465117B2 (en) Transparent conductive film and process for forming a transparent electrode
JP3785675B2 (en) Substrate with transparent conductive film and method for producing the same
WO2012134174A2 (en) Conductive structure, touch panel, and method for manufacturing same
JP2013001009A (en) Conductive laminate, transparent conductive laminate with patterned wiring and optical device
JP2010034577A (en) Electromagnetic wave shielding laminate display employing the same
JPS63239044A (en) Transparent conductive laminate
JP3785676B2 (en) Substrate with transparent conductive film and method for producing the same
JP3031224B2 (en) Transparent conductive film
JP2842956B2 (en) Thin film matrix configuration especially for electroluminescent displays
JPH10241464A (en) Substrate with transparent conductive film and manufacture thereof
JPH09236811A (en) Transparent conductive substrate for liquid crystal display and forming method for transparent electrode
JP4168689B2 (en) Thin film laminate
WO2004070812A1 (en) Method for manufacturing semi-transparent semi-reflective electrode substrate, reflective element substrate, method for manufacturing same, etching composition used for the method for manufacturing the reflective electrode substrate
JP3521600B2 (en) Method for patterning transparent conductive film and substrate with transparent electrode
JP3711650B2 (en) Patterning method for transparent conductive film and substrate with transparent electrode
JPH11174993A (en) Substrate with transparent conductive film and flat type display element using the same
JPH09221340A (en) Substrate with transparent conductive film
JPH10239697A (en) Substrate with transparent conductive film and its manufacture
JP6096869B2 (en) Conductive laminate, transparent conductive laminate with pattern wiring, and optical device
JP4812980B2 (en) Ag alloy thin film electrode, organic EL device, and sputtering target
JPH11262968A (en) Transparent conductive film
JP5848786B2 (en) A conductive laminate, a transparent conductive laminate with a patterned wiring, and an optical device.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees