JP6096869B2 - Conductive laminate, transparent conductive laminate with pattern wiring, and optical device - Google Patents

Conductive laminate, transparent conductive laminate with pattern wiring, and optical device Download PDF

Info

Publication number
JP6096869B2
JP6096869B2 JP2015231311A JP2015231311A JP6096869B2 JP 6096869 B2 JP6096869 B2 JP 6096869B2 JP 2015231311 A JP2015231311 A JP 2015231311A JP 2015231311 A JP2015231311 A JP 2015231311A JP 6096869 B2 JP6096869 B2 JP 6096869B2
Authority
JP
Japan
Prior art keywords
transparent conductive
thin film
conductive thin
metal
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015231311A
Other languages
Japanese (ja)
Other versions
JP2016074221A (en
Inventor
望 藤野
望 藤野
基希 拝師
基希 拝師
坂田 義昌
義昌 坂田
光一郎 多田
光一郎 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2015231311A priority Critical patent/JP6096869B2/en
Publication of JP2016074221A publication Critical patent/JP2016074221A/en
Application granted granted Critical
Publication of JP6096869B2 publication Critical patent/JP6096869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透明基材上に透明導電性薄膜および金属層が設けられた導電性積層体、および該導電性積層体から形成されるパターン配線付き透明導電性積層体に関する。さらに、本発明は、該パターン配線付き透明導電性積層体を用いた、表示装置、タッチパネル等の光学デバイスに関する。   The present invention relates to a conductive laminate in which a transparent conductive thin film and a metal layer are provided on a transparent substrate, and a transparent conductive laminate with a patterned wiring formed from the conductive laminate. Furthermore, this invention relates to optical devices, such as a display apparatus and a touch panel, using this transparent conductive laminated body with a pattern wiring.

液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイや、タッチパネル等の表示装置では、インジウム−スズ酸化物(ITO)等の透明導電性酸化物からなる透明電極が用いられている。この透明電極には、外部から電圧を付与したり、透明電極上の電位を検出する目的でパターン配線が接続されている。パターン配線としては、スクリーン印刷法等によって銀ペーストを形成したものが広く用いられている。一般に、表示装置においては、例えば図6に模式的に示すように、透明電極の周辺部を引き回すように配線がパターン形成される。そして、加飾された基材等を用いることで、この配線が外部から視認されないように表示装置が組み立てられる。   In flat panel displays such as liquid crystal displays, plasma displays, and organic EL displays, and display devices such as touch panels, transparent electrodes made of a transparent conductive oxide such as indium-tin oxide (ITO) are used. A pattern wiring is connected to the transparent electrode for the purpose of applying a voltage from the outside or detecting a potential on the transparent electrode. As the pattern wiring, a pattern wiring formed with a silver paste by a screen printing method or the like is widely used. In general, in a display device, for example, as schematically shown in FIG. 6, wiring is formed in a pattern so as to route the peripheral portion of the transparent electrode. And a display apparatus is assembled by using the decorated base material etc. so that this wiring is not visually recognized from the outside.

表示装置の高精細化や高機能化に伴って、引き回し配線のパターンは複雑化する傾向にある。例えば、タッチパネルでは、多点入力(マルチタッチ)が可能な投影型静電容量方式のタッチパネルや、マトリックス型の抵抗膜方式タッチパネルが近年脚光を浴びている。これらの方式のタッチパネルでは、透明導電性薄膜が、所定形状(例えば短冊状)にパターン化されて透明電極を形成し、各透明電極とIC等の制御手段との間にパターン配線が形成される。このように、配線のパターンが複雑化する一方で、引き回し配線が視認されないように周辺部が加飾された領域をより狭くして、表示装置における表示領域の面積比率を高めること(狭額縁化)も求められている。しかしながら、前述の銀ペーストを印刷する方法では、電極の線幅を小さくすることには限界があるため、表示装置をさらに狭額縁化することは困難である。   As display devices have higher definition and higher functionality, the pattern of routing wiring tends to become more complicated. For example, in the touch panel, a projected capacitive touch panel capable of multi-point input (multi-touch) and a matrix resistive touch panel have recently attracted attention. In these types of touch panels, a transparent conductive thin film is patterned into a predetermined shape (for example, strip shape) to form a transparent electrode, and a pattern wiring is formed between each transparent electrode and a control means such as an IC. . As described above, while the wiring pattern is complicated, the area in which the peripheral portion is decorated so that the routing wiring is not visually recognized is made narrower, and the area ratio of the display area in the display device is increased. ) Is also required. However, in the method of printing the above-described silver paste, it is difficult to reduce the frame of the display device because there is a limit to reducing the line width of the electrodes.

表示装置をさらに狭額縁化するためには、パターン配線を細線化し、かつ配線の抵抗の上昇を抑制するために導電性の高い配線材料を用いる必要がある。かかる観点から、図4に示すように、基材1上に透明導電性薄膜25を形成し、その上に銅からなる金属層3を形成した積層体11を作製し、金属層3、透明導電性薄膜25を順次エッチングにより選択除去してパターン化する方法が提案されている(例えば特許文献1)。   In order to further narrow the frame of the display device, it is necessary to use a highly conductive wiring material in order to make the pattern wiring thin and to suppress an increase in wiring resistance. From this point of view, as shown in FIG. 4, a laminate 11 in which a transparent conductive thin film 25 is formed on a substrate 1 and a metal layer 3 made of copper is formed thereon is produced. A method of patterning by selectively removing the conductive thin film 25 by sequential etching has been proposed (for example, Patent Document 1).

一方、上記のような狭額縁化の要求に加えて、透明電極のセンサ感度や分解能向上の観点から、低抵抗の透明導電性薄膜を用いることが望まれている。特に、投影型静電容量方式のタッチパネルにおいては、透明電極間の微小な静電容量が変化を感知することにより、位置検出を行っており、位置検出精度の向上や応答時間短縮のために、透明導電性薄膜の低抵抗化が求められている。また、抵抗特性はセンサ感度等を決定する上で仕様であるため、量産時には透明導電性薄膜が安定した抵抗特性を保持することが重要となる。   On the other hand, in addition to the requirement for narrowing the frame as described above, it is desired to use a low-resistance transparent conductive thin film from the viewpoint of improving the sensor sensitivity and resolution of the transparent electrode. In particular, in the projected capacitive touch panel, the minute capacitance between the transparent electrodes senses the change to detect the position, in order to improve the position detection accuracy and shorten the response time. There is a demand for lowering the resistance of transparent conductive thin films. In addition, since the resistance characteristic is a specification for determining the sensor sensitivity and the like, it is important that the transparent conductive thin film maintains a stable resistance characteristic during mass production.

特開昭63−113585号公報Japanese Unexamined Patent Publication No. 63-113585

上記の特許文献1のような方法によれば、エッチングによりパターン配線を形成し得るため、パターン配線の細線化が可能であり、表示装置の狭額縁化が可能となる。しかしながら、本発明者らの検討によれば、エッチングにより金属層を除去した後の透明導電性薄膜は、金属層を形成する前の透明導電性薄膜に比して抵抗が上昇する場合があり、特に、低抵抗の透明導電性薄膜において、金属層をエッチング除去後の抵抗上昇が顕著であった。   According to the method as described in Patent Document 1, since the pattern wiring can be formed by etching, the pattern wiring can be thinned, and the display device can be narrowed. However, according to the study of the present inventors, the transparent conductive thin film after removing the metal layer by etching may have a resistance higher than that of the transparent conductive thin film before forming the metal layer, In particular, in a low-resistance transparent conductive thin film, the increase in resistance after the metal layer was removed by etching was significant.

本発明は上記に鑑みて、金属層をエッチングにより除去してパターン配線を形成した後においても、透明導電性薄膜の抵抗の上昇が抑制され、パターン配線付き透明導電性積層体の形成に適した導電性積層体を提供することを目的とする。   In view of the above, the present invention suppresses an increase in resistance of the transparent conductive thin film even after the metal layer is removed by etching and forms a pattern wiring, and is suitable for forming a transparent conductive laminate with a pattern wiring. An object is to provide a conductive laminate.

本発明者らが鋭意検討の結果、透明導電性薄膜を不純物金属の含有量が異なる2層以上の透明導電性薄膜の積層体とすることで、抵抗の上昇が抑制されることを見出し本発明に至った。   As a result of intensive studies by the present inventors, it has been found that an increase in resistance is suppressed by using a transparent conductive thin film as a laminate of two or more transparent conductive thin films having different impurity metal contents. It came to.

本発明は、透明基材の少なくとも一方の面に、少なくとも2層の透明導電性薄膜からなる透明導電性薄膜積層体および金属層がこの順に形成された導電性積層体に関する。前記透明導電性薄膜積層体において、金属層に最近接である第一透明導電性薄膜は、金属酸化物層または主金属と1種以上の不純物金属を含有する複合金属酸化物層である。透明導電性薄膜積層体中の第一透明導電性薄膜以外の透明導電性薄膜は、主金属と1種以上の不純物金属を含有する複合金属酸化物層である。本発明の導電性積層体において、前記第一透明導電性薄膜における不純物金属の含有比が、前記透明導電性薄膜積層体を構成する各透明導電性薄膜における不純物金属の含有比の中で最大ではない。   The present invention relates to a conductive laminate in which a transparent conductive thin film laminate comprising at least two transparent conductive thin films and a metal layer are formed in this order on at least one surface of a transparent substrate. In the transparent conductive thin film laminate, the first transparent conductive thin film closest to the metal layer is a metal oxide layer or a composite metal oxide layer containing a main metal and one or more impurity metals. The transparent conductive thin film other than the first transparent conductive thin film in the transparent conductive thin film laminate is a composite metal oxide layer containing a main metal and one or more impurity metals. In the conductive laminate of the present invention, the impurity metal content ratio in the first transparent conductive thin film is the largest among the impurity metal content ratios in the transparent conductive thin films constituting the transparent conductive thin film laminate. Absent.

本発明においては、第一透明導電性薄膜における不純物金属の含有比が、透明導電性薄膜積層体を構成する各透明導電性薄膜における不純物金属の含有比の中で最小であることが好ましい。また、透明導電性薄膜積層体中で最も不純物金属の含有比が大きい透明導電性薄膜における不純物金属の含有比と、前記第一透明導電性薄膜における不純物金属の含有比との差が、0.005〜0.23であることが好ましい。   In the present invention, the content ratio of the impurity metal in the first transparent conductive thin film is preferably the smallest among the content ratios of the impurity metal in each transparent conductive thin film constituting the transparent conductive thin film laminate. Further, the difference between the impurity metal content ratio in the transparent conductive thin film having the largest impurity metal content ratio in the transparent conductive thin film laminate and the impurity metal content ratio in the first transparent conductive thin film is 0. It is preferable that it is 005-0.23.

本発明においては、第一透明導電性薄膜における不純物金属の含有比は0.08以下であることが好ましい。また、透明導電性薄膜積層体中で最も不純物金属の含有比が高い透明導電性薄膜における不純物金属の含有比が0.04〜0.31であることが好ましい。   In the present invention, the content ratio of the impurity metal in the first transparent conductive thin film is preferably 0.08 or less. Moreover, it is preferable that the content ratio of the impurity metal in the transparent conductive thin film having the highest content ratio of the impurity metal in the transparent conductive thin film laminate is 0.04 to 0.31.

第一透明導電性薄膜の厚みは、透明導電性薄膜積層体の全体の厚みに対して6%以上であることが好ましい。また、第一透明導電性薄膜の厚みは透明導電性薄膜積層体の厚みに対して50%未満であることが好ましい。   The thickness of the first transparent conductive thin film is preferably 6% or more with respect to the total thickness of the transparent conductive thin film laminate. Moreover, it is preferable that the thickness of a 1st transparent conductive thin film is less than 50% with respect to the thickness of a transparent conductive thin film laminated body.

本発明の一実施形態において、前記透明導電性薄膜積層体を構成する全ての透明導電性薄膜は主金属がInである。この場合、不純物金属としてSnを含有することが好ましい。当該実施形態においては、第一透明導電性薄膜におけるInに対するSnの含有比が0.08以下であることが好ましい。また、第一透明導電性薄膜以外の前記透明導電性薄膜積層体を構成する透明導電性薄膜全体におけるInに対するSnの含有比が、0.08〜0.13であることが好ましい。   In one embodiment of the present invention, the main metal of all the transparent conductive thin films constituting the transparent conductive thin film laminate is In. In this case, it is preferable to contain Sn as an impurity metal. In the embodiment, it is preferable that the content ratio of Sn to In in the first transparent conductive thin film is 0.08 or less. Moreover, it is preferable that Sn content ratio with respect to In in the whole transparent conductive thin film which comprises the said transparent conductive thin film laminated body other than a 1st transparent conductive thin film is 0.08-0.13.

本発明の一実施形態において、透明導電性薄膜積層体は、第一透明導電性薄膜および第一透明導電性薄膜よりも基材側に形成された1層の透明導電性薄膜の2層からなる。本発明の一実施形態において、第一透明導電性薄膜と金属層とは隣接している。本発明の一実施形態において、前記透明導電性薄膜積層体を構成する全ての透明導電性薄膜が結晶質膜である。本発明の一実施形態において、透明基材が可撓性フィルムである。   In one embodiment of the present invention, the transparent conductive thin film laminate is composed of two layers of a first transparent conductive thin film and a single transparent conductive thin film formed closer to the substrate than the first transparent conductive thin film. . In one embodiment of the present invention, the first transparent conductive thin film and the metal layer are adjacent to each other. In one Embodiment of this invention, all the transparent conductive thin films which comprise the said transparent conductive thin film laminated body are crystalline films. In one embodiment of the present invention, the transparent substrate is a flexible film.

さらに、本発明は上記導電性積層体を用いて製造されうるパターン配線付き透明導電性積層体に関する。当該透明導電性積層体は、透明基材上に、パターン化された複数の透明電極からなる透明電極部およびパターン配線部を有し、パターン配線部が各透明電極部に接続されている。このようなパターン配線付き透明導電性積層体は、上記導電性積層体の金属層の面内の一部をエッチングにより除去してパターン配線部を形成し、金属層が除去された透明導電性薄膜積層体の露出部において、透明導電性薄膜積層体の面内の一部をエッチングにより除去してパターン化された透明電極を形成することによって得られる。   Furthermore, this invention relates to the transparent conductive laminated body with a pattern wiring which can be manufactured using the said conductive laminated body. The said transparent conductive laminated body has a transparent electrode part and pattern wiring part which consist of a plurality of patterned transparent electrodes on a transparent base material, and the pattern wiring part is connected to each transparent electrode part. Such a transparent conductive laminated body with a pattern wiring is formed by removing a part of the surface of the metal layer of the conductive laminated body by etching to form a pattern wiring portion, and the transparent conductive thin film from which the metal layer has been removed. It can be obtained by forming a patterned transparent electrode by removing a part of the surface of the transparent conductive thin film laminate by etching at the exposed portion of the laminate.

本発明の導電性積層体は、透明導電層として少なくとも2層の透明導電性薄膜からなる透明導電性薄膜積層体を有し、金属層に最近接の第一透明導電性薄膜の不純物金属含有比が相対的に小さい。そのため、透明導電性薄膜積層体上に形成された金属層の面内の一部をエッチングにより除去してパターン化を行った場合でも、透明導電性薄膜積層体の抵抗の上昇が抑制される。本発明の導電積層体をエッチングによりパターン化して得られるパターン配線付き透明導電性積層体は、透明導電性薄膜が低抵抗であり、かつ安定した抵抗特性を保持することができる。   The conductive laminate of the present invention has a transparent conductive thin film laminate comprising at least two transparent conductive thin films as a transparent conductive layer, and the impurity metal content ratio of the first transparent conductive thin film closest to the metal layer Is relatively small. Therefore, even when a part of the surface of the metal layer formed on the transparent conductive thin film stack is removed by etching and patterning is performed, an increase in resistance of the transparent conductive thin film stack is suppressed. The transparent conductive laminate with a pattern wiring obtained by patterning the conductive laminate of the present invention by etching has a low resistance of the transparent conductive thin film and can maintain stable resistance characteristics.

本発明の一実施形態に係る導電性積層体の模式的断面図である。It is a typical sectional view of the conductive layered product concerning one embodiment of the present invention. 本発明の一実施形態に係る導電性積層体の模式的断面図である。It is a typical sectional view of the conductive layered product concerning one embodiment of the present invention. 本発明の一実施形態に係る導電性積層体の模式的断面図である。It is a typical sectional view of the conductive layered product concerning one embodiment of the present invention. 従来技術における導電性積層体の一形態を表す模式的断面図である。It is typical sectional drawing showing one form of the electroconductive laminated body in a prior art. 本発明の実施の一形態に係るパターン配線付き透明導電性積層体の模式的平面図である。It is a schematic plan view of the transparent conductive laminated body with a pattern wiring which concerns on one Embodiment of this invention. 図5のVI−VI線における断面を模式的に表す図である。It is a figure which represents typically the cross section in the VI-VI line of FIG. パターン配線付き透明導電性積層体の製造過程を説明するための模式的平面図である。It is a schematic plan view for demonstrating the manufacturing process of the transparent conductive laminated body with a pattern wiring.

本発明の実施の形態について、図面を参照しながら以下に説明する。図1は、本発明の導電性積層体の一実施形態を表す模式的断面図であり、図5は、本発明のパターン配線付き透明導電性積層体の模式的平面図であり、図6は、図5のVI-VI線における断面を模式的に表す断面図である。本発明の導電性積層体10は、透明基材1の少なくとも一方の面に透明導電性薄膜積層体2および金属層3が順次形成されている。透明導電性薄膜積層体2は、少なくとも2層の透明導電性薄膜21、22からなる。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the conductive laminate of the present invention, FIG. 5 is a schematic plan view of the transparent conductive laminate with a patterned wiring of the present invention, and FIG. FIG. 6 is a cross-sectional view schematically showing a cross section taken along line VI-VI in FIG. In the conductive laminate 10 of the present invention, the transparent conductive thin film laminate 2 and the metal layer 3 are sequentially formed on at least one surface of the transparent substrate 1. The transparent conductive thin film laminate 2 is composed of at least two transparent conductive thin films 21 and 22.

<導電性積層体>
(透明基材)
透明基材1としては、可視光領域において透明であるものであれば特に制限されず、ガラスや、透明性を有する各種のプラスチックフィルムが用いられる。後述するパターン配線付き透明導電性積層体を、タッチパネルの透明電極やフレキシブルディスプレイ等に用いる場合は、透明基材として、プラスチックフィルム等の可撓性フィルムが用いられることが好ましい。プラスチックフィルムの材料としては、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等が挙げられる。これらの中で特に好ましいのは、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂等が挙げられる。
<Conductive laminate>
(Transparent substrate)
The transparent substrate 1 is not particularly limited as long as it is transparent in the visible light region, and glass and various plastic films having transparency are used. When using the transparent conductive laminated body with a pattern wiring mentioned later for the transparent electrode of a touch panel, a flexible display, etc., it is preferable that flexible films, such as a plastic film, are used as a transparent base material. Materials for plastic films include polyester resins, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, polyvinyl chloride resins, Examples thereof include polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and the like. Of these, polyester resins, polycarbonate resins, polyolefin resins and the like are particularly preferable.

透明基材として、プラスチックフィルムが用いられる場合、その厚みは、2〜200μmの範囲内であることが好ましく、2〜100μmの範囲内であることがより好ましい。フィルムの厚みが2μm未満であると、透明基材の機械的強度が不足し、フィルムをロール状にして透明導電性薄膜積層体2や金属層3を連続的に形成する操作が困難になる場合がある。一方、フィルムの厚みが200μmを超えると、デバイスの厚みが大きくなることに加えて、透明導電性薄膜が耐擦傷性に劣る傾向がある。   When a plastic film is used as the transparent substrate, the thickness is preferably in the range of 2 to 200 μm, and more preferably in the range of 2 to 100 μm. When the thickness of the film is less than 2 μm, the mechanical strength of the transparent substrate is insufficient, and it becomes difficult to continuously form the transparent conductive thin film laminate 2 and the metal layer 3 by rolling the film. There is. On the other hand, when the thickness of the film exceeds 200 μm, the transparent conductive thin film tends to be inferior in scratch resistance in addition to the increase in the thickness of the device.

透明基材には、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、フィルム基材上に形成される透明導電性薄膜との密着性を向上させるようにしてもよい。また、透明導電性薄膜を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、基材表面を除塵、清浄化してもよい。   The transparent substrate is preliminarily subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation and undercoating treatment on the surface, and a transparent conductive thin film formed on the film substrate. You may make it improve the adhesiveness of. In addition, before forming the transparent conductive thin film, the surface of the base material may be removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like, if necessary.

また、透明基材1の透明導電性薄膜積層体2形成面には、誘電体層やハードコート層が形成されていてもよい。透明基材の透明導電性薄膜積層体形成面側の表面に形成される誘電体層は、導電層としての機能を有さないものであり、表面抵抗が、例えば1×106Ω/□以上であり、好ましくは1×107Ω/□以上、さらに好ましくは1×108Ω/□以上である。なお、誘電体層の表面抵抗の上限は特にない。一般的には、誘電体層の表面抵抗の上限は測定限界である1×1013Ω/□程度であるが、1×1013Ω/□を超えるものであってもよい。 In addition, a dielectric layer or a hard coat layer may be formed on the surface of the transparent substrate 1 where the transparent conductive thin film laminate 2 is formed. The dielectric layer formed on the surface of the transparent substrate on the transparent conductive thin film laminate forming surface side does not have a function as a conductive layer, and the surface resistance is, for example, 1 × 10 6 Ω / □ or more. It is preferably 1 × 10 7 Ω / □ or more, more preferably 1 × 10 8 Ω / □ or more. There is no particular upper limit on the surface resistance of the dielectric layer. In general, the upper limit of the surface resistance of the dielectric layer is about 1 × 10 13 Ω / □, which is the measurement limit, but may exceed 1 × 10 13 Ω / □.

誘電体層の材料としては、NaF(1.3)、NaAlF(1.35)、LiF(1.36)、MgF(1.38)、CaF(1.4)、BaF(1.3)、BaF(1.3)、SiO(1.46)、LaF(1.55)、CeF(1.63)、Al(1.63)などの無機物〔( )内の数値は屈折率を示す〕や、屈折率が1.4〜1.6程度のアクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物などの有機物、あるいは上記無機物と上記有機物の混合物が挙げられる。 As a material of the dielectric layer, NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3), BaF 2 (1.3), SiO 2 (1.46), LaF 3 (1.55), CeF (1.63), Al 2 O 3 (1.63) and other inorganic substances [ (Numerical values in parentheses indicate refractive index), or organic substances such as acrylic resin, urethane resin, melamine resin, alkyd resin, siloxane polymer, organosilane condensate having a refractive index of about 1.4 to 1.6, or The mixture of the said inorganic substance and the said organic substance is mentioned.

このように、透明基材の透明導電性薄膜形成面側に誘電体層を形成することによって、透明導電性薄膜積層体2が複数領域にパターン化された場合においても、透明導電性薄膜形成領域と透明導電性薄膜非形成領域との間の視認性の差を低減することが可能である。また、透明基材としてフィルム基材を用いる場合においては、誘電体層がプラスチックフィルムからのオリゴマー等の低分子量成分の析出を抑止する封止層としても作用し得る。   Thus, even when the transparent conductive thin film laminate 2 is patterned into a plurality of regions by forming a dielectric layer on the transparent conductive thin film forming surface side of the transparent substrate, the transparent conductive thin film forming region is formed. And the difference in visibility between the transparent conductive thin film non-formation region can be reduced. Moreover, when using a film base material as a transparent base material, a dielectric material layer can act also as a sealing layer which suppresses precipitation of low molecular weight components, such as an oligomer from a plastic film.

透明基材1の透明導電性薄膜積層体2形成面と反対側の面には、必要に応じてハードコート層等が設けられていてもよい。また、粘着剤などの適宜の接着手段を用いて他の基材が貼り合わせたものや、他の基材と貼り合わせるための粘着剤層等にセパレータ等の保護層が仮着されたものであってもよい。なお、図1〜3においては、透明基材1の一方の面にのみ透明導電性薄膜積層体2および金属層3が形成された形態が図示されているが、透明基材の両面に透明導電性薄膜積層体および金属層が形成されていてもよい。   A hard coat layer or the like may be provided on the surface of the transparent substrate 1 opposite to the surface on which the transparent conductive thin film laminate 2 is formed, if necessary. In addition, it is the one that another substrate is bonded using an appropriate adhesive means such as an adhesive, or the one where a protective layer such as a separator is temporarily attached to an adhesive layer for bonding to another substrate. There may be. 1 to 3, the transparent conductive thin film laminate 2 and the metal layer 3 are formed only on one surface of the transparent base material 1, but the transparent conductive material is formed on both surfaces of the transparent base material. A thin film laminate and a metal layer may be formed.

(透明導電性薄膜積層体)
透明基材1上には、透明導電性薄膜積層体2が形成される。透明導電性薄膜積層体は、少なくとも2層の透明導電性薄膜21,22が積層されたものである。透明導電性薄膜積層体2は、図2に示すように3層の透明導電性薄膜21,22,23を有していてもよく、4層以上の透明導電性薄膜を有していてもよい。
(Transparent conductive thin film laminate)
On the transparent substrate 1, a transparent conductive thin film laminate 2 is formed. The transparent conductive thin film laminate is a laminate in which at least two transparent conductive thin films 21 and 22 are laminated. The transparent conductive thin film laminate 2 may have three layers of transparent conductive thin films 21, 22, 23 as shown in FIG. 2, or may have four or more layers of transparent conductive thin films. .

これらの透明導電性薄膜はいずれも、金属の導電性酸化物を主成分とする薄膜、または主金属と1種以上の不純物金属を含有する複合金属酸化物を主成分とする薄膜である。これらの導電性薄膜は、透明でありかつ導電性を有するものであれば、その構成材料は特に限定されず、Sc,Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Au,Zn,Cd,Al,Ga,Ti,Ge,In,Sn,Pb,As,Sb,Bi,Se,Te,Iからなる群より選択される1種の金属を主成分とする金属酸化物が好適に用いられる。透明導電性薄膜の透明性や導電性の観点からは、主金属元素はIn,Zn,Snのいずれかであることが好ましく、In最も好ましい。透明導電性薄膜が、主金属と不純物金属を含有する複合金属酸化物である場合、不純物金属としても、上記群より選択される1種以上の金属が好適に用いられる。   Each of these transparent conductive thin films is a thin film mainly composed of a metal conductive oxide or a thin film mainly composed of a composite metal oxide containing a main metal and one or more impurity metals. These conductive thin films are not particularly limited as long as they are transparent and have conductivity. Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W , Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, Ti, Ge, In, Sn, Pb, As , Sb, Bi, Se, Te, and I are preferably used as a metal oxide mainly composed of one kind of metal selected from the group consisting of. From the viewpoint of transparency and conductivity of the transparent conductive thin film, the main metal element is preferably any of In, Zn, and Sn, and most preferably In. When the transparent conductive thin film is a composite metal oxide containing a main metal and an impurity metal, one or more metals selected from the above group are preferably used as the impurity metal.

透明導電性薄膜のキャリア密度を上昇させて透明導電性薄膜を低抵抗化する観点においては、複合金属酸化物における不純物金属は、主金属よりも価電子数の多いものが好適に用いられる。このような複合金属酸化物としては、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、アルミドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、インジウムドープ酸化亜鉛(IZO)等が挙げられる。中でも低抵抗かつ高透明の透明導電性薄膜を形成する観点において、ITOが最も好適に用いられる。   From the viewpoint of reducing the resistance of the transparent conductive thin film by increasing the carrier density of the transparent conductive thin film, the impurity metal in the composite metal oxide preferably has a higher valence electron number than the main metal. Examples of such composite metal oxides include tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and indium-doped zinc oxide (IZO). Can be mentioned. Among them, ITO is most preferably used from the viewpoint of forming a transparent conductive thin film having low resistance and high transparency.

本発明においては、透明導電性薄膜積層体2上に形成される金属層3に最近接である第一透明導電性薄膜21における不純物金属の含有比が、透明導電性薄膜積層体を構成する各透明導電性薄膜22,23における不純物金属の含有比の中で最大ではないことを特徴とする。例えば、図1に示すように、透明導電性薄膜積層体2が2層の透明導電性薄膜21,22からなる場合、金属層3に近い側の第一透明導電性薄膜21における不純物金属の含有比は、透明基材1側の透明導電性薄膜22における不純物金属の含有比よりも小さい。   In the present invention, the content ratio of the impurity metal in the first transparent conductive thin film 21 closest to the metal layer 3 formed on the transparent conductive thin film stack 2 is each of the transparent conductive thin film stacks constituting the transparent conductive thin film stack. It is characterized by not being the maximum in the content ratio of impurity metals in the transparent conductive thin films 22 and 23. For example, as shown in FIG. 1, when the transparent conductive thin film laminate 2 is composed of two transparent conductive thin films 21 and 22, the inclusion of impurity metals in the first transparent conductive thin film 21 on the side close to the metal layer 3. The ratio is smaller than the content ratio of the impurity metal in the transparent conductive thin film 22 on the transparent substrate 1 side.

このように、金属層3に最近接の第一透明導電性薄膜21の不純物金属含有比を小さくすることによって、透明導電性薄膜積層体2の上に金属層3を形成し、その面内の一部をエッチングにより除去してパターン化を行った際の透明導電性薄膜積層体の抵抗の変化が抑制される。   Thus, by reducing the impurity metal content ratio of the first transparent conductive thin film 21 closest to the metal layer 3, the metal layer 3 is formed on the transparent conductive thin film laminate 2, and the in-plane A change in resistance of the transparent conductive thin film laminate when the portion is removed by etching and patterned is suppressed.

本発明者らの検討によると、透明導電性薄膜の不純物金属の含有比が多い場合には、透明導電性薄膜上に形成された金属層をエッチングにより除去した際にキャリア密度が低下して、抵抗が増大し易いことが判明した。すなわち、図4に示すように、1層の透明導電性薄膜25上に金属層3を積層した形態においては、透明導電性薄膜25を低抵抗膜とするために、不純物金属含有比の大きい複合金属酸化物を用いると、金属層3をエッチングにより除去した後の導電性膜25の抵抗が増大する傾向がある。   According to the study by the present inventors, when the content ratio of the impurity metal in the transparent conductive thin film is large, the carrier density is reduced when the metal layer formed on the transparent conductive thin film is removed by etching, It has been found that the resistance is likely to increase. That is, as shown in FIG. 4, in the form in which the metal layer 3 is laminated on the single layer of the transparent conductive thin film 25, in order to make the transparent conductive thin film 25 a low resistance film, a composite having a large impurity metal content ratio. When the metal oxide is used, the resistance of the conductive film 25 after the metal layer 3 is removed by etching tends to increase.

これに対して、本発明においては、基材1側に不純物金属の含有比が相対的に大きい複合酸化物薄膜22を有し、金属層3側に不純物金属の含有比が相対的に小さい複合酸化物薄膜21を用いることで、透明導電性薄膜積層体全体としての比抵抗が低く、かつ金属層3をエッチングにより除去した際の抵抗の増大が抑制される。なお、不純物金属の含有率とは、透明導電性薄膜中の主金属元素の原子数Nに対する不純物金属元素の原子数Nの比N/Nで表される。 On the other hand, in the present invention, the composite oxide thin film 22 having a relatively large impurity metal content ratio is provided on the substrate 1 side, and the impurity metal content ratio is relatively small on the metal layer 3 side. By using the oxide thin film 21, the specific resistance as the whole transparent conductive thin film laminated body is low, and the increase in resistance when the metal layer 3 is removed by etching is suppressed. Note that the content of the impurity metal, expressed as the ratio N D / N P atomic number N D of the impurity metal elements for atomic N P of the main metal element of the transparent conductive thin film.

第一透明導電性薄膜21の不純物金属含有比を小さくすることによって金属層をエッチング除去した際の抵抗増大が抑制される原因は定かではない。推定原因の1つとして、不純物金属含が大きい場合は、金属層除去に用いられるエッチャント中の化学種と不純物金属との錯形成等によって透明導電性薄膜のキャリア密度が低下する傾向があり、不純物金属の含有比を小さくすることでこのようなエッチャントの影響による抵抗増大が抑制されることが考えられる。   The reason why the increase in resistance when the metal layer is removed by etching by reducing the impurity metal content ratio of the first transparent conductive thin film 21 is not clear. As one of the probable causes, when the impurity metal content is large, the carrier density of the transparent conductive thin film tends to decrease due to complex formation between the chemical species in the etchant used for removing the metal layer and the impurity metal. It is conceivable that an increase in resistance due to the influence of such an etchant is suppressed by reducing the metal content ratio.

図1に示すように、透明導電性薄膜積層体2が2層の透明導電性薄膜21,22からなる場合、透明基材1側の透明導電性薄膜22における不純物金属の含有比と金属層3に近い側の第一透明導電性薄膜21における不純物金属の含有比との差は、0.005〜0.23であることが好ましく、0.01〜0.23であることがより好ましく、0.02〜0.23であることがさらに好ましい。なお、上記の不純物金属の含有比の範囲を、透明導電性薄膜を構成する複合金属酸化物薄膜としてインジウム−スズ複合酸化物(ITO)が用いられる場合、すなわち、主金属がインジウムであり不純物金属がスズである場合における、透明基材側の透明導電性薄膜と金属層側の第一透明導電性薄膜21とのSn原子含有量(InとSnOとの重量の合計に対するSnOの重量)の差で表すと、概ね0.5%〜20%、1%〜20%、2%〜20%となる。 As shown in FIG. 1, when the transparent conductive thin film laminate 2 is composed of two transparent conductive thin films 21 and 22, the impurity metal content ratio and the metal layer 3 in the transparent conductive thin film 22 on the transparent substrate 1 side. The difference from the content ratio of the impurity metal in the first transparent conductive thin film 21 on the near side is preferably 0.005 to 0.23, more preferably 0.01 to 0.23, and 0 More preferably, it is 0.02 to 0.23. In addition, when the content ratio of the impurity metal is in the case where indium-tin composite oxide (ITO) is used as the composite metal oxide thin film constituting the transparent conductive thin film, that is, the main metal is indium and the impurity metal Sn atom content of the transparent conductive thin film on the transparent substrate side and the first transparent conductive thin film 21 on the metal layer side (SnO 2 with respect to the total weight of In 2 O 3 and SnO 2) In terms of the difference in weight), it is approximately 0.5% to 20%, 1% to 20%, and 2% to 20%.

また、図2に示すように、透明導電性薄膜積層体2が3層以上の透明導電性薄膜からなる場合、透明導電性薄膜積層体2中で最も不純物金属の含有比が高い透明導電性薄膜における不純物金属の含有比と金属層3に近い側の第一透明導電性薄膜21における不純物金属の含有比との差が、0.005〜0.23であることが好ましく、0.01〜0.23であることがより好ましく、0.02〜0.23であることがさらに好ましい。透明導電性薄膜積層体を低抵抗膜としつつ、金属層をエッチングした際の抵抗の増大を抑制する観点においては、透明導電性薄膜積層体2中の金属層3に近い側の第一透明導電性薄膜21以外の透明導電性薄膜22,23を1つの膜とみなした場合の不純物金属の含有比と第一透明導電性薄膜21における不純物金属の含有比との差が前記範囲であることが好ましい。   As shown in FIG. 2, when the transparent conductive thin film laminate 2 is composed of three or more transparent conductive thin films, the transparent conductive thin film having the highest impurity metal content in the transparent conductive thin film laminate 2 is used. The difference between the content ratio of the impurity metal in the first transparent conductive thin film 21 on the side close to the metal layer 3 is preferably 0.005 to 0.23, and 0.01 to 0 .23 is more preferable, and 0.02 to 0.23 is still more preferable. From the viewpoint of suppressing an increase in resistance when the metal layer is etched while making the transparent conductive thin film laminate a low-resistance film, the first transparent conductor on the side close to the metal layer 3 in the transparent conductive thin film laminate 2 is used. The difference between the impurity metal content ratio and the impurity metal content ratio in the first transparent conductive thin film 21 when the transparent conductive thin films 22 and 23 other than the conductive thin film 21 are regarded as one film is within the above range. preferable.

第一透明導電性薄膜における不純物金属の含有比とその他の透明導電性薄膜における不純物金属の含有比との差が過度に小さいと、透明導電性薄膜積層体2内での各薄膜の物理的な相違が小さいために、図4に示すように1層のみの透明導電性薄膜のみを有する場合と物性が類似する。一方、不純物金属の含有量の差が過度に大きいと、不純物金属含有量の大きい透明導電性薄膜の結晶化が阻害される等の理由により生産性に劣ったり、透明導電性薄膜積層体を低抵抗とすることが困難になる場合がある。   If the difference between the content ratio of the impurity metal in the first transparent conductive thin film and the content ratio of the impurity metal in the other transparent conductive thin film is excessively small, the physical properties of each thin film in the transparent conductive thin film stack 2 Since the difference is small, the physical properties are similar to the case of having only one transparent conductive thin film as shown in FIG. On the other hand, if the difference in the content of impurity metal is excessively large, the productivity of the transparent conductive thin film laminate may be low due to the reason that crystallization of the transparent conductive thin film having a large impurity metal content is hindered. It may be difficult to make resistance.

金属層3に最近接の第一透明導電性薄膜21における不純物金属の含有比は、0.08以下であることが好ましく、0.08未満であることが好ましく、0.05以下であることがより好ましい。第一透明導電性薄膜の不純物金属含有比が大きくなると、金属層3をエッチングした際に、導電性薄膜積層体の表面抵抗が増大する傾向がある。なお、上記の不純物金属の含有比の範囲を、透明導電性薄膜を構成する複合金属酸化物薄膜としてインジウム−スズ複合酸化物(ITO)が用いられる場合における、透明基材側の透明導電性薄膜と金属層側の第一透明導電性薄膜21とのSn原子含有量(InとSnOとの重量の合計に対するSnOの重量)で表すと、概ね、8%、5%となる。第一透明導電性薄膜21における不純物金属の含有比の最小値は0である。すなわち、第一透明導電性薄膜21は、例えば酸化インジウムのような単一の金属の酸化物膜であってもよい。 The content ratio of the impurity metal in the first transparent conductive thin film 21 closest to the metal layer 3 is preferably 0.08 or less, preferably less than 0.08, and preferably 0.05 or less. More preferred. When the impurity metal content ratio of the first transparent conductive thin film increases, the surface resistance of the conductive thin film laminate tends to increase when the metal layer 3 is etched. Note that the transparent conductive thin film on the transparent substrate side when the content ratio of the impurity metal is in the case where indium-tin composite oxide (ITO) is used as the composite metal oxide thin film constituting the transparent conductive thin film. a expressed in Sn atom content of the first transparent conductive thin film 21 of the metal layer side (the weight of SnO 2 with respect to the total weight of in 2 O 3 and SnO 2), generally, 8%, 5% . The minimum value of the content ratio of impurity metals in the first transparent conductive thin film 21 is zero. That is, the first transparent conductive thin film 21 may be a single metal oxide film such as indium oxide.

透明導電性薄膜積層体2中で最も不純物金属の含有比が高い透明導電性薄膜における不純物金属の含有比は、0.04〜0.31であることが好ましく、0.04〜0.24であることがより好ましい。図1に示すように透明導電性薄膜積層体2が2層の透明導電性薄膜からなる場合は、透明基材1側の透明導電性薄膜22における不純物金属の含有比が前記範囲であることが好ましい。図2に示すように透明導電性薄膜積層体2が3層以上の透明導電性薄膜からなる場合、透明導電性薄膜積層体2中で最も不純物金属の含有比が高い透明導電性薄膜における不純物金属の含有比が前記範囲であればよい。透明導電性薄膜積層体2の比抵抗を小さくする観点においては、透明導電性薄膜積層体2中の金属層3に近い側の第一透明導電性薄膜21以外の透明導電性薄膜を1つの膜とみなした場合の不純物金属の含有比が前記範囲であることが特に好ましい。なお、上記の不純物金属の含有比の範囲を、透明導電性薄膜を構成する複合金属酸化物薄膜としてインジウム−スズ複合酸化物(ITO)が用いられる場合における、透明基材側の透明導電性薄膜と金属層側の第一透明導電性薄膜21とのSn原子含有量(InとSnOとの重量の合計に対するSnOの重量)で表すと、概ね、4%〜25%、4%〜21%となる。 The content ratio of the impurity metal in the transparent conductive thin film having the highest impurity metal content ratio in the transparent conductive thin film laminate 2 is preferably 0.04 to 0.31, preferably 0.04 to 0.24. More preferably. As shown in FIG. 1, when the transparent conductive thin film laminate 2 is composed of two transparent conductive thin films, the content ratio of the impurity metal in the transparent conductive thin film 22 on the transparent substrate 1 side is within the above range. preferable. As shown in FIG. 2, when the transparent conductive thin film laminate 2 is composed of three or more transparent conductive thin films, the impurity metal in the transparent conductive thin film having the highest impurity metal content ratio in the transparent conductive thin film laminate 2. The content ratio may be in the above range. From the viewpoint of reducing the specific resistance of the transparent conductive thin film laminate 2, one transparent conductive thin film other than the first transparent conductive thin film 21 on the side close to the metal layer 3 in the transparent conductive thin film laminate 2 is formed as one film. It is particularly preferable that the content ratio of the impurity metal in the case of being considered to be in the above range. Note that the transparent conductive thin film on the transparent substrate side when the content ratio of the impurity metal is in the case where indium-tin composite oxide (ITO) is used as the composite metal oxide thin film constituting the transparent conductive thin film. and is represented by Sn atom content of the first transparent conductive thin film 21 of the metal layer side (the weight of SnO 2 with respect to the total weight of in 2 O 3 and SnO 2), generally 4% to 25%, 4 % To 21%.

第一透明導電性薄膜21の厚みは、1nm以上であることが好ましい。また、第一透明導電性薄膜21の厚みは、1nm〜17nmであることが好ましく、1nm〜12nmであることがより好ましく、1nm〜6nmであることがさらに好ましい。透明導電性薄膜積層体2中の第一透明導電性薄膜21以外の透明導電性薄膜の厚みの合計は、9nm〜34nmであることが好ましく、9〜29nmであることがより好ましく、9〜24nmであることがさらに好ましい。各層の厚みは、上記範囲を採用できるが、透明導電性薄膜積層体の比抵抗を小さくする観点からは、第一の透明導電性薄膜21の厚みが、第一透明導電性薄膜21以外の透明導電性薄膜の厚みの合計よりも小さくなるように、各透明導電性薄膜を形成することが好ましい。第一の透明導電性薄膜21の厚みと、第一透明導電性薄膜21以外の透明導電性薄膜の厚みの合計との差は、1nm以上であることが好ましく、さらには1nm〜33nmであることがより好ましく、1nm〜20nmであることがさらに好ましい。   The thickness of the first transparent conductive thin film 21 is preferably 1 nm or more. The thickness of the first transparent conductive thin film 21 is preferably 1 nm to 17 nm, more preferably 1 nm to 12 nm, and still more preferably 1 nm to 6 nm. The total thickness of the transparent conductive thin films other than the first transparent conductive thin film 21 in the transparent conductive thin film laminate 2 is preferably 9 nm to 34 nm, more preferably 9 to 29 nm, and more preferably 9 to 24 nm. More preferably. The thickness of each layer can adopt the above range, but from the viewpoint of reducing the specific resistance of the transparent conductive thin film laminate, the thickness of the first transparent conductive thin film 21 is transparent except for the first transparent conductive thin film 21. Each transparent conductive thin film is preferably formed so as to be smaller than the total thickness of the conductive thin films. The difference between the thickness of the first transparent conductive thin film 21 and the total thickness of the transparent conductive thin films other than the first transparent conductive thin film 21 is preferably 1 nm or more, and more preferably 1 nm to 33 nm. Is more preferable, and it is more preferable that it is 1-20 nm.

積層体を高透過率とする観点からは、透明導電性薄膜積層体全体の厚みは、35nm以下であることが好ましく、30nm以下であるのが好ましい。また、透明導電性薄膜積層体2の全体の厚みに対する第一の透明導電性薄膜21の厚みの割合は、6%以上であることが好ましく、6%〜45%であることがより好ましく、6%〜35%であることがさらに好ましい。厚み比率を前記範囲とすることで、透明導電性薄膜積層体が低抵抗特性を維持しつつ、結晶化速度が高められるため、抵抗安定性に優れる透明導電膜を生産効率高く得ることができる。   From the viewpoint of increasing the transmittance of the laminate, the thickness of the entire transparent conductive thin film laminate is preferably 35 nm or less, and preferably 30 nm or less. Further, the ratio of the thickness of the first transparent conductive thin film 21 to the total thickness of the transparent conductive thin film laminate 2 is preferably 6% or more, more preferably 6% to 45%, It is more preferable that it is% -35%. By setting the thickness ratio in the above range, the transparent conductive thin film laminate can have a low crystallization characteristic and the crystallization speed can be increased. Therefore, a transparent conductive film having excellent resistance stability can be obtained with high production efficiency.

透明導電性薄膜積層体を構成する各透明導電性薄膜の形成方法は特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法を例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。   The formation method of each transparent conductive thin film which comprises a transparent conductive thin film laminated body is not specifically limited, A conventionally well-known method is employable. Specifically, for example, a vacuum deposition method, a sputtering method, and an ion plating method can be exemplified. In addition, an appropriate method can be adopted depending on the required film thickness.

各透明導電性薄膜は結晶質であってもよく、非晶質であってもよい。例えば、透明基材としてプラスチックフィルムが用いられ、透明導電性薄膜としてスパッタリング法によってITO膜が形成される場合、基材の耐熱性による制約があるため、高い温度でスパッタ製膜を行うことができない。そのため、製膜直後の透明導電性薄膜は非晶質膜(一部が結晶化している場合もある)となっている場合が多い。このような非晶質の透明導電性薄膜は結晶質のもの比して透過率が低く、加湿熱試験後の抵抗変化が大きい等の問題を生じる場合がある。かかる観点からは、一旦非晶質の透明導電性薄膜を形成した後、大気中の酸素存在下で加熱することにより、結晶膜へ転換させてもよい。透明導電性薄膜を結晶化することにより、透明性が向上し、低抵抗化が図られるとともに、さらに加湿熱試験後の抵抗変化が小さく、加湿熱信頼性が向上するなどの利点がもたらされる。   Each transparent conductive thin film may be crystalline or amorphous. For example, when a plastic film is used as a transparent substrate and an ITO film is formed as a transparent conductive thin film by sputtering, there is a limitation due to the heat resistance of the substrate, so that sputtering film formation cannot be performed at a high temperature. . For this reason, the transparent conductive thin film immediately after film formation is often an amorphous film (some of which may be crystallized). Such an amorphous transparent conductive thin film may cause problems such as low transmittance as compared with a crystalline one and large resistance change after a humidification heat test. From this point of view, after forming an amorphous transparent conductive thin film, it may be converted into a crystalline film by heating in the presence of oxygen in the atmosphere. By crystallizing the transparent conductive thin film, the transparency is improved and the resistance is lowered, and further, the resistance change after the humidification heat test is small, and the humidification heat reliability is improved.

