JPH0367247B2 - - Google Patents

Info

Publication number
JPH0367247B2
JPH0367247B2 JP57192145A JP19214582A JPH0367247B2 JP H0367247 B2 JPH0367247 B2 JP H0367247B2 JP 57192145 A JP57192145 A JP 57192145A JP 19214582 A JP19214582 A JP 19214582A JP H0367247 B2 JPH0367247 B2 JP H0367247B2
Authority
JP
Japan
Prior art keywords
film
liquid crystal
light
amorphous silicon
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57192145A
Other languages
Japanese (ja)
Other versions
JPS5981627A (en
Inventor
Fujio Okumura
Masakazu Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57192145A priority Critical patent/JPS5981627A/en
Publication of JPS5981627A publication Critical patent/JPS5981627A/en
Publication of JPH0367247B2 publication Critical patent/JPH0367247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1352Light-reflecting layers

Description

【発明の詳細な説明】 本発明は投射型の大画面表示装置などに用いら
れる光書込型液晶ライトバルブ素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical writing type liquid crystal light valve element used in a projection type large screen display device or the like.

光書込型液晶ライトバルブ素子は投射型大画面
表示装置及び光学画像処理における入出力デバイ
スであるインコヒーレント・コヒーレント光像変
換素子などに用いられ、光入力情報を光出力情報
に変換するためのキーデバイスである。光書込型
液晶ライトバルブは一般に第1図に示すような構
造をしている。すなわち第1のガラス基板1上に
透明導電膜2、光導電体膜からなる光書込層3、
入力光12と出力光13を分離するための遮光膜
4、誘電体多層反射膜5を設け、第2の透明導電
膜7のついたガラス基板6で液晶からなる表示層
8を挾持した構造である。なおここで9,9′は
液晶分子を配向させるための絶縁体膜からなる配
向処理層、10はスペーサー、11は電源であ
る。この構造で各部に必要な性質は以下の通りで
ある。まず光導電体からなる光書込層3は暗導電
率10-7Ω-1cm-1以下、明導電率10-6〜10-4Ω-1cm-1
以上、次に遮光層4は明導電率10-7Ω-1cm-1以下
で、吸収係数が大きいこと誘電体多層反射膜の透
過率は10%以下である。上記光導電体の導電率は
高分解能と高コントラストを得るために必要な値
である。また遮光膜は本来誘電体多層反射膜の透
過率が零であれば必要ない部分であるが、そのよ
うな反射膜を得るためにはオングストロームオー
ダーの厳密な膜厚制御が必要で、実際上そのよう
な制御は不可能である。そこで分解能をそこなわ
ないように明導電率10-7Ω-1cm-1以下の光吸収体
で10-4〜10-6の遮光能を得るわけである。
Optical writing type liquid crystal light valve elements are used in projection type large screen display devices and incoherent coherent light image conversion elements, which are input/output devices in optical image processing, and are used to convert optical input information into optical output information. It is a key device. An optical writing type liquid crystal light valve generally has a structure as shown in FIG. That is, on the first glass substrate 1, a transparent conductive film 2, an optical writing layer 3 made of a photoconductor film,
It has a structure in which a light shielding film 4 for separating input light 12 and output light 13 and a dielectric multilayer reflective film 5 are provided, and a display layer 8 made of liquid crystal is sandwiched between a glass substrate 6 having a second transparent conductive film 7. be. Here, 9 and 9' are alignment treatment layers made of insulating films for aligning liquid crystal molecules, 10 is a spacer, and 11 is a power source. The properties required for each part in this structure are as follows. First, the optical writing layer 3 made of a photoconductor has a dark conductivity of 10 -7 Ω -1 cm -1 or less and a bright conductivity of 10 -6 to 10 -4 Ω -1 cm -1
Next, the light shielding layer 4 has a bright conductivity of 10 -7 Ω -1 cm -1 or less and a large absorption coefficient, and the transmittance of the dielectric multilayer reflective film is 10% or less. The conductivity of the photoconductor is a value necessary to obtain high resolution and high contrast. In addition, the light-shielding film is originally not necessary if the transmittance of the dielectric multilayer reflective film is zero, but in order to obtain such a reflective film, strict film thickness control on the order of angstroms is required, and in practice it is not necessary. Such control is impossible. Therefore, in order not to impair the resolution, a light absorber with a bright conductivity of 10 -7 Ω -1 cm -1 or less is used to obtain a light shielding ability of 10 -4 to 10 -6 .

従来上記条件を満足する材料としてCdS光導電
体に対してはCdTeが用いられ、シリコン結晶の
光導電体に対しては二酸化硅素中に多量のニツケ
ルや亜鉛などの金属を含ませたサーメツト等の薄
膜が遮光用の光吸収体として用いられてきた。し
かしこれらの物質はそれぞれ異質の物質であり、
製造方法が異なつたり光導電体と遮光層さらに誘
電体多層反射膜への格子定数の不整合を生じ易か
つた。さらにCdS光導電体は応答速度が数ミリ秒
から数十ミリ秒と長いため書込手段がスライド画
像の書込や、螢光体の残光性が比較的長いCRT
による書込などに制限され、一画素の書込が数マ
イクロ秒以下の、例えばレーザによる走査記録な
どの高速走査記録には不向きであつた。これらい
くつかの欠点のため、液晶ライトバルブの構成が
複雑になり高価なデバイスにならざるを得ない上
に用途が制限されるという不都合が生じていた。
Conventionally, CdTe has been used as a material that satisfies the above conditions for CdS photoconductors, and for silicon crystal photoconductors, materials such as cermets containing large amounts of metals such as nickel and zinc in silicon dioxide have been used. Thin films have been used as light absorbers for blocking light. However, each of these substances is different,
Due to different manufacturing methods, mismatching of lattice constants between the photoconductor, the light-shielding layer, and the dielectric multilayer reflective film is likely to occur. Furthermore, since the CdS photoconductor has a long response speed of several milliseconds to several tens of milliseconds, it can be used for writing slide images, or CdS photoconductor has a relatively long afterglow property.
It is not suitable for high-speed scanning recording such as laser scanning recording where writing of one pixel takes several microseconds or less. These several drawbacks have resulted in the inconvenience that the liquid crystal light valve has a complicated structure, becomes an expensive device, and has limited applications.

本発明の目的は、上記の従来の光書込型液晶ラ
イトバルブ素子の欠点を除去せしめ、光応答速度
が速く、製作が容易で特性の再現性のよい光書込
型液晶ライトバルブ素子を提供することにある。
An object of the present invention is to eliminate the drawbacks of the conventional optically writable liquid crystal light valve element described above, and to provide an optically writable liquid crystal light valve element that has a fast optical response speed, is easy to manufacture, and has good reproducibility of characteristics. It's about doing.

本発明の光書込型液晶ライトバルブ素子は従来
型の光書込型液晶ライトバルブ素子において、そ
の光導電体膜部が、暗導電率10-7Ω-1cm-1以下、
明導電率10-6〜10-4Ω-1cm-1以上の性質を持つ非
晶質シリコン膜(a−Si:H)で構成し、遮光膜
部を明導電率10-7Ω-1cm-1以下の性質を持つ弗素
と水素を含む非晶質シリコン膜(a−Si:F:
H)で構成することを特徴とする。
The optically writable liquid crystal light valve element of the present invention is a conventional optically writable liquid crystal light valve element in which the photoconductor film portion has a dark conductivity of 10 -7 Ω -1 cm -1 or less,
It is composed of an amorphous silicon film (a-Si:H) with a bright conductivity of 10 -6 to 10 -4 Ω -1 cm -1 or higher, and the light shielding film has a bright conductivity of 10 -7 Ω -1. An amorphous silicon film containing fluorine and hydrogen (a - Si:F:
H).

以下、本発明についての図面を参照して説明す
る。
Hereinafter, the present invention will be explained with reference to the drawings.

近年、水素によるダングリングボンドの消去に
よつて非晶質シリコンの価電子制御が可能になる
ことが示されて以来、非晶質シリコンの各方面へ
の応用が盛んに研究されている。その高い暗抵抗
と光感度から光書込型液晶ライトバルブ素子への
応用も考えられているが、現在のところ実用にな
つているものはない。その最大の理由は、CdSに
対するCdTeのような遮光膜材料が非晶質シリコ
ンに対して見い出されなかつたことである。遮光
膜に要求される特性は投射光を当てた状態
10-7Ω-1cm-1以下の導電率であることと、可視光
全域にわたつて104cm-1以上の高吸収係数を持つ
ことである。前者は分解能を確保するため、後者
は液晶にかかる電圧のON−OFF比を大きくとる
ために必要な特性であるこのような高抵抗で光感
度が非常に小さくしかも吸収が大きいという条件
を満足しなおかつ非晶質シリコンの上に安定に積
層できる膜がなかつため非晶質シリコンを使つた
光書込型液晶ライトバルブが実用にならなかつた
訳である。
In recent years, since it has been shown that the valence electrons of amorphous silicon can be controlled by erasing dangling bonds with hydrogen, applications of amorphous silicon in various fields have been actively researched. Due to its high dark resistance and photosensitivity, it has been considered to be applied to optically written liquid crystal light valve elements, but none has been put into practical use at present. The biggest reason for this is that a light shielding film material such as CdTe for CdS has not been found for amorphous silicon. The characteristics required for a light-shielding film are when exposed to projection light.
It must have a conductivity of 10 -7 Ω -1 cm -1 or less and a high absorption coefficient of 10 4 cm -1 or more over the entire visible light range. The former is to ensure resolution, and the latter is to meet the requirements of high resistance, extremely low light sensitivity, and large absorption, which are the characteristics necessary to ensure a large ON-OFF ratio of the voltage applied to the liquid crystal. Furthermore, because there is no film that can be stably laminated on amorphous silicon, an optical writing type liquid crystal light valve using amorphous silicon has not been put into practical use.

一方、非晶質シリコンのダングリングボンドタ
ーミネータとして弗素を用いる研究が勢力的に行
なわれている。これは、シリコンの弗素の結合エ
ネルギーが水素とシリコンの結合エネルギーより
も大きく、熱的に安定な膜が得られる可能性があ
るためである。
On the other hand, research on the use of fluorine as a dangling bond terminator for amorphous silicon is being actively conducted. This is because the bonding energy of fluorine in silicon is greater than the bonding energy of hydrogen and silicon, and a thermally stable film may be obtained.

我々はその研究において弗素と水素を含んだ膜
は水素のみを含んだ膜に比べ吸収係数が大きいと
いう性質を持つていることを発見した。さらに
我々はこの弗素と水素を含んだ膜が、該遮光膜に
要求される吸収が大きく、高抵抗で明導電率の増
加が小さくしかも水素のみを含む非晶質シリコン
膜とのマツチングがよいという条件を満足するこ
とを見い出し、これを液晶ライトバルブ素子に応
用するに至つた。
In our research, we discovered that films containing fluorine and hydrogen have a higher absorption coefficient than films containing only hydrogen. Furthermore, we believe that this film containing fluorine and hydrogen has a large absorption required for the light-shielding film, has high resistance, has a small increase in bright conductivity, and is a good match with an amorphous silicon film that only contains hydrogen. They found that the conditions were met and applied this to a liquid crystal light valve element.

まず光導電体膜として用いるa−Si:H膜につ
いて特性を示しながら説明する。第2図にグロー
放電法によつて形成したa−Si:H膜の導電率の
膜形成時の基板温度依存性を示す。
First, the a-Si:H film used as the photoconductor film will be explained while showing its characteristics. FIG. 2 shows the dependence of the conductivity of an a-Si:H film formed by the glow discharge method on the substrate temperature during film formation.

図においてσDは暗導電率、σPはAMI(太陽光と
スペクトルが同じで100mW/cm2の光)照射時の
明導電率である。図から明らかなように明導電率
は膜形成時の基板温度が上るにつれて増大し300
℃以上の高温側で胞和する。また200℃以上では
光書込型液晶ライトバルブ素子の光導電体膜とし
て必要な暗導電率10-7Ω-1cm-1以下、明導電率
10-7〜10-4Ω-1cm-1という値を十分満足している
ことが分る。
In the figure, σ D is the dark conductivity, and σ P is the bright conductivity when irradiated with AMI (light with the same spectrum as sunlight and 100 mW/cm 2 ). As is clear from the figure, the bright conductivity increases as the substrate temperature increases during film formation.
It spores at high temperatures above ℃. In addition, at temperatures above 200°C, the dark conductivity is below 10 -7 Ω -1 cm -1 and the bright conductivity is below 10 -7 Ω -1 cm -1 , which is necessary for the photoconductor film of an optically written liquid crystal light valve element.
It can be seen that the value of 10 -7 to 10 -4 Ω -1 cm -1 is fully satisfied.

ところで、基板温度130℃以下では明導電率が
10-7Ω-1cm-1以下となり、この膜を遮光膜として
使えそうであるが、一般に低温で形成した膜は水
素が抜けやすく熱的に不安定であることが知られ
ており、実用には不向きである。
By the way, the bright conductivity decreases when the substrate temperature is below 130℃.
10 -7 Ω -1 cm -1 or less, and it seems that this film can be used as a light-shielding film, but it is generally known that films formed at low temperatures are thermally unstable because hydrogen easily escapes, so it is not practical. It is not suitable for

次に弗素と水素を含んだ非晶質シリコンがある
成長条件で遮光膜としての条件を満足し、しかも
条件を変えれば光導電体膜としても使えるため光
導電体膜と遮光膜の連続成長が可能であり、非晶
質シリコンを用いた実用的な液晶ライトバルブ素
子が得られることを示す。
Next, amorphous silicon containing fluorine and hydrogen satisfies the conditions as a light-shielding film under certain growth conditions, and can also be used as a photoconductor film if the conditions are changed, allowing continuous growth of the photoconductor film and light-shielding film. We show that this is possible and that a practical liquid crystal light valve element using amorphous silicon can be obtained.

第3図は、SiF4とH2の混合ガスを原料ガスと
したグロー放電法によつて作製した非晶質シリコ
ン(a−Si:F:H)の導電率σのSiF4とH2
合比依存性を示している。図においてσDは暗導電
率、σPはAMI(太陽光とスペクトルがほぼ同じで
100mW/cm2のエネルギ密度を持つた光)照射時
の明導電率を示している。また成長時の基板温度
は約320℃圧力は約1Torrである。図から明らか
なように、混合比SiF4/H2が30以上では明導電
率は10-7Ω-1cm-1を下まわつており導電率に関し
て遮光膜の条件を満たしていることが分る。
Figure 3 shows a mixture of SiF 4 and H 2 with a conductivity σ of amorphous silicon (a-Si:F:H) produced by a glow discharge method using a mixed gas of SiF 4 and H 2 as a raw material gas. It shows ratio dependence. In the figure, σ D is the dark conductivity, and σ P is AMI (the spectrum is almost the same as that of sunlight).
It shows the bright conductivity when irradiated with light (with an energy density of 100 mW/cm 2 ). The substrate temperature during growth is approximately 320°C and the pressure is approximately 1 Torr. As is clear from the figure, when the mixture ratio SiF 4 /H 2 is 30 or more, the bright conductivity is less than 10 -7 Ω -1 cm -1 , which indicates that the conductivity satisfies the conditions for a light-shielding film. Ru.

さらに、SiF4/H2が10付近では導電率の明暗
比が6桁近くもあり光導電体膜として十分使える
ことを示している。第4図は導電率の基板温度依
存性を示している。図より、光導電膜としては基
板温度380℃以上の高温の方が良いことがわかる。
また低温にする程明導電率が低くなり遮光膜に適
していることが分る。このように良い膜を作るた
めには温度を制御した方がよいが、膜形成は光導
電体膜、遮光膜の順序で行うため後の方が低温と
なり、それぞれ特性に悪影響は出てこない。第5
図に吸収係数αのSiF4/H2依存性を示す。図に
よるとSiF4/H2が大きい程吸収係数も大きくな
り、SiF4/H2が30程度では遮光膜に必要な条件
を十分満足していることが分る。従つてグロー放
電法においては基板温度320℃以下、ガス混合比
30程度、圧力1Torrで該遮光膜が得られる。
Furthermore, when SiF 4 /H 2 is around 10, the contrast ratio of conductivity is nearly six orders of magnitude, indicating that it can be used satisfactorily as a photoconductor film. FIG. 4 shows the dependence of conductivity on substrate temperature. From the figure, it can be seen that a high substrate temperature of 380° C. or higher is better for the photoconductive film.
It is also found that the lower the temperature, the lower the bright conductivity, making it suitable for a light-shielding film. In order to make such a good film, it is better to control the temperature, but since the film formation is performed in the order of the photoconductor film and the light-shielding film, the latter will be at a lower temperature, and the characteristics of each film will not be adversely affected. Fifth
The figure shows the dependence of the absorption coefficient α on SiF 4 /H 2 . According to the figure, the larger SiF 4 /H 2 is, the larger the absorption coefficient is, and it can be seen that SiF 4 /H 2 of about 30 sufficiently satisfies the conditions necessary for a light-shielding film. Therefore, in the glow discharge method, the substrate temperature is below 320℃ and the gas mixture ratio is
The light-shielding film can be obtained at a temperature of about 30° C. and a pressure of 1 Torr.

このように本発明の光書込型液晶ライトバルブ
素子では、従来光導電体膜としてCdS、遮光膜と
してCdTeを使つていたのに対し、光導電体膜に
a−Si:H、遮光膜にa−Si:F:Hと、いずれ
も非晶質シリコンを使うことを特徴とする。従つ
て本発明の素子では従来型の素子に対し、以下に
述べるような特性の向上並びに製作の容易さ等の
効果が得られる。
In this way, in the optically writable liquid crystal light valve element of the present invention, CdS was used as the photoconductor film and CdTe was used as the light shielding film, whereas CdS was used as the photoconductor film and CdTe was used as the light shielding film. and a-Si:F:H, both of which are characterized by the use of amorphous silicon. Therefore, the device of the present invention has the following advantages over conventional devices, such as improved characteristics and ease of manufacture.

(1) a−Si:HはCdSに比べ、光応答速度が少く
とも1桁以上速く、高速応答の光書込型液晶ラ
イトバルブ素子が得られる。
(1) The optical response speed of a-Si:H is at least one order of magnitude faster than that of CdS, and a high-speed response optical writing type liquid crystal light valve element can be obtained.

(2) 物質的にa−Si:Hとα−Si:F:Hは、非
常に近い材料であり、格子のミスマツチングに
よる剥離現象等の不安定性がない。
(2) Physically, a-Si:H and α-Si:F:H are very similar materials, and there is no instability such as peeling phenomenon due to lattice mismatching.

(3) ほとんど同一温度での連続成長が可能であ
り、形成時間の大幅な短縮並びに省電力化がで
きる。
(3) Continuous growth is possible at almost the same temperature, resulting in significant reductions in formation time and power savings.

(4) 連続成長のため光導電体膜と遮光膜の界面を
洗浄に保つことができ、界面準位による特性の
劣化等がない。
(4) Because of continuous growth, the interface between the photoconductor film and the light-shielding film can be kept clean, and there is no deterioration of characteristics due to interface states.

(5) CdS、CdTeが有害物質であるのに対し、a
−Siは無公害材料である。
(5) While CdS and CdTe are harmful substances, a
-Si is a non-polluting material.

次に本発明の一実施例を第6図に示す。 Next, an embodiment of the present invention is shown in FIG.

