JPH08264021A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH08264021A
JPH08264021A JP9132795A JP9132795A JPH08264021A JP H08264021 A JPH08264021 A JP H08264021A JP 9132795 A JP9132795 A JP 9132795A JP 9132795 A JP9132795 A JP 9132795A JP H08264021 A JPH08264021 A JP H08264021A
Authority
JP
Japan
Prior art keywords
zn
transparent conductive
conductive film
atomic
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9132795A
Other languages
Japanese (ja)
Inventor
Uchitsugu Minami
Shinzo Takada
内嗣 南
新三 高田
Original Assignee
Gunze Ltd
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd, グンゼ株式会社 filed Critical Gunze Ltd
Priority to JP9132795A priority Critical patent/JPH08264021A/en
Publication of JPH08264021A publication Critical patent/JPH08264021A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To provide a target material for manufacturing a film forming a new transparent conductive film mainly made of at least one kind of Zn2 In2 O5 and having high conductivity and excellent optical characteristics. CONSTITUTION: An oxide transparent conductive film mainly made of at least one kind of the mixed powder constituted of the Zn quantity indicated by Zn/(Zn+In) within the range of 5-45 atomic % in the pseudobinary ZnO-In2 O3 and a target material baked, molded, or sintered as required is formed on a substrate.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は酸化物透明導電膜及び透明導電膜を製造するために使用される焼結体。 Sintered invention relates to a used to produce a transparent conductive oxide film and the transparent conductive film.

【0002】 [0002]

【従来の技術】各種ディスプレイ装置や薄膜太陽電池の透明電極、あるいは将来莫大な需要が見込まれる紫外線遮断・赤外線反射特性に優れた省エネルギー建築用窓硝子コーティング材として、可視光透過率が高く、低抵抗な特性を有する透明導電膜が欠かせない。 BACKGROUND ART Various display devices and thin film solar cell of the transparent electrode or as a UV blocking, infrared reflection properties superior energy saving architectural window glass coating material expected future huge demand, high visible light transmittance, low a transparent conductive film having a resistance characteristic is essential. 現在最も広く利用されている透明導電膜としては、金属酸化物薄膜が主であり、高い化学的安定性を有する酸化錫SnO 2系(Fまたはアンチモン(Sb)を添加したものが主として利用されている。)、酸化インジウム(In 23 )、 As the transparent conductive film which is currently the most widely used, metal oxide thin film is mainly obtained by adding tin oxide SnO 2 system with a high chemical stability (F or antimony (Sb) is mainly used are.), indium oxide (In 2 O 3),
優れた電気的・光学的特性を有する錫添加酸化インジウム[In 23 −SnO 2 −以下ITOという]、さらに最近では、申請者らが開発した低コストで資源的にも全く問題がなく、ITOに匹敵する優れた電気的・光学的特性を有する酸化亜鉛(ZnO)系が知られている。 Indium tin oxide with excellent electrical and optical properties [In 2 O 3 -SnO 2 - hereinafter referred to as ITO], More recently, there is no problem at all to natural resources at low cost applicants have developed, zinc oxide with excellent electrical and optical properties comparable to ITO (ZnO) systems are known.

【0003】 [0003]

【発明が解決しようとする問題点】しかしながら、従来の透明導電膜では、近年の透明導電膜に対する用途の多様化に対応しきれなくなっている。 THE INVENTION Problems to be Solved] However, the conventional transparent conductive film, are no longer cope with the diversification of uses for recent transparent conductive film. 即ち、大面積にわたって均一で、より低い抵抗率や高い光透過率、さらには任意の光屈折率を有する透明導電膜が求められている。 That is, uniform over a large area, a lower resistivity and high light transmittance, and further has been demanded a transparent conductive film having an arbitrary refractive index.
しかも酸・アルカリ等に対する高い薬品耐性、高温酸化性雰囲気中での使用に対する高い安定性が要望されているが従来の透明導電膜ではもはや対応できなくなっている。 Moreover high chemical resistance to acids, alkalis, and no longer be supported at high but stability is desired conventional transparent conductive film for use in a high temperature oxidizing atmosphere.