各透明導電性薄膜の結晶化は、透明基材1上に非晶質の膜を形成後、金属層3を製膜する前に行うこともできるし、金属層を製膜した後に結晶化を行ってもよい。また、エッチング等により透明導電性薄膜積層体をパターン化する場合、透明導電性薄膜の結晶化は、エッチング加工前に行うこともできるし、エッチング加工後に行ってもよい。   Crystallization of each transparent conductive thin film can be performed after forming an amorphous film on the transparent substrate 1 and before forming the metal layer 3, or crystallizing after forming the metal layer. You may go. Moreover, when patterning a transparent conductive thin film laminated body by an etching etc., crystallization of a transparent conductive thin film can also be performed before an etching process, and may be performed after an etching process.

(金属層)
透明導電性薄膜積層体2上には、金属層3が形成される。なお、第一透明導電性薄膜21と金属層3との間には、透明導電性薄膜積層体と金属層との密着性向上や、金属層を構成する金属元素の透明導電層への拡散防止等の観点から、例えば厚みが5nm以下の薄膜を設けることもできる。一方、金属層3をエッチングにより除去した際の透明導電性薄膜積層体の表面抵抗の増加を抑制する観点においては、第一透明導電性薄膜21上に直接金属層3が形成されることが好ましい。
(Metal layer)
A metal layer 3 is formed on the transparent conductive thin film laminate 2. In addition, between the 1st transparent conductive thin film 21 and the metal layer 3, the adhesive improvement of a transparent conductive thin film laminated body and a metal layer, and the spreading | diffusion prevention to the transparent conductive layer of the metal element which comprises a metal layer are prevented. From such a viewpoint, for example, a thin film having a thickness of 5 nm or less can be provided. On the other hand, from the viewpoint of suppressing an increase in surface resistance of the transparent conductive thin film laminate when the metal layer 3 is removed by etching, the metal layer 3 is preferably formed directly on the first transparent conductive thin film 21. .

金属層の構成材料は、導電性を有するものであれば特に限定されず、例えば、Ti,Si,Nb,In,Zn,Sn,Au,Ag,Cu,Al,Co,Cr,Ni,Pb,Pd,Pt,W,Zr,Ta,Hf等の金属が好適に用いられる。また、これらの金属の2種以上を含有するものや、これらの金属を主成分とする合金等も好適に用いることができる。導電性積層体を形成した後に金属層3の面内の一部をエッチング等により除去して、図5に示すようなパターン配線を形成する場合は、金属層3の材料としてAu,Ag,Cu等の導電性の高い金属が好適に用いられる。中でもCuは導電性が高く、かつ安価な材料であるため、配線を構成する材料として適している。そのため、金属層3は実質的に銅からなることが特に好ましい。   The constituent material of the metal layer is not particularly limited as long as it has conductivity. For example, Ti, Si, Nb, In, Zn, Sn, Au, Ag, Cu, Al, Co, Cr, Ni, Pb, Metals such as Pd, Pt, W, Zr, Ta, and Hf are preferably used. Moreover, the thing containing 2 or more types of these metals, the alloy etc. which have these metals as a main component can be used suitably. In the case where a pattern wiring as shown in FIG. 5 is formed by removing a part of the surface of the metal layer 3 by etching or the like after forming the conductive laminate, Au, Ag, Cu are used as the material of the metal layer 3. A highly conductive metal such as the above is preferably used. Among these, Cu is a highly conductive and inexpensive material, and is therefore suitable as a material constituting the wiring. Therefore, it is particularly preferable that the metal layer 3 is substantially made of copper.

金属層3の厚みは特に制限されない。例えば、導電性フィルムの形成後に金属層3の面内の一部をエッチング等により除去してパターン配線を形成する場合は、形成後のパターン配線が所望の抵抗値を有するように金属層3の厚みが適宜に設定される。金属層の厚みが過度に小さいと、パターン配線の抵抗が高くなりすぎるために、デバイスの消費電力が大きくなる場合がある。そのため、金属層の厚みは20nm以上であることが好ましい。逆に金属層の厚みが過度に大きいと、金属層の成膜に時間を要するために生産性に劣る他、成膜時の積算熱量が大きくなることや、成膜時のパワー密度を高くする必要があるために、フィルムに熱シワが生じ易くなる傾向がある。これらの観点から、金属層の厚みは、20nm〜500nmであることが好ましい。   The thickness of the metal layer 3 is not particularly limited. For example, when the pattern wiring is formed by removing a part of the surface of the metal layer 3 by etching or the like after the formation of the conductive film, the metal layer 3 is formed so that the formed pattern wiring has a desired resistance value. The thickness is set appropriately. If the thickness of the metal layer is too small, the power consumption of the device may increase because the resistance of the pattern wiring becomes too high. Therefore, the thickness of the metal layer is preferably 20 nm or more. Conversely, if the thickness of the metal layer is excessively large, it takes time to form the metal layer, which is inferior in productivity. In addition, the accumulated heat amount during film formation increases and the power density during film formation increases. Since it is necessary, heat wrinkles tend to occur in the film. From these viewpoints, the thickness of the metal layer is preferably 20 nm to 500 nm.

金属層は、膜厚の均一性や成膜効率の観点から、化学気相成長法(CVD)や物理気相成長法(PVD)等の真空成膜法や、メッキ法(電解メッキ、無電解メッキ)等により成膜されることが好ましい。また、これらの製膜方法の複数を組み合わせてもよい。中でも、真空蒸着法、スパッタリング法、イオンプレーティング法、電子ビーム蒸着法等の物理気相成長法が好ましく、スパッタリング法が特に好ましい。   From the viewpoint of film thickness uniformity and film formation efficiency, the metal layer is formed by a vacuum film formation method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD), or a plating method (electrolytic plating, electroless). It is preferable to form a film by plating or the like. A plurality of these film forming methods may be combined. Of these, physical vapor deposition methods such as vacuum vapor deposition, sputtering, ion plating, and electron beam vapor deposition are preferred, and sputtering is particularly preferred.

図3に示すように、金属層3上に、さらに酸化防止を目的とした第2金属層4を設けてもよい。例えば、金属層3上に金属層3とは異なる組成を有する第2金属層4を有することで、透明導電性薄膜の結晶化時の加熱や、タッチパネル等のデバイス組立て時の加熱によって、金属層3が酸化されて配線の抵抗が上昇することが抑止され得る。このような第2金属層としては、酸素存在下で加熱された場合にも酸化され難く、金属層3と同一のエッチャントにより同時にエッチングできるものであることが好ましい。複数の金属層3,4を1回のエッチングでパターン化することが可能であれば、パターン配線の形成を容易になし得る。   As shown in FIG. 3, a second metal layer 4 may be further provided on the metal layer 3 for the purpose of preventing oxidation. For example, by having the second metal layer 4 having a composition different from that of the metal layer 3 on the metal layer 3, the metal layer can be heated by heating when crystallizing the transparent conductive thin film or when assembling a device such as a touch panel. It can be prevented that the resistance of the wiring increases due to oxidation of 3. Such a second metal layer is preferably not easily oxidized even when heated in the presence of oxygen, and can be etched simultaneously with the same etchant as the metal layer 3. If the plurality of metal layers 3 and 4 can be patterned by one etching, pattern wiring can be easily formed.

金属層3が実質的に銅からなる場合、酸化防止を目的として金属層上に設けられる第2金属層4は、銅−ニッケル合金からなり、銅とニッケルの合計100重量部に対してニッケルを15〜55重量部含有することが好ましい。第2金属層の厚みは、5nm〜100nmであることが好ましく、5nm〜80nmであることがより好ましく、5nm〜70nmであることがより好ましい。第2金属層の厚みが過度に小さいと、酸化防止層としての作用が発揮されず、酸素存在下での加熱時に、実質的に銅からなる金属層が酸化され易くなる傾向がある。一方、第2金属層の厚みが過度に大きいと、製膜に時間を要するために生産性に劣る他、エッチング等により金属層の面内の一部を除去してパターン配線を形成する際にも長時間を要する場合がある。   When the metal layer 3 is substantially made of copper, the second metal layer 4 provided on the metal layer for the purpose of preventing oxidation is made of a copper-nickel alloy, and nickel is added to a total of 100 parts by weight of copper and nickel. It is preferable to contain 15-55 weight part. The thickness of the second metal layer is preferably 5 nm to 100 nm, more preferably 5 nm to 80 nm, and more preferably 5 nm to 70 nm. When the thickness of the second metal layer is excessively small, the action as an antioxidant layer is not exhibited, and the metal layer substantially made of copper tends to be easily oxidized during heating in the presence of oxygen. On the other hand, if the thickness of the second metal layer is excessively large, it takes time to form a film, which is inferior in productivity. In addition, when the pattern wiring is formed by removing a part of the surface of the metal layer by etching or the like. May take a long time.

<透明導電性積層体>
このような本発明の導電性積層体10は、パターン配線付き透明導電性積層体の形成に適している。図5は、パターン配線付き透明導電性積層体の一実施形態を模式的に表す平面図であり、図6は図5のVI-VI線における断面を模式的に表す断面図である。パターン配線付き透明導電性積層体100は、パターン化された複数の透明電極121〜126からなる透明電極部、およびパターン配線部131a〜136a、131b〜136bを有する。パターン配線は、各透明電極に接続されている。例えば図5の透明電極部121は、パターン配線131aおよび131bと接続されている。図6に模式的に示すように、透明電極121は、透明基材1上に透明導電性薄膜積層体2を有する領域であり、パターン配線131aおよび131bは、透明基材1上に透明導電性薄膜積層体2および金属層3をこの順に有する領域である。なお、図5においては、各透明電極が短冊状にパターン化されており、その両端部がパターン配線と接続されているが、透明電極の形状は短冊状に限定されず、また、透明電極は1箇所あるいは3箇所以上でパターン配線と接続されていてもよい。各パターン配線は必要に応じて、IC等の制御手段150に接続される。
<Transparent conductive laminate>
Such a conductive laminate 10 of the present invention is suitable for forming a transparent conductive laminate with a patterned wiring. FIG. 5 is a plan view schematically showing an embodiment of the transparent conductive laminate with pattern wiring, and FIG. 6 is a cross-sectional view schematically showing a cross section taken along line VI-VI in FIG. The transparent conductive laminate 100 with a pattern wiring includes a transparent electrode portion including a plurality of patterned transparent electrodes 121 to 126, and pattern wiring portions 131a to 136a and 131b to 136b. The pattern wiring is connected to each transparent electrode. For example, the transparent electrode part 121 in FIG. 5 is connected to the pattern wirings 131a and 131b. As schematically shown in FIG. 6, the transparent electrode 121 is a region having the transparent conductive thin film laminate 2 on the transparent substrate 1, and the pattern wirings 131 a and 131 b are transparent conductive on the transparent substrate 1. This is a region having the thin film laminate 2 and the metal layer 3 in this order. In addition, in FIG. 5, although each transparent electrode is patterned in strip shape and the both ends are connected with pattern wiring, the shape of a transparent electrode is not limited to strip shape, It may be connected to the pattern wiring at one place or three or more places. Each pattern wiring is connected to a control means 150 such as an IC as necessary.

このようなパターン配線付き透明導電性積層体は、前記導電性積層体の透明導電性薄膜積層体2および金属層3をエッチング等により除去してパターン化することにより形成され得る。具体的には、まず、金属層3の面内の一部が除去されて、パターン配線が形成される。この際、パターン配線部131a〜136aおよび131b〜136bにおいて金属層3が残存するように加工がおこなわれる。また、図7に模式的に示すように、透明電極とパターン配線との接続部231a〜236aおよび231b〜236bにおいても金属層3が残存するように、加工が行われることが好ましい。なお、この、パターン配線と透明電極との接続部はパターン配線部の一部を構成している。   Such a transparent conductive laminate with pattern wiring can be formed by removing the transparent conductive thin film laminate 2 and the metal layer 3 of the conductive laminate by etching or the like and patterning them. Specifically, first, a part of the surface of the metal layer 3 is removed to form a pattern wiring. At this time, processing is performed so that the metal layer 3 remains in the pattern wiring portions 131a to 136a and 131b to 136b. Further, as schematically shown in FIG. 7, it is preferable that processing is performed so that the metal layer 3 remains also in the connection portions 231 a to 236 a and 231 b to 236 b between the transparent electrode and the pattern wiring. The connecting portion between the pattern wiring and the transparent electrode constitutes a part of the pattern wiring portion.

金属層3の除去は、エッチングにより行うことが好ましい。エッチングに際しては、パターンを形成するためのマスクによりパターン配線部および接続部に対応する領域の表面を覆って、エッチャントにより金属層3をエッチングする方法が好適に用いられる。なお、金属層上に酸化防止等を目的として第2金属層4が形成されている場合は、1回のエッチング加工により、金属層3と第2金属層4とが同時に除去されることが好ましい。エッチャントとしては、塩化第二銅溶液、塩化第二鉄溶液、銅アンモニア錯体溶液等が挙げられる。中でも、透明導電性薄膜に対してエッチング能力を示さないエッチャント、あるいは透明導電性薄膜に対するエッチング速度が金属層に対するエッチング速度に比して小さいエッチャントが好適に用いられる。   The removal of the metal layer 3 is preferably performed by etching. In the etching, a method of etching the metal layer 3 with an etchant by covering the surface of the region corresponding to the pattern wiring portion and the connection portion with a mask for forming a pattern is preferably used. In addition, when the 2nd metal layer 4 is formed on the metal layer for the purpose of oxidation prevention etc., it is preferable that the metal layer 3 and the 2nd metal layer 4 are removed simultaneously by one etching process. . Examples of the etchant include cupric chloride solution, ferric chloride solution, and copper ammonia complex solution. Among them, an etchant that does not exhibit etching ability with respect to the transparent conductive thin film, or an etchant that has a lower etching rate with respect to the transparent conductive thin film than an etching rate with respect to the metal layer is preferably used.

金属層3を除去した後、透明導電性薄膜積層体2の露出部において、透明導電性薄膜積層体2の面内の一部が除去されることで、図5に示すようなパターン化された透明電極121〜126が形成される。透明導電性薄膜積層体2の除去もエッチングにより行うことが好ましい。エッチングに際しては、パターンを形成するためのマスクにより、透明電極部121〜126に対応する領域の表面を覆って、エッチャントにより透明導電性薄膜積層体をエッチングする方法が好適に用いられる。また、金属層3に対してもエッチング能力を有するエッチャントが用いられる場合は、前記パターン配線部および接続部もマスクにより表面が覆われることが好ましい。   After removing the metal layer 3, a part of the surface of the transparent conductive thin film laminate 2 is removed from the exposed portion of the transparent conductive thin film laminate 2 to form a pattern as shown in FIG. Transparent electrodes 121-126 are formed. It is preferable to remove the transparent conductive thin film laminate 2 by etching. In the etching, a method of etching the transparent conductive thin film stack with an etchant by covering the surface of the region corresponding to the transparent electrode portions 121 to 126 with a mask for forming a pattern is suitably used. Further, when an etchant having an etching ability is used also for the metal layer 3, it is preferable that the surface of the pattern wiring portion and the connection portion is covered with a mask.

透明導電性薄膜のエッチングに用いられるエッチャントは、透明導電性薄膜を形成する材料によって適宜に選択し得る。透明導電性薄膜としてITO等の導電性酸化物が用いられる場合は、エッチャントとして酸が好適に用いられる。酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液が挙げられる。   The etchant used for etching the transparent conductive thin film can be appropriately selected depending on the material for forming the transparent conductive thin film. When a conductive oxide such as ITO is used as the transparent conductive thin film, an acid is preferably used as the etchant. Examples of the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid, and mixtures thereof, and aqueous solutions thereof.

なお、透明導電性薄膜が非晶質である場合は、大気中等の酸素存在下で加熱することで、結晶化してもよい。結晶化条件は適宜に設定し得るが、透明導電性薄膜がITOから形成される場合は、例えば、100℃〜180℃の温度範囲で15分〜180分程度加熱を行えばよい。透明導電性薄膜が結晶質であるとは、透過型電子顕微鏡(TEM)観察で、結晶化したグレンが全面に存在する状態を指す。また、透明導電性薄膜がITOから形成される場合は、積層体を濃度5wt%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定することによっても、結晶質であるか否かを判断し得る。非晶質ITO膜は塩酸によりエッチングされて消失するために、塩酸への浸漬により抵抗が増大する。本明細書においては、塩酸への浸漬・水洗・乾燥後に、15mm間の端子間抵抗が10kΩを超える場合に、ITO膜が非晶質であるものとする。   In addition, when a transparent conductive thin film is amorphous, you may crystallize by heating in oxygen presence, such as in air | atmosphere. The crystallization conditions can be set as appropriate, but when the transparent conductive thin film is formed from ITO, for example, heating may be performed at a temperature range of 100 ° C. to 180 ° C. for about 15 minutes to 180 minutes. That the transparent conductive thin film is crystalline refers to a state in which crystallized grain is present on the entire surface by observation with a transmission electron microscope (TEM). When the transparent conductive thin film is formed from ITO, the laminate is immersed in hydrochloric acid having a concentration of 5 wt% for 15 minutes, washed and dried, and the resistance between terminals between 15 mm is measured by a tester. Whether it is crystalline or not can be determined. Since the amorphous ITO film is etched away by hydrochloric acid and disappears, the resistance increases by immersion in hydrochloric acid. In this specification, the ITO film is assumed to be amorphous when the resistance between terminals of 15 mm exceeds 10 kΩ after immersion in hydrochloric acid, washing with water, and drying.

透明導電性薄膜の結晶化は、金属層の除去によるパターン配線形成の前、パターン配線形成後透明導電性薄膜積層体の除去による透明電極形成前、透明電極形成後のいずれの段階で行ってもよい。   Crystallization of the transparent conductive thin film may be performed at any stage before the formation of the pattern wiring by removing the metal layer, before the formation of the transparent electrode by forming the transparent conductive thin film laminate after the formation of the pattern wiring, or after the formation of the transparent electrode. Good.

本発明の導電性積層体は、透明導電性薄膜積層体2の金属層3側の透明導電性薄膜21として、不純物金属の含有比が相対的に大きい複合金属酸化物が用いられているため、金属層3をエッチングにより除去した後の透明導電性薄膜積層体の表面抵抗の上昇が抑制される。そのため、低抵抗の透明電極を有するパターン配線付き透明導電性積層体を、生産性高く得ることができる。   In the conductive laminate of the present invention, a composite metal oxide having a relatively large impurity metal content ratio is used as the transparent conductive thin film 21 on the metal layer 3 side of the transparent conductive thin film laminate 2. An increase in the surface resistance of the transparent conductive thin film laminate after the metal layer 3 is removed by etching is suppressed. Therefore, a transparent conductive laminate with a pattern wiring having a low-resistance transparent electrode can be obtained with high productivity.

<光学デバイス>
このようにして得られたパターン配線付き透明導電性積層体は、必要に応じて基板上にIC等の制御手段150が設けられ、実用に供される。本発明の透明導電性積層体は、パターン化された透明電極を有し、各透明電極がパターン配線に接続されていることから、各種の光学デバイスに好適に用いられる。このようなデバイスとしては、タッチパネルや、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイ、照明装置等が挙げられる。タッチパネルとしては、例えば、静電容量方式、抵抗膜方式などのタッチパネルが挙げられる。
<Optical device>
The transparent conductive laminate with a patterned wiring obtained in this way is provided with a control means 150 such as an IC on a substrate as needed, and is put to practical use. The transparent conductive laminate of the present invention has a patterned transparent electrode, and since each transparent electrode is connected to a pattern wiring, it is suitably used for various optical devices. Examples of such devices include touch panels, flat panel displays such as liquid crystal displays, plasma displays, and organic EL displays, and lighting devices. Examples of the touch panel include a capacitive touch panel and a resistive touch panel.

このような光学デバイスの形成においては、パターン配線付き透明導電性積層体をそのまま用いてもよいし、透明電極上に他の付加的な層を設けたものを用いることができる。例えば有機ELでは、陽極として作用し得る透明電極上に、発光層、および陰極として作用し得る金属電極層等を設けることができる。   In the formation of such an optical device, a transparent conductive laminate with a pattern wiring may be used as it is, or a transparent electrode provided with another additional layer can be used. For example, in organic EL, a light emitting layer, a metal electrode layer that can function as a cathode, and the like can be provided on a transparent electrode that can function as an anode.

以下、本発明の導電性積層体に関して、実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、実施例に限定されるものではない。   Hereinafter, although the conductive laminated body of this invention is demonstrated in detail using an Example, this invention is not limited to an Example, unless the summary is exceeded.

[実施例1]
(透明導電性フィルムの作製)
厚み75μmのポリカーボネート系フィルムからなるフィルム基材の一方の面に、光硬化型樹脂(JSR製 商品名「オプスターKZ6661」)を用いて厚み100nmの誘電体層を形成した。ArおよびOを導入した減圧下で、酸化インジウムと酸化スズを90:10の重量比で有する焼結体のターゲット材料を用いて、DCマグネトロンスパッタ法により、誘電体層上にSnとInの原子数比Sn/Inが0.10のインジウム−スズ複合酸化物からなる第二透明導電性薄膜を20nmの厚みで形成した。この薄膜上に、酸化インジウムと酸化スズを97:3の重量比で有する焼結体のターゲット材料を用いて、DCマグネトロンスパッタ法により、SnとInの原子数比Sn/Inが0.03のインジウム−スズ複合酸化物からなる第一透明導電性薄膜を6nmの厚みで形成した。このようにして、ポリカーボネートフィルム基材上に、Sn/In=0.10で厚みが20nmのITO膜およびSn/In=0.03で厚みが6nmのITO膜からなる透明導電性薄膜積層体を有する透明導電性フィルムを得た。
[Example 1]
(Preparation of transparent conductive film)
A dielectric layer having a thickness of 100 nm was formed on one surface of a film substrate made of a polycarbonate film having a thickness of 75 μm using a photocurable resin (trade name “OPSTAR KZ6661” manufactured by JSR). Using a sintered target material having a weight ratio of indium oxide and tin oxide of 90:10 under reduced pressure with Ar and O 2 introduced, a DC magnetron sputtering method is used to deposit Sn and In on the dielectric layer. A second transparent conductive thin film made of an indium-tin composite oxide having an atomic ratio Sn / In of 0.10 was formed to a thickness of 20 nm. On this thin film, a target material of a sintered body having a weight ratio of indium oxide and tin oxide of 97: 3 is used, and the atomic ratio Sn / In of Sn / In is 0.03 by DC magnetron sputtering. A first transparent conductive thin film made of indium-tin composite oxide was formed with a thickness of 6 nm. In this way, a transparent conductive thin film laminate comprising an ITO film having a thickness of 20 nm and Sn / In = 0.10 and an ITO film having a thickness of 6 nm having Sn / In = 0.03 is formed on the polycarbonate film substrate. A transparent conductive film was obtained.