図において、14,23はガラス基板、15,
22はITO透明電極、16はSiH4を原料ガスと
し、基板温度300℃圧力0.3Torrの条件でグロー
放電法により作製した暗導電率10-7Ω-1cm-1以下、
明導電率10-4Ω-1cm-1程度のa−Si:H膜、17
はSiF4とH2のガス混合比SiF4/H2が30、基板温
度300℃圧力1Torrの条件で、形成装置から試料
を出すことなく連続してグロー放電法で形成した
a−Si:F:H膜で、この部分の明導電率は
10-7Ω-1cm-1以下である。18は酸化セリウムと
フツ化マグネシウムを積層し、反射率を90%以上
とした透電体多層反射膜、19,19′はSiOを
斜方蒸着して作つた液晶分子軸を基板に水平に配
向させるための配向処理層で、ツイスト・ネマチ
ツクモードの液晶を使用するてめこれらの層は斜
方蒸着の蒸着源を見る方向が対向しかつ45゜の交
差角をなすように設けてある。従つてこの配向処
理層により45゜のツイストを液晶に与えている。
20は表示用の液晶でE7という4−シアノ−
4′−n−ペンテルビフエニルと4−シアノ−4′−
n−ヘプチルビフエニルと4−シアノ−4′−n−
オクメキシビフエニルと4−シアノ−4′−n−ペ
ンテルターフエニルをそれぞれ0.25,0.51,0.1,
0.14の割合で混合した混合液晶であり、複合電界
効果型のツイスト、ネマテイツクモードで動作す
る液晶である。また21はスペーサ24は1K〜
100KHz程度の交流電源、25は書込光、26は
投射光である。
In the figure, 14, 23 are glass substrates, 15,
22 is an ITO transparent electrode, 16 is a dark conductivity of 10 -7 Ω -1 cm -1 or less, prepared by glow discharge method using SiH 4 as a raw material gas at a substrate temperature of 300°C and a pressure of 0.3 Torr;
a-Si:H film with a bright conductivity of about 10 -4 Ω -1 cm -1 , 17
is a-Si:F that was formed continuously by glow discharge method without taking out the sample from the forming apparatus under the conditions that the gas mixture ratio SiF 4 /H 2 of SiF 4 and H 2 was 30, the substrate temperature was 300°C, and the pressure was 1 Torr. :H film, the bright conductivity of this part is
10 -7 Ω -1 cm -1 or less. 18 is a conductive multilayer reflective film made by laminating cerium oxide and magnesium fluoride with a reflectance of 90% or more, and 19 and 19' are made by obliquely depositing SiO, with the liquid crystal molecular axes oriented horizontally to the substrate. Because twisted nematic mode liquid crystal is used, these layers are provided so that the directions in which the deposition source of oblique evaporation is viewed face each other and form an intersecting angle of 45°. Therefore, this alignment treatment layer gives the liquid crystal a 45° twist.
20 is a display liquid crystal, E7, 4-cyano-
4'-n-penterbiphenyl and 4-cyano-4'-
n-heptylbiphenyl and 4-cyano-4'-n-
0.25, 0.51, 0.1, respectively, ocmexibiphenyl and 4-cyano-4'-n-pentelterphenyl.
It is a mixed liquid crystal mixed at a ratio of 0.14 and operates in complex field effect twisted and nematic mode. Also, for 21, the spacer 24 is 1K~
An AC power supply of about 100KHz, 25 a writing light, and 26 a projection light.

上記によつて得た光書込型液晶ライトバルブ素
子は、パルス幅1μsec程度のレーザー光にも十分
追随し、その高速性が確かめられた。しかも上述
したように光導電体膜及び遮光膜は連続形状で得
られている。
The optically written liquid crystal light valve device obtained as described above could sufficiently follow laser light with a pulse width of about 1 μsec, confirming its high-speed performance. Furthermore, as described above, the photoconductor film and the light shielding film are obtained in a continuous shape.