【0004】 [0004]

【問題点を解決するための手段】従来の透明導電膜に比べてバンドギャップが2.9eVと小さい値を持ち、かつその光屈折率は2.4と大きな値を有する亜鉛(Z Means for Solving the problems] band gap than the conventional transparent conductive film having a small value of 2.9 eV, and zinc having a large value that the optical refractive index 2.4 and (Z
n)、インジウム(In)を含む酸化物、即ちZnO− n), oxide containing indium (In), i.e. ZnO-
In 23で示される擬2元系において少なくとも1種のZn 2 In 25を主成分とする新しい透明導電膜を発明した。 Invented at least one new transparent conductive film mainly containing Zn 2 an In 2 O 5 in the pseudo binary system represented by an In 2 O 3. それによって、より高い導電性、即ちより低い抵抗率と光学的特性の改善が期待できる。 Thereby, higher conductivity, i.e. improvement of lower resistivity and optical properties can be expected. さらに本発明では、高温酸化性囲気中での安定性や、適度な耐薬品性を実現できることにより前記問題点を解決できる新しい透明導電膜、及び該膜を製造するために使用されるタ−ゲット材を提供することを目的としている。 Further, in the present invention, and stability in high temperature oxidizing 囲気, new transparent conductive film capable of solving the above problems by being able to achieve a suitable chemical resistance, and data used to produce the membrane - Get It is an object of the present invention to provide a wood.

【0005】具体的には、ZnO−In 23なる擬2元系組成において、Zn/(Zn+In)で示されるZn [0005] Specifically, Zn in ZnO-In 2 O 3 becomes pseudo binary system composition, represented by Zn / (Zn + In)
量を5〜45原子%の範囲にある組成の混合粉末、もしくは必要に応じて焼成、あるいは必要に応じて成型・焼結したものをタ−ゲットに用い、例えば、スパッタ法により、基体としてガラスのようなセラミック質基板あるいはプラスチックのような有機質基板上に少なくとも1 Mixed powder composition in an amount in the range of 5 to 45 atomic%, or fired as needed, or those molded and sintered as necessary data - used to target, for example, by sputtering, glass as a base At least such a ceramic electrolyte substrate or organic substrate such as plastic
種のZn 2 In 25を主成分とする酸化物膜を形成することによって本発明の目的を達成することができる。 It can achieve the object of the present invention by forming an oxide film mainly composed of Zn 2 In 2 O 5 seed.

【0006】本発明になる該透明導電膜の製造法としては、上記した方法のみならず真空蒸着法、化学気相結晶成長(CVD)法、ゾルーゲル法、分子線エピタキシャル成長法等公知の任意の薄膜作製法が利用できる。 [0006] As a manufacturing method for transparent conductive film according to the present invention, a vacuum deposition method not only the method described above, chemical vapor crystal growth (CVD) method, sol-gel method, any thin film or the like of known molecular beam epitaxy preparation method can be used.

【0007】 [0007]