(金属層の形成)
この透明導電性フィルムの第一の透明導電性薄膜上に、Arを導入した減圧下で、無酸素銅ターゲットを用いて、DCマグネトロンスパッタ法により、銅からなる金属層を50nmの厚みで形成して、導電性積層体を得た。
(Formation of metal layer)
On the first transparent conductive thin film of this transparent conductive film, a metal layer made of copper with a thickness of 50 nm was formed by DC magnetron sputtering using an oxygen-free copper target under reduced pressure with Ar introduced. Thus, a conductive laminate was obtained.

[実施例2]
厚み23μmのポリエチレンテレフタレートフィルムからなるフィルム基材の一方の面に、メラミン樹脂:アルキド樹脂:有機シラン縮合物の重量比2:2:1の熱硬化型樹脂(光の屈折率n=1.54)を用いて厚み35nmの誘電体層を形成した。この誘電体層上に、実施例1と同様にして、Sn/In=0.10で厚みが20nmのITO膜(第二透明導電性薄膜)およびSn/In=0.03で厚みが6nmのITO膜(第一透明導電性薄膜)を順次形成して、透明導電性フィルムを得た。この透明導電性フィルムの第一の透明導電性薄膜上に、実施例1と同様にして銅からなる金属層を50nmの厚みで形成して、導電性積層体を得た。
[Example 2]
A thermosetting resin having a weight ratio of 2: 2: 1 of melamine resin: alkyd resin: organosilane condensate (light refractive index n = 1.54) is formed on one surface of a film substrate made of a polyethylene terephthalate film having a thickness of 23 μm. ) Was used to form a dielectric layer having a thickness of 35 nm. On this dielectric layer, an ITO film (second transparent conductive thin film) having a thickness of 20 nm and Sn / In = 0.10 and Sn / In = 0.03 and a thickness of 6 nm were formed in the same manner as in Example 1. An ITO film (first transparent conductive thin film) was sequentially formed to obtain a transparent conductive film. On the 1st transparent conductive thin film of this transparent conductive film, the metal layer which consists of copper with a thickness of 50 nm was formed like Example 1, and the electroconductive laminated body was obtained.

[実施例3]
厚み50μmのポリエチレンテレフタレートフィルムからなるフィルム基材の一方の面に、実施例2と同様に誘電体層を形成した。この誘電体層上に、実施例1と同様にして、Sn/In=0.10で厚みが26nmのITO膜およびSn/In=0.03で厚みが2nmのITO膜を順次形成して、透明導電性フィルムを得た。この透明導電性フィルムの第一の透明導電性薄膜上に、実施例1と同様にして銅からなる金属層を50nmの厚みで形成して、導電性積層体を得た。
[Example 3]
A dielectric layer was formed on one surface of a film substrate made of a polyethylene terephthalate film having a thickness of 50 μm in the same manner as in Example 2. On this dielectric layer, an ITO film with Sn / In = 0.10 and a thickness of 26 nm and an ITO film with Sn / In = 0.03 and a thickness of 2 nm were sequentially formed in the same manner as in Example 1. A transparent conductive film was obtained. On the 1st transparent conductive thin film of this transparent conductive film, the metal layer which consists of copper with a thickness of 50 nm was formed like Example 1, and the electroconductive laminated body was obtained.

[実施例4〜10、比較例4]
ITO膜の形成に用いるターゲットの、酸化インジウムと酸化スズの比率、および製膜厚みを表1に示すように変更したこと以外は、実施例3と同様にして、導電性積層体を得た。
[Examples 4 to 10, Comparative Example 4]
A conductive laminate was obtained in the same manner as in Example 3 except that the ratio of indium oxide and tin oxide and the film thickness of the target used for forming the ITO film were changed as shown in Table 1.

[比較例1]
厚み50μmのポリエチレンテレフタレートフィルムからなるフィルム基材の一方の面に、実施例2と同様に誘電体層を形成した。ArおよびOを導入した減圧下で、酸化インジウムと酸化スズを90:10の重量比で有する焼結体のターゲット材料を用いて、DCマグネトロンスパッタ法により、誘電体層上にSnとInの原子数比Sn/Inが0.10のインジウム−スズ複合酸化物からなる透明導電性薄膜を20nmの厚みで形成して、基材上に透明導電性薄膜を1層のみ有する透明導電性フィルムを得た。この透明導電性フィルムの透明導電性薄膜上に、実施例1と同様にして銅からなる金属層を50nmの厚みで形成して、導電性積層体を得た。
[Comparative Example 1]
A dielectric layer was formed on one surface of a film substrate made of a polyethylene terephthalate film having a thickness of 50 μm in the same manner as in Example 2. Using a sintered target material having a weight ratio of indium oxide and tin oxide of 90:10 under reduced pressure with Ar and O 2 introduced, a DC magnetron sputtering method is used to deposit Sn and In on the dielectric layer. A transparent conductive film having a thickness of 20 nm formed of an indium-tin composite oxide having an atomic ratio Sn / In of 0.10 and a thickness of 20 nm, and having only one transparent conductive thin film on a substrate Obtained. On the transparent conductive thin film of this transparent conductive film, the metal layer which consists of copper was formed by the thickness of 50 nm like Example 1, and the electroconductive laminated body was obtained.

[比較例2]
実施例3と同様に、厚み50μmのポリエチレンテレフタレートフィルム基材の一方の面に誘電体層を形成した。この誘電体層上に、比較例1と同様にして、Sn/In比が0.08のITO膜を膜厚25nmで形成し、その上に銅からなる金属層を50nmの厚みで形成して、導電性積層体を得た。
[Comparative Example 2]
In the same manner as in Example 3, a dielectric layer was formed on one surface of a 50 μm thick polyethylene terephthalate film substrate. On this dielectric layer, an ITO film having a Sn / In ratio of 0.08 was formed with a film thickness of 25 nm in the same manner as in Comparative Example 1, and a metal layer made of copper was formed thereon with a thickness of 50 nm. A conductive laminate was obtained.

[比較例3]
上記比較例2において、ITO膜の形成に用いるターゲットの、酸化インジウムと酸化スズの重量比を88:12(ITO膜のSn/In比=0.13)に変更したこと以外は、比較例2と同様にして、導電性積層体を得た。
[Comparative Example 3]
Comparative Example 2 except that the weight ratio of indium oxide to tin oxide of the target used for forming the ITO film was changed to 88:12 (Sn / In ratio of ITO film = 0.13) in Comparative Example 2 above. In the same manner, a conductive laminate was obtained.

<評価>
室温下で、アンモニア水溶液(濃度8重量%)100重量部に対して塩化アンモニウム8重量部を混合した溶液(エッチャント)に、各実施例および比較例で得られた導電性積層体を10分間浸漬して、銅層をエッチング除去した。
<Evaluation>
At room temperature, the conductive laminates obtained in the examples and comparative examples were immersed for 10 minutes in a solution (etchant) in which 8 parts by weight of ammonium chloride was mixed with 100 parts by weight of an aqueous ammonia solution (concentration 8% by weight). Then, the copper layer was removed by etching.

銅層を形成する前の透明導電性フィルムおよび導電性積層体から銅層をエッチングにより除去した透明導電性フィルムのそれぞれを、140℃の熱風オーブンにて90分間加熱して、ITOの結晶化を行った。結晶化後の導電性薄膜(積層体)の表面抵抗を4端子法により測定した。   Each of the transparent conductive film before forming the copper layer and the transparent conductive film obtained by removing the copper layer from the conductive laminate by etching is heated in a hot air oven at 140 ° C. for 90 minutes to crystallize the ITO. went. The surface resistance of the conductive thin film (laminated body) after crystallization was measured by a four-terminal method.

各実施例および比較例のITO膜の製膜に用いたターゲット中の酸化インジウムと酸化スズの合計に対する酸化スズの量(重量%)、ITO膜中のSn/In比、および銅層をエッチングにより除去する前後での表面抵抗を表1に示す。表1中、ITO1は、第一透明導電性薄膜(金属層側のITO膜)、ITO2は、第二透明導電性薄膜(基材側のITO膜)を表す。   Etching the amount of tin oxide (wt%), the Sn / In ratio in the ITO film, and the copper layer with respect to the total of indium oxide and tin oxide in the target used to form the ITO film of each example and comparative example Table 1 shows the surface resistance before and after removal. In Table 1, ITO1 represents a first transparent conductive thin film (ITO film on the metal layer side), and ITO2 represents a second transparent conductive thin film (ITO film on the substrate side).

Figure 0006096869
Figure 0006096869

基材上に透明導電性薄膜を1層のみ有する比較例1〜3では、銅層を形成後にエッチング除去した場合の表面抵抗が、銅層形成前に比して約8%〜13%増加していた。また、金属層側の透明導電性薄膜(ITO1)における不純物金属(Sn)の含有比が、基材側の透明導電性薄膜(ITO2)よりも大きい比較例2においても、表面抵抗の増加がみられた。これに対して、実施例1〜10では、銅層をエッチング除去した後も抵抗の変化が小さかった。このことから、Sn含有量の小さい第一の透明導電性薄膜を形成することにより、抵抗の増加が抑制されることがわかる。   In Comparative Examples 1 to 3 having only one transparent conductive thin film on the base material, the surface resistance when the copper layer is removed by etching after the formation of the copper layer is increased by about 8% to 13% compared to before the copper layer is formed. It was. Further, in Comparative Example 2 in which the content ratio of the impurity metal (Sn) in the transparent conductive thin film (ITO1) on the metal layer side is larger than that of the transparent conductive thin film (ITO2) on the base material side, an increase in surface resistance is seen. It was. On the other hand, in Examples 1 to 10, the change in resistance was small even after the copper layer was removed by etching. This shows that the increase in resistance is suppressed by forming the first transparent conductive thin film having a small Sn content.

1 透明基材
2 透明導電性薄膜積層体
21,22,23,25 透明導電性薄膜
3,4 金属層
10 導電性積層体
100 透明導電性積層体
121〜126 透明電極
131〜136 パターン配線
231〜236 接続部
150 制御手段
1 Transparent substrate
2 Transparent conductive thin film laminate 21, 22, 23, 25 Transparent conductive thin film
3,4 metal layers
10 Conductive laminate
DESCRIPTION OF SYMBOLS 100 Transparent electroconductive laminated body 121-126 Transparent electrode 131-136 Pattern wiring 231-236 Connection part
150 Control means

Claims (11)