以上説明したように本発明の光書込型液晶ライ
トバルブ素子は、a−Si:Hあるいはa−Si:
F:Hを光導電体膜に、a−Si:F:Hを遮光膜
に用いることにより、素子の形成が安定性がよく
無公害な材料を用いて容易におこなえ、しかも高
速のものが得られるなど、工業的に多くの利点を
有するものである。
As explained above, the optically writable liquid crystal light valve element of the present invention has a-Si:H or a-Si:
By using F:H for the photoconductor film and a-Si:F:H for the light-shielding film, elements can be formed easily using stable and non-polluting materials, and at high speed. It has many industrial advantages, such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な従来の光書込型液晶ライトバ
ルブ素子の構造図、第2図はa−Si:H膜の導電
率の基板温度依存性を示す図、第3図はa−Si:
F:Hの導電率のガス混合比SiF4/H2依存性を
示す図、第4図はa−Si:F:H膜における導電
率の基板温度依存性を示す図、第5図はa−Si:
F:Hの吸収係数のガス混合比SiF4/H2による
変化を示す図、第6図は本発明の光書込型液晶ラ
イトバルブ素子の一実施例を示す図である。 図において、1,6……ガラス基板、2,7…
…透明電極、3……光導電体膜、4……遮光膜、
5……誘電体多層反射膜、8……液晶、9,9′
……配向処理層、10……スペーサー、11……
電源、12……書込光、13……投射光、14,
23……ガラス基板、15,22……ITO電極、
16……光導電体用a−Si:F:H膜、17……
遮光用a−Si:F:H膜、18……誘電体多層反
射膜、19,19′……SiO配向処理層、20…
…液晶(E7)、21……スペーサー、24……
交流電源、25……書込光、26……投射光。
Figure 1 is a structural diagram of a general conventional optically writable liquid crystal light valve element, Figure 2 is a diagram showing the substrate temperature dependence of the conductivity of an a-Si:H film, and Figure 3 is a diagram showing the dependence of the conductivity of an a-Si:H film on the substrate temperature. :
A diagram showing the dependence of the conductivity of F:H on the gas mixture ratio SiF 4 /H 2 , Fig. 4 is a diagram showing the dependence of the conductivity on the substrate temperature in the a-Si:F:H film, and Fig. 5 is a -Si:
FIG. 6 is a diagram showing a change in the absorption coefficient of F:H depending on the gas mixture ratio SiF 4 /H 2 , and FIG. 6 is a diagram showing an embodiment of the optically writable liquid crystal light valve element of the present invention. In the figure, 1, 6... glass substrate, 2, 7...
...transparent electrode, 3...photoconductor film, 4...light shielding film,
5...Dielectric multilayer reflective film, 8...Liquid crystal, 9,9'
... Orientation treatment layer, 10 ... Spacer, 11 ...
Power supply, 12...Writing light, 13...Projection light, 14,
23...Glass substrate, 15,22...ITO electrode,
16... a-Si:F:H film for photoconductor, 17...
Light-shielding a-Si:F:H film, 18... Dielectric multilayer reflective film, 19, 19'... SiO alignment treatment layer, 20...
...Liquid crystal (E7), 21...Spacer, 24...
AC power supply, 25...writing light, 26...projection light.

Claims (1)