【作 用】本発明の目的に適う上記組成範囲内の薄膜を該基体上に前述したような公知の薄膜作製法により形成する際、酸素空孔や格子間原子属等の真性格子欠陥による内因性ドナ−やII族元素の一部がIII族元素で置換、III族元素の一部がIV族元素で置換、II族元素の一部がIV族元素で置換、及びVI族元素の一部がVII族元素で置換する外因性ドナ−の導入によるキャリアの生成が可能である。 When formed by a known thin film forming method described above a thin film in the composition range on said substrate the purposes of the work for the present invention, endogenous due to oxygen vacancies and interstitial intrinsic lattice defects atoms genus such sex donor - and some group II element is substituted with the group III element, a part of the group III element is substituted with a group IV element, partially replacing the II group element in the group IV element, and a portion of the VI group elements There exogenous donor substituted with VII group elements - are possible generation of carriers due to the introduction of. 本発明になる薄膜は、非晶質、もしくはZ Thin film according to the present invention, amorphous, or Z
2 In 25 、Zn 2 In 25とIn 23 、Zn 2 In 2 n 2 In 2 O 5, Zn 2 In 2 O 5 and In 2 O 3, Zn 2 In 2 O
5とZnOあるいはZn 2 In 25とZnO及びIn 23 5 and ZnO or Zn 2 In 2 O 5 and ZnO, and In 2 O 3
の混相から成る結晶質であり上述のメカニズムによるキャリア生成が考えられる。 The mechanism described above is a crystalline consisting of mixed phase carrier generation are considered by. また、上記いずれの酸化物においても透明である。 Moreover, it is transparent In any of the above oxides. 従って従来の透明導電膜よりも低いバンドギャップは、より高い密度のキャリア生成を可能とし、その結果低い抵抗率を達成でき、加えて該透明導電膜の高い光屈折率約2.4は、約2.0という低い光屈折率を有する従来の透明導電膜と組み合わせることによって、無反射コ−ティング膜、干渉フィルタあるいは反射器(ブラックリフレクタ)等に応用することにより光学的特性の改善や優れた光学的特性を実現できるという作用効果を生み出す。 Thus the bandgap lower than a conventional transparent conductive film, to allow the carrier generation of higher density, the result can achieve low resistivity, the optical refractive index of about 2.4 higher transparent conductive film in addition, about by combining a conventional transparent conductive film having a low refractive index of 2.0, nonreflective co - coating film, excellent improvement and the optical properties by applying to the interference filter or reflector (black reflector) or the like It produces effects that can be realized the optical properties. また、ZnOの強い酸化性、 In addition, strong oxidizing of ZnO,
特にノンド−プのZnOやIn 23の酸化性雰囲気中での酸化による抵抗の増大の結果に基づく低い耐熱性は周知の事実であるが、Zn 2 In 25における内因性ドナ−の安定性から生ずるより高温までの酸化性雰囲気中での該膜の安定性や、本発明になるZn 2 In 25の耐薬品性は、酸・アルカリに容易に溶解するZnOや酸に弱いIn 23と比べ非常に優れている。 Particularly throat - although less heat resistance based on a result of the increase in resistance due to oxidation in an oxidizing atmosphere of ZnO and In 2 O 3 of up is a well-known fact, endogenous Donna in Zn 2 In 2 O 5 - of and membrane stability in an oxidizing atmosphere up to a temperature higher than arising from stability, chemical resistance of Zn 2 in 2 O 5 according to the present invention, vulnerable to ZnO or acid is readily soluble in acids and alkalis It is very good compared to the in 2 O 3. これはZn 2 In 2 This is Zn 2 In 2
5固有の化学的性質に基づくと考えられる。 O 5 is considered to be based on a unique chemical properties.

【0008】 [0008]