透明基材であるプラスチックフィルムの少なくとも一方の面に、
少なくとも2層の透明導電性薄膜からなる透明導電性薄膜積層体および金属層がこの順に形成され、
前記透明導電性薄膜の全てが結晶質膜であり、
前記金属層に最近接である第一透明導電性薄膜は、主金属と1種以上の不純物金属を含有する複合金属酸化物層であり、
第一透明導電性薄膜以外の透明導電性薄膜は、主金属と1種以上の不純物金属を含有する複合金属酸化物層であり、
前記第一透明導電性薄膜における、主金属に対する不純物金属の含有原子数比が、前記透明導電性薄膜積層体を構成する各透明導電性薄膜における、主金属に対する不純物金属の含有原子数比の中で最大ではない、導電性積層体であって、
前記透明導電性薄膜積層体を構成する全ての透明導電性薄膜は、主金属がInであり、不純物金属としてSnを含有し、
前記第一透明導電性薄膜におけるInに対する不純物金属の含有原子数比が、0.08以下であり、
前記透明導電性薄膜積層体中で、最もInに対する不純物金属の含有原子数比が高い透明導電性薄膜における、Inに対する不純物金属の含有原子数比が、0.04〜0.31であり、
前記第一透明導電性薄膜の厚みは1nm以上であり、
前記第一透明導電性薄膜以外の透明導電性薄膜の厚みの合計は9nm〜34nmである、導電性積層体。
On at least one surface of the plastic film that is a transparent substrate,
A transparent conductive thin film laminate comprising at least two transparent conductive thin films and a metal layer are formed in this order,
All of the transparent conductive thin film is a crystalline film,
The first transparent conductive thin film closest to the metal layer is a composite metal oxide layer containing a main metal and one or more impurity metals,
The transparent conductive thin film other than the first transparent conductive thin film is a composite metal oxide layer containing a main metal and one or more impurity metals,
In the first transparent conductive thin film, the ratio of the number of impurity metals to the main metal is the ratio of the number of impurity metals to the main metal in each transparent conductive thin film constituting the transparent conductive thin film laminate. A conductive laminate that is not the largest,
All the transparent conductive thin films constituting the transparent conductive thin film laminate have a main metal of In, and contain Sn as an impurity metal,
In the first transparent conductive thin film, the atomic ratio of impurity metal to In is 0.08 or less,
In the transparent conductive thin film laminate, in the transparent conductive thin film having the highest impurity metal content atomic ratio to In, the impurity metal content atomic ratio to In is 0.04 to 0.31.
The thickness of the first transparent conductive thin film is 1 nm or more,
The electroconductive laminated body whose sum total of the thickness of transparent conductive thin films other than said 1st transparent conductive thin film is 9 nm-34 nm.
透明基材であるプラスチックフィルムの少なくとも一方の面に、
少なくとも2層の透明導電性薄膜からなる透明導電性薄膜積層体および金属層がこの順に形成され、前記透明導電性薄膜の全てが結晶質膜であり、
前記金属層に最近接である第一透明導電性薄膜は、主金属と1種以上の不純物金属を含有する複合金属酸化物層であり、
第一透明導電性薄膜以外の透明導電性薄膜は、主金属と1種以上の不純物金属を含有する複合金属酸化物層であり、
前記第一透明導電性薄膜における、主金属に対する不純物金属の含有原子数比が、前記透明導電性薄膜積層体を構成する各透明導電性薄膜における、主金属に対する不純物金属の含有原子数比の中で最大ではない、導電性積層体であって、
前記透明導電性薄膜積層体を構成する全ての透明導電性薄膜は、主金属がInであり、不純物金属としてSnを含有し、
前記第一透明導電性薄膜におけるInに対する不純物金属の含有原子数比が、0.08以下であり、
前記透明導電性薄膜積層体中で、最もInに対する不純物金属の含有原子数比が高い透明導電性薄膜における、Inに対する不純物金属の含有原子数比が、0.04〜0.31であり、
前記第一透明導電性薄膜の厚みは1nm以上であり、
前記第一透明導電性薄膜の厚みは前記透明導電性薄膜積層体の厚みに対して50%未満である、導電性積層体。
On at least one surface of the plastic film that is a transparent substrate,
A transparent conductive thin film laminate comprising at least two transparent conductive thin films and a metal layer are formed in this order, and all of the transparent conductive thin films are crystalline films,
The first transparent conductive thin film closest to the metal layer is a composite metal oxide layer containing a main metal and one or more impurity metals,
The transparent conductive thin film other than the first transparent conductive thin film is a composite metal oxide layer containing a main metal and one or more impurity metals,
In the first transparent conductive thin film, the ratio of the number of impurity metals to the main metal is the ratio of the number of impurity metals to the main metal in each transparent conductive thin film constituting the transparent conductive thin film laminate. A conductive laminate that is not the largest,
All the transparent conductive thin films constituting the transparent conductive thin film laminate have a main metal of In, and contain Sn as an impurity metal,
In the first transparent conductive thin film, the atomic ratio of impurity metal to In is 0.08 or less,
In the transparent conductive thin film laminate, in the transparent conductive thin film having the highest impurity metal content atomic ratio to In, the impurity metal content atomic ratio to In is 0.04 to 0.31.
The thickness of the first transparent conductive thin film is 1 nm or more,
The thickness of said 1st transparent conductive thin film is a conductive laminated body which is less than 50% with respect to the thickness of the said transparent conductive thin film laminated body.
前記第一透明導電性薄膜の厚みは1nm〜17nmである請求項1または2に記載の導電性積層体。   The conductive laminate according to claim 1, wherein the first transparent conductive thin film has a thickness of 1 nm to 17 nm. 前記透明導電性薄膜積層体の全体の厚みが35nm以下である、請求項1〜3のいずれか1項に記載の導電性積層体。   The electroconductive laminated body of any one of Claims 1-3 whose whole thickness of the said transparent conductive thin film laminated body is 35 nm or less. 前記第一透明導電性薄膜における、主金属に対する不純物金属の含有原子数比が、前記透明導電性薄膜積層体を構成する各透明導電性薄膜における、主金属に対する不純物金属の含有原子数比の中で最小である、請求項1〜4のいずれか1項に記載の導電性積層体。   In the first transparent conductive thin film, the ratio of the number of impurity metals to the main metal is the ratio of the number of impurity metals to the main metal in each transparent conductive thin film constituting the transparent conductive thin film laminate. The conductive laminate according to any one of claims 1 to 4, wherein the conductive laminate is minimum. 前記透明導電性薄膜積層体中で最も、主金属に対する不純物金属の含有原子数比が大きい透明導電性薄膜における、主金属に対する不純物金属の含有原子数比と、前記第一透明導電性薄膜における、主金属に対する不純物金属の含有原子数比との差が、0.005〜0.23である、請求項1〜5のいずれか1項に記載の導電性積層体。   In the transparent conductive thin film laminate, in the transparent conductive thin film having a large atomic ratio of impurity metal to main metal, the atomic ratio of impurity metal to main metal, and in the first transparent conductive thin film, The electroconductive laminated body of any one of Claims 1-5 whose difference with the atomic number ratio of the impurity metal with respect to a main metal is 0.005-0.23. 前記第一透明導電性薄膜におけるInに対するSnの含有原子数比Sn/Inが、0.08以下である、請求項1〜6のいずれか1項に記載の導電性積層体。   The conductive laminated body according to any one of claims 1 to 6, wherein a content ratio Sn / In of Sn to In in the first transparent conductive thin film is 0.08 or less. 第一透明導電性薄膜以外の前記透明導電性薄膜積層体を構成する透明導電性薄膜全体におけるInに対するSnの含有原子数比Sn/Inが、0.08〜0.13である、請求項1〜7のいずれか1項に記載の導電性積層体。   The Sn-containing atomic number ratio Sn / In to In in the entire transparent conductive thin film constituting the transparent conductive thin film laminate other than the first transparent conductive thin film is 0.08 to 0.13. The electroconductive laminated body of any one of -7. 前記第一透明導電性薄膜の厚みが、透明導電性薄膜積層体の全体の厚みに対して6%以上である、請求項1〜8のいずれか1項に記載の導電性積層体。   The conductive laminate according to claim 1, wherein the thickness of the first transparent conductive thin film is 6% or more with respect to the total thickness of the transparent conductive thin film laminate. 前記透明導電性薄膜積層体が、前記第一透明導電性薄膜および前記第一透明導電性薄膜よりも基材側に形成された1層の透明導電性薄膜の2層からなる、請求項1〜9のいずれか1項に記載の導電性積層体。   The said transparent conductive thin film laminated body consists of two layers of the 1st transparent conductive thin film and the 1 layer of transparent conductive thin film formed in the base material side rather than the said 1st transparent conductive thin film. 10. The conductive laminate according to any one of 9 above. 前記第一透明導電性薄膜と前記金属層とが隣接している、請求項1〜10のいずれか1項に記載の導電性積層体。   The conductive laminate according to claim 1, wherein the first transparent conductive thin film and the metal layer are adjacent to each other.
JP2015231311A 2015-11-27 2015-11-27 Conductive laminate, transparent conductive laminate with pattern wiring, and optical device Active JP6096869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231311A JP6096869B2 (en) 2015-11-27 2015-11-27 Conductive laminate, transparent conductive laminate with pattern wiring, and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231311A JP6096869B2 (en) 2015-11-27 2015-11-27 Conductive laminate, transparent conductive laminate with pattern wiring, and optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014019196A Division JP5848786B2 (en) 2014-02-04 2014-02-04 A conductive laminate, a transparent conductive laminate with a patterned wiring, and an optical device.

Publications (2)

Publication Number Publication Date
JP2016074221A JP2016074221A (en) 2016-05-12
JP6096869B2 true JP6096869B2 (en) 2017-03-15

Family

ID=55950672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231311A Active JP6096869B2 (en) 2015-11-27 2015-11-27 Conductive laminate, transparent conductive laminate with pattern wiring, and optical device

Country Status (1)

Country Link
JP (1) JP6096869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085282B1 (en) * 2003-04-30 2011-11-22 에스코 코포레이션 Releasable coupling assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117832301A (en) * 2024-03-05 2024-04-05 金阳(泉州)新能源科技有限公司 Back contact battery string, manufacturing method thereof and photovoltaic module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528651B2 (en) * 2005-03-01 2010-08-18 日東電工株式会社 Transparent conductive film and touch panel
JP5572932B2 (en) * 2008-09-03 2014-08-20 凸版印刷株式会社 Transparent conductive film and touch panel
JP4958020B2 (en) * 2009-03-31 2012-06-20 大日本印刷株式会社 Touch panel sensor, laminate for manufacturing touch panel sensor, and method for manufacturing touch panel sensor
JP2011003446A (en) * 2009-06-19 2011-01-06 Bridgestone Corp Transparent conductive membrane, method of manufacturing transparent conductive membrane and transparent conductive film, and flexible display using transparent conductive membrane
JP5556436B2 (en) * 2009-10-13 2014-07-23 東洋紡株式会社 Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel
KR20140027230A (en) * 2011-05-20 2014-03-06 아사히 가라스 가부시키가이샤 Material for conductive film, conductive film laminate, electronic apparatus, and method for producing material for conductive film, conductive film laminate and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085282B1 (en) * 2003-04-30 2011-11-22 에스코 코포레이션 Releasable coupling assembly

Also Published As

Publication number Publication date
JP2016074221A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP5473990B2 (en) A conductive laminate, a transparent conductive laminate with a patterned wiring, and an optical device.
KR102650752B1 (en) Metal layer laminated transparent conductive film and touch sensor using the same
JP5914036B2 (en) Method for producing conductive laminated film
KR101671169B1 (en) Metal mesh type touch screen panel and method of manufacturing the same
JP6292225B2 (en) Transparent conductor
JP2012053594A (en) Transparent conductive film for touch panel
JP6096869B2 (en) Conductive laminate, transparent conductive laminate with pattern wiring, and optical device
JP2007163995A (en) Substrate with transparent conductive film and manufacturing method thereof
JP5848786B2 (en) A conductive laminate, a transparent conductive laminate with a patterned wiring, and an optical device.
TW201446981A (en) Touch panel, preparing method thereof, and Ag-Pd-Nd alloy for touch panel
CN107660279A (en) Conducting structures and its manufacture method
JPH09221340A (en) Substrate with transparent conductive film
JP2015219690A (en) Transparent conductive device and touch panel
KR102032011B1 (en) Conductive laminate and transparent electrode comprising thereof
JP7114446B2 (en) Conductive film and patterning method thereof
JP6597284B2 (en) Laminated transparent conductive film, laminated wiring film, and laminated wiring film manufacturing method
KR20160065363A (en) Metal mesh type touch screen panel and method of manufacturing the same
JP2017134884A (en) Manufacturing method of transparent conductor
JP2018170360A (en) Conductive film, electrode, electronic apparatus, electrostatic capacitance type input device, and manufacturing method of electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6096869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250