【特許請求の範囲】 1 第1のガラス基板上に、透明導電膜、光導電
体膜、遮光膜、誘電体多層反射膜を積層し、第2
の透明導電膜のついたガラス基板との間に液晶を
封入した構造を持つ光書込型液晶ライトバルブ素
子において、前記光導電体膜が暗導電率10-7Ω-1
cm-1以下、明導電率が10-6〜10-4Ω-1cm-1以上の
性質を持つ非晶質シリコン膜によつて構成されて
いると共に前記遮光膜が明導電率10-7Ω-1cm-1
下の性質を持つ弗素と水素を含む非晶質シリコン
膜で構成されていることを特徴とする光書込型液
晶ライトバルブ素子。 2 光導電体膜を構成する非晶質シリコン膜が水
素を含んだ非晶質シリコン膜である特許請求の範
囲第1項記載の光書込型液晶ライトバルブ素子。 3 光導電体膜を構成する非晶質シリコン膜が弗
素と水素とを含んだ非晶質シリコン膜である特許
請求の範囲第1項記載の光書込型液晶ライトバル
ブ素子。
[Claims] 1. A transparent conductive film, a photoconductor film, a light shielding film, and a dielectric multilayer reflective film are laminated on a first glass substrate, and a second
In an optical writing type liquid crystal light valve element having a structure in which a liquid crystal is sealed between a glass substrate having a transparent conductive film, the photoconductor film has a dark conductivity of 10 -7 Ω -1
cm -1 or less, the light shielding film is composed of an amorphous silicon film having a bright conductivity of 10 -6 to 10 -4 Ω -1 cm -1 or more, and the light shielding film has a bright conductivity of 10 -7 An optically writable liquid crystal light valve element comprising an amorphous silicon film containing fluorine and hydrogen having a property of Ω -1 cm -1 or less. 2. The optically writable liquid crystal light valve element according to claim 1, wherein the amorphous silicon film constituting the photoconductor film is an amorphous silicon film containing hydrogen. 3. The optically writable liquid crystal light valve element according to claim 1, wherein the amorphous silicon film constituting the photoconductor film is an amorphous silicon film containing fluorine and hydrogen.
JP57192145A 1982-11-01 1982-11-01 Optical writing type liquid crystal light bulb element Granted JPS5981627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57192145A JPS5981627A (en) 1982-11-01 1982-11-01 Optical writing type liquid crystal light bulb element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57192145A JPS5981627A (en) 1982-11-01 1982-11-01 Optical writing type liquid crystal light bulb element

Publications (2)

Publication Number Publication Date
JPS5981627A JPS5981627A (en) 1984-05-11
JPH0367247B2 true JPH0367247B2 (en) 1991-10-22

Family

ID=16286438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57192145A Granted JPS5981627A (en) 1982-11-01 1982-11-01 Optical writing type liquid crystal light bulb element

Country Status (1)

Country Link
JP (1) JPS5981627A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693561A (en) * 1985-12-23 1987-09-15 The United States Of America As Represented By The Secretary Of The Army Amorphous silicon spatial light modulator
US4925276A (en) * 1987-05-01 1990-05-15 Electrohome Limited Liquid crystal light valve utilizing hydrogenated amorphous silicon photodiode
EP0412843B1 (en) * 1989-08-11 1996-05-29 Sharp Kabushiki Kaisha Liquid crystal display device of optical writing type
JP2509712B2 (en) * 1989-10-12 1996-06-26 シャープ株式会社 Photoconductive liquid crystal light valve
US5235437A (en) * 1989-12-18 1993-08-10 Sharp Kabushiki Kaisha Analog/digital image processor apparatus with liquid crystal light modulator
JPH05165050A (en) * 1991-12-18 1993-06-29 Sharp Corp Photo-conductive liquid crystal light bulb
JPH05216060A (en) * 1992-02-04 1993-08-27 Nippon Hoso Kyokai <Nhk> Space optical modulating element and production thereof

Also Published As

Publication number Publication date
JPS5981627A (en) 1984-05-11

Similar Documents

Publication Publication Date Title
US5084777A (en) Light addressed liquid crystal light valve incorporating electrically insulating light blocking material of a-SiGe:H
US5583676A (en) Spatial light modulator, method of production thereof and projection-type display
US5057244A (en) Transparent, electrically conductive film
US5245453A (en) Liquid crystal modulator having a photoconductor and/or a dielectric mirror composed of hydrogenated amorphous silicon carbide
JP3062012B2 (en) LCD light valve
JPH0367247B2 (en)
US5760853A (en) Liquid crystal light valve with dielectric mirror containing semiconductor oxide, ferroelectric material or conductive material
US7092046B2 (en) Optically addressed spatial light modulator (OASLM) with dielectric mirror comprising layers of amorphous hydrogenated carbon
JPH06