【実施例 1】ZnO、及びIn 23の各粉末をそれぞれ50.0mol%のモル分率で均一に混合した後アルゴン中1000℃で5時間焼成した焼成粉を直径80m EXAMPLE 1 ZnO, and In 2 O 3 of the fired powder obtained by firing for 5 hours at 1000 ° C. in an argon were uniformly mixed in a molar fraction of each 50.0 mol% each powder diameter 80m
mのステンレス製皿に詰めスパッタリングターゲットとした。 It was packed sputtering target in a stainless steel dish m. スパッタガスには純アルゴンガスを用いた。 The sputtering gas using pure argon gas. スパッタガス圧を1.2Paに設定し、ターゲット面に対し平行に保持された室温並びに350℃のガラス基板上に高周波投入電力40Wで、スパッタ成膜を行なった。 The sputtering gas pressure was set to 1.2 Pa, a high frequency input power 40W parallel to retained room temperature and 350 ° C. of glass substrate relative to the target surface, was subjected to sputtering. 図1に、作製した該ZnO−In 23薄膜における典型的な電気的特性の基板面上の分布を示す。 Figure 1 shows the distribution on the substrate surface of a typical electrical characteristics of the ZnO-In 2 O 3 thin film prepared. 作製した膜をx Film the x-prepared
線回折により分析した結果、Zn 2 In 25相のみ検出できた。 Was analyzed by ray diffraction, it can be detected only Zn 2 In 2 O 5 phase. それゆえ該膜の主成分はZn 2 In 25である。 Therefore the membrane of the main component is Zn 2 In 2 O 5. さらに、図2に示すごとく擬2元系ZnO−In 2 Furthermore, pseudo binary system ZnO-an In 2 as shown in FIG. 2
3タ−ゲットのZn/(Zn+In)の量を変化させて作製した膜では5から45原子%の範囲で低い抵抗率を実現できた。 O 3 data - could be realized Zn / (Zn + In) low resistivity in the range of 5 to 45 atomic% in the film produced by the varying amount of the target. またZn/(Zn+In)の量が5−4 The amount of Zn / (Zn + In) is 5-4
5原子%の範囲で作製した該膜のx線回折による分析を行なった結果は前記と同様Zn 2 In 25が主成分であることがわかった。 5 atomic% of a result of performing the analysis membrane of x-ray diffraction were prepared in the range it was found that the same Zn 2 In 2 O 5 as a main component. また、マグネトロンスパッタ法で作製した従来のZnO系やITO系で認められた電気的特性の空間分布はここでは認められなかった。 Further, the spatial distribution of the electrical properties observed in conventional ZnO-based or ITO system prepared by the magnetron sputtering method was not observed here. この膜の平均厚さは420nmにあり、室温で得られた膜の抵抗率は3.9×10 -4 Ωcm、移動度は約26cm/V・s The average thickness of the film is in the 420 nm, the resistivity is 3.9 × 10 -4 Ωcm membrane obtained at room temperature, the mobility of about 26cm / V · s
ec、キャリア濃度は6×10 20 cm -3の範囲であった。 ec, the carrier concentration was in the range of 6 × 10 20 cm -3. また、作製した膜の平均可視光透過率は80%であった。 The average visible light transmittance of the film produced was 80%. 尚、スパッタ時に酸素を導入して成膜した結果、 As a result of the film formation by introducing oxygen during sputtering,
平均可視光透過率85%が得られた。 85% average visible light transmission were obtained. しかし、酸素を入れ過ぎると膜の抵抗率はかえって高くなった。 However, the resistivity of the oxygen too put film became rather high. さらにZ In addition Z
2 In 25のInをYで5原子%置き換えた該膜を作製した結果、抵抗率は2.4×10 -4 Ωcmまで低下した。 n 2 In 2 O results of 5 of In were prepared 5 atomic% the replaced membrane in Y, the resistivity was reduced to 2.4 × 10 -4 Ωcm. また基板を垂直に保持して成膜した場合でも、上記とほぼ同様の結果が得られた。 Even when the film was formed by holding the substrate vertically, the substantially same results were obtained. 一方、基板温度350℃ On the other hand, a substrate temperature of 350 ° C.
で作製した場合では、電気的特性を損なうことなく該透過率は87%になった。 In the case of manufacturing, the transmittance without impairing the electrical characteristics became 87%. 図3に典型的な光透過率スペクトルを示す。 It shows a typical optical transmission spectrum in Fig.

【0009】 [0009]

【実施例 2】実施例1において使用したタ−ゲットに [Example 2] data was used in Example 1 - to get
IV族元素としてSi、Ge、Sn、Pb、Ti、Zrを最大10原子%添加した膜をそれぞれ作製した結果、いずれの膜も添加前に比べ平均可視光透過率が低下することなく抵抗率を20%以上低くすることができた。 Si as Group IV element, Ge, Sn, Pb, Ti, resistivity without Zr results were produced the film added up to 10 atomic%, an average visible light transmittance Each of the films compared with the prior addition of drops It could be lower than 20%. また、作製したIV族元素添加Zn 2 In 25膜の平均可視光透過率は80%以上であった。 The average visible light transmittance of the Group IV element added Zn 2 In 2 O 5 film produced was 80% or more. また、膜作製時に酸素を分圧で加えたところ該透過率は85%になったが、抵抗率は高くなる傾向を示した。 Further, although the transmittance was added oxygen during film formation at a partial pressure became 85%, the resistivity showed a tendency to increase. 尚、基板を垂直に保持して成膜した場合でも、上記とほぼ同様の結果が得られた。 Incidentally, even when the film formation while holding the substrate vertically, the substantially same results were obtained. 一方、基板温度350℃で作製した場合では、電気的特性を損なうことなく透過率を85%まで改善することができた。 On the other hand, in the case of manufacturing a substrate temperature 350 ° C., the transmittance without impairing the electrical characteristics can be improved to 85%.

【0010】 [0010]

【実施例 3】実施例1と同じ条件に加え、VII族元素を含むド−パントとしてCF 4ガスをスパッタ装置内に分圧1×10 -2 Paまで導入し、成膜を行なった。 Example 3 In addition to the same conditions as in Example 1, de containing Group VII element - introducing CF 4 gas as a dopant to the partial pressure of 1 × 10 -2 Pa in the sputtering apparatus and subjected to film formation. 作製した膜の平均厚さは380nmであり、室温で作製した膜では抵抗率を15%以上低くすることができた。 The average thickness of the fabricated film is 380 nm, it was possible to reduce more than 15% resistance in films prepared at room temperature. また、作製したフッ素添加Zn 2 In 25膜の平均可視光透過率は80%以上であった。 The average visible light transmittance of the fluorine-containing Zn 2 In 2 O 5 film produced was 80% or more. 尚、基板を垂直に保持して成膜した場合でも、上記とほぼ同様の結果が得られた。 Incidentally, even when the film formation while holding the substrate vertically, the substantially same results were obtained. 一方、基板温度350℃で作製した場合では、電気的特性を損なうことなく透過率を85%まで改善することができた。 On the other hand, in the case of manufacturing a substrate temperature 350 ° C., the transmittance without impairing the electrical characteristics can be improved to 85%.

【0011】 [0011]

【実施例 4】実施例1、2あるいは3の膜作製において、ZnO粉末およびIn 23粉末あるいはそれらに加え添加物として導入するド−パント材料粉末を1−10 In film formation of Example 4 Example 1, 2, or 3, de introduced as an additive added to the ZnO powder and In 2 O 3 powder or they - dopant material powder 1-10
原子%の範囲で添加、均一に混合後、直径80mmに成型した後焼結した焼結体タ−ゲットを使用した。 Using Get - added in a range of atomic%, were uniformly mixed, sintered body data obtained by sintering after molding the diameter 80 mm. いずれの場合においても焼成粉末タ−ゲットを用いて作製した透明導電膜の電気的・光学的特性とほぼ同様の結果が得られた。 Also calcined powder data in any case - electrical and optical properties of the transparent conductive film formed using the target with substantially the same results were obtained. また、同様の結果は焼結体タ−ゲットを用いた直流マグネトロンスパッタ法によっても実現できることを確認した。 Similar results are Shoyuitaita - it was confirmed that can also be realized by a DC magnetron sputtering method using a target.

【0012】 [0012]

【実施例 5】大気圧CVD法により、Zn原料としてアセチルアセトネート[Zn(acac) 2 ]、In原料としてインジウムアセチルアセトネ−ト[In 2 (a The Example 5 atmospheric pressure CVD method, acetylacetonate as Zn material [Zn (acac) 2], indium acetylacetonate as an In raw material - DOO [In 2 (a
cac) 3 ]、酸素原料としてH 2 Oを用い、全ての原料を加熱されたステンレス製容器に充填し、ステンレス配管を通じて原料ガスをキャリアガスとともに、石英リアクタ内にセットされ350℃に加熱されているガラス基板に向けて供給しZn 2 In 25を主成分とする該透明導電膜を該ガラス基板上に作製した。 cac) 3], using of H 2 O as oxygen source, all of the material was filled into a heated stainless steel vessel, a raw material gas together with the carrier gas through a stainless pipe, it is heated to be set in a quartz reactor 350 ° C. the transparent conductive film mainly composed of Zn 2 in 2 O 5 and supplied toward the glass substrate are fabricated on the glass substrate. 尚、原料温度は、 In addition, raw material temperature,
それぞれ85℃、150℃、73℃、並びにキャリアガス流量は、それぞれ500CCM、20CCM、2.6×10 85 ° C., respectively, 0.99 ° C., 73 ° C., and the carrier gas flow rate, respectively 500CCM, 20CCM, 2.6 × 10
-3 mol/minであった。 It was -3 mol / min. 作製した膜は厚さ400n Fabricated film thickness 400n
m、抵抗率2.6×10 -3 Ωcm、平均可視光透過率は85%以上であった。 m, resistivity 2.6 × 10 -3 Ωcm, average visible light transmittance was 85% or more. また、該膜をx線回折により分析を行なったところ、実施例1〜4で得られた膜の場合と同様にZn 2 In 25が検出された。 Also, when was analyzed by x-ray diffraction the membrane, the Zn 2 In 2 O 5 as in the case of films obtained in Examples 1 to 4 were detected.

【0013】本発明になる透明導電膜は、前記実施例のみに限定されるものではなく、種々の原材料、例えば、 [0013] The transparent conductive film according to the present invention, the present invention is not limited only to embodiments, various raw materials, for example,
前記実施例においては、すべての原料に酸化物を利用していたが、II族、あるいはIII族を含む酸化物や気化しやすい低級酸化物、アセテート、アセチルアセトネート、あるいはアルコレートのような有機金属錯体等各種の化合物を適宜組み合わせて利用することができる。 In the above embodiment, although not utilize oxide all ingredients, II group, or an oxide or vaporized easily lower oxide containing Group III, acetates, acetylacetonates or organic, such as alcoholate, it can be utilized in combination with metal complexes various compounds as appropriate. 即ち、Zn原料として[Zn(acac) 2 ]、Znアセテート[Zn(CH 3 COO) 2 ]、塩化亜鉛(ZnCl That is, as the Zn starting material [Zn (acac) 2], Zn acetate [Zn (CH 3 COO) 2 ], zinc chloride (ZnCl
4 )のような錯体、あるいは塩もしくはハロゲナイド、 Complexes such as 4) or a salt or halogenide,,
さらにZn(OCH 32 、Zn(OC 252のようなアルコキシド、またジメチルZn[Zn(CH 32 ]、 Further Zn (OCH 3) 2, Zn (OC 2 H 5) alkoxides such as 2, also dimethyl Zn [Zn (CH 3) 2 ],
ジエチルZn[Zn(C 252 ]のようなアルキル化合物等多くの錯塩や錯体が利用できる。 Diethyl Zn [Zn (C 2 H 5 ) 2] alkyl compounds many complex salts and complexes such as are available. また、III族元素であるInについても上記と同様の化合物群が利用できる事は言うまでもない。 Also, similar to the above group of compounds also In a III group element can of course be utilized.

【発明の効果】本発明になる透明導電膜は、バンドギャップが従来型透明導電膜に比べ2.9eVと小さいため高導電性が得られ易く、しかも可視光領域における吸収が非常に少ないという効果が得られた。 The transparent conductive film according to the present invention exhibits, easily obtained high conductivity for a small band gap and 2.9eV compared with the conventional transparent conductive film, yet effective that very little absorption in the visible light region was gotten. さらに、本発明になる該透明導電膜の光屈折率は、In 23系、SnO Further, refractive index of the transparent conductive film according to the present invention, an In 2 O 3 system, SnO
2系及びZnO系等従来の透明導電膜に比べて2.4前後とかなり大きい値が得られるという効果が認められた。 Effect that considerably large value is obtained as 2.4 before and after as compared to the 2-based and ZnO-based such as a conventional transparent conductive film was observed. この値はIn 23あるいはZnOの量を増やすことによって2.0程度まで低下させることもできる。 This value may be lowered to about 2.0 by increasing the amount of In 2 O 3 or ZnO. その結果、透明導電膜に対する多様なニ−ズに対応できる効果や、該透明導電膜はZnO系やIn 23と比較してその電気的特性の空間分布が認められないという従来型透明導電膜には見られない顕著な効果が認められた。 As a result, various two-for transparent conductive films - and effects to accommodate's, the transparent Akirashirube film is conventional transparent conductive that the spatial distribution is not observed in the electrical characteristics as compared with the ZnO-based or In 2 O 3 significant effect not seen in the film was observed. さらに、優れた耐候性、耐酸化性、適度な耐化学薬品性が実現できるという効果が得られた。 Furthermore, excellent weather resistance, oxidation resistance, the effect of moderate chemical resistance can be achieved was obtained.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例1で得られた該透明導電膜の抵抗率:ρ、キャリア密度:nおよび移動度:μの基板分布を示す。 [1] The resistivity of the transparent conductive film obtained in Example 1 of the present invention: [rho, carrier density: n and mobility: shows the substrate distribution of mu.

【図2】本発明の実施例1で作製した擬2元系ZnO− [Figure 2] pseudo binary system prepared in Example 1 of the present invention ZnO-
In 23における電気的特性のZn/(Zn+In)量依存性を示す。 Shows the Zn / (Zn + In) weight dependence of electrical characteristics of an In 2 O 3.

【図3】本発明の実施例1で得られた該透明導電膜の光透過率スペクトルを示す。 3 shows the light transmittance spectrum of the transparent conductive film obtained in Example 1 of the present invention.

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項 1】基体上に、亜鉛(Zn)、インジウム(In)を含む酸化物膜、即ちZnO−In 23で示される擬2元系において少なくとも1種のZn 2 In 25 To 1. A substrate, zinc (Zn), indium oxide film containing (In), i.e. ZnO-an In 2 at least one of Zn in pseudo binary system represented by O 3 2 In 2 O 5
    を成分とする酸化物膜を形成して成ることを特徴とする透明導電膜。 Transparent conductive film, characterized by comprising forming the oxide film to component.
  2. 【請求項 2】前記請求項1記載のZn 2 In 25のZ Wherein Z of claim 1, wherein the Zn 2 an In 2 O 5
    nまたはInに対しIV族またはVII族元素を0.1から20原子%、好ましくは1から10原子%の範囲で添加したことを特徴とする請求項1記載の透明導電膜。 n or In 0.1 to 20 atomic% of group IV or Group VII element to, preferably transparent conductive film according to claim 1, characterized in that the addition in the range of 1 to 10 atomic%.
  3. 【請求項 3】前記請求項2記載のIV族元素がシリコン(Si)、ゲルマニウム(Ge)、錫(Sn)、鉛(P Wherein group IV element of claim 2 wherein the: silicon (Si), germanium-(Ge), tin (Sn), lead (P
    b)、チタニウム(Ti)あるいはジルコニウム(Z b), titanium (Ti) or zirconium (Z
    r)である請求項1または2記載の透明導電膜。 Claim 1 or 2 transparent conductive film according a r).
  4. 【請求項 4】前記請求項2記載のVII族元素がフッ素(F)であり、その添加範囲は酸素(O)に対し0.1 VII group element according to claim 4, wherein according to claim 2 is fluorine (F), the addition range to oxygen (O) 0.1
    〜20%、好ましくは1〜10%であることを特徴とする請求項1または2記載の透明導電膜。 20%, preferably claim 1 or 2 transparent conductive film, wherein the 1 to 10%.
  5. 【請求項 5】前記請求項2記載のZn 2 In 25のZ Wherein Z of claim 2, wherein the Zn 2 an In 2 O 5
    nまたはInに対しイットリウム(Y)を0.1から2 For n or In yttrium (Y) from 0.1 2
    0原子%、好ましくは1から10原子%の範囲で添加したことを特徴とする請求項1〜3または4記載の透明導電膜。 0 atomic%, preferably claims 1-3 or 4 transparent conductive film, wherein is added in a range from 1 to 10 atomic%.
  6. 【請求項 6】前記請求項1〜4または5記載の透明導電膜を製造するために使用され、Zn/(Zn+In) 6. is used to produce a transparent conductive film of the claims 1-4 or 5, wherein, Zn / (Zn + In)
    で示されるZn量が5〜45原子%の範囲にあることを特徴とするZnO−In 23系焼結体。 ZnO-In 2 O 3 based sintered body Zn amount indicated in to being in the range of 5 to 45 atomic%.
JP9132795A 1995-03-26 1995-03-26 Transparent conductive film Pending JPH08264021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9132795A JPH08264021A (en) 1995-03-26 1995-03-26 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9132795A JPH08264021A (en) 1995-03-26 1995-03-26 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH08264021A true JPH08264021A (en) 1996-10-11

Family

ID=14023364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9132795A Pending JPH08264021A (en) 1995-03-26 1995-03-26 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH08264021A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159599A (en) * 1998-04-30 2000-06-13 Asahi Chem Ind Co Ltd Metal oxide structural form and its production
JP2001011613A (en) * 1999-06-29 2001-01-16 Mitsui Mining & Smelting Co Ltd Production of sputtering target containing zinc oxide
US6221520B1 (en) 1996-07-26 2001-04-24 Asahi Glass Company Ltd. Transparent conductive film and process for forming a transparent electrode
WO2003024712A1 (en) * 2001-09-14 2003-03-27 Cpfilms Inc. Durable, low ohm, high transmission transparent conductor
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor
JP2010135841A (en) * 2010-03-01 2010-06-17 Idemitsu Kosan Co Ltd Inorganic nondegenerate semiconductor
CN102191465A (en) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 Indium-doped zinc oxide target material and preparation method of transparent conducting film
US8188471B2 (en) 2007-09-05 2012-05-29 Canon Kabushiki Kaisha Field effect transistor
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same
WO2015059938A1 (en) * 2013-10-24 2015-04-30 Jx日鉱日石金属株式会社 Oxide sintered body, oxide sputtering target and conductive oxide thin film with high refractive index, and method for producing oxide sintered body
JP2016111279A (en) * 2014-12-10 2016-06-20 国立大学法人東京農工大学 Multi-junction solar battery and manufacturing method thereof
JP2016110899A (en) * 2014-12-09 2016-06-20 Tdk株式会社 Transparent conductive body and touch panel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221520B1 (en) 1996-07-26 2001-04-24 Asahi Glass Company Ltd. Transparent conductive film and process for forming a transparent electrode
JP4651138B2 (en) * 1998-04-30 2011-03-16 斎藤 秀俊 Method for producing zinc oxide structure
JP2000159599A (en) * 1998-04-30 2000-06-13 Asahi Chem Ind Co Ltd Metal oxide structural form and its production
JP4577924B2 (en) * 1999-06-29 2010-11-10 三井金属鉱業株式会社 Method for producing sputtering target containing zinc oxide
JP2001011613A (en) * 1999-06-29 2001-01-16 Mitsui Mining & Smelting Co Ltd Production of sputtering target containing zinc oxide
WO2003024712A1 (en) * 2001-09-14 2003-03-27 Cpfilms Inc. Durable, low ohm, high transmission transparent conductor
JP2005232471A (en) * 2004-02-17 2005-09-02 Nikko Materials Co Ltd Sputtering target, optical information recording medium, and production method therefor
JP4628685B2 (en) * 2004-02-17 2011-02-09 Jx日鉱日石金属株式会社 Sputtering target for optical information recording medium and optical information recording medium
US8188471B2 (en) 2007-09-05 2012-05-29 Canon Kabushiki Kaisha Field effect transistor
JP2010135841A (en) * 2010-03-01 2010-06-17 Idemitsu Kosan Co Ltd Inorganic nondegenerate semiconductor
CN102191465A (en) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 Indium-doped zinc oxide target material and preparation method of transparent conducting film
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same
US9431144B2 (en) 2012-01-27 2016-08-30 Up Chemical Co., Ltd. Indium-containing oxide film and preparing method thereof
WO2015059938A1 (en) * 2013-10-24 2015-04-30 Jx日鉱日石金属株式会社 Oxide sintered body, oxide sputtering target and conductive oxide thin film with high refractive index, and method for producing oxide sintered body
JP2016110899A (en) * 2014-12-09 2016-06-20 Tdk株式会社 Transparent conductive body and touch panel
JP2016111279A (en) * 2014-12-10 2016-06-20 国立大学法人東京農工大学 Multi-junction solar battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Ohhata et al. Optical properties of rf reactive sputtered tin-doped In2O3 films
Rose et al. Fabrication procedures and process sensitivities for CdS/CdTe solar cells
Maruyama et al. Indium‐tin oxide thin films prepared by chemical vapor deposition
Minami New n-type transparent conducting oxides
Bisht et al. Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates
Minami et al. Highly conductive and transparent ZnO thin films prepared by rf magnetron sputtering in an applied external dc magnetic field
US4265974A (en) Electrically conductive, infrared reflective, transparent coatings of stannic oxide
US4146657A (en) Method of depositing electrically conductive, infra-red reflective, transparent coatings of stannic oxide
Matsubara et al. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications
Sanon et al. Growth and characterization of tin oxide films prepared by chemical vapour deposition
Phillips et al. Zinc‐indium‐oxide: a high conductivity transparent conducting oxide
KR100237950B1 (en) Glass substrate coated with a low emissivity coating and method thereof
Jarzebski Preparation and physical properties of transparent conducting oxide films
US5922142A (en) Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
Dawar et al. Semiconducting transparent thin films: their properties and applications
US6362414B1 (en) Transparent layered product and glass article using the same
Van Heerden et al. XRD analysis of ZnO thin films prepared by spray pyrolysis
Nath et al. Preparation of In2O3 and tin-doped In2O3 films by a novel activated reactive evaporation technique
Raviendra et al. Electroless deposition of cadmium stannate, zinc oxide, and aluminum‐doped zinc oxide films
Kim et al. Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition
Minami et al. Properties of transparent zinc‐stannate conducting films prepared by radio frequency magnetron sputtering
Zhang et al. Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method
Zhao et al. Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition
Haacke Transparent conducting coatings
JP3358893B2 (en) Gallium - transparent conductor containing indium oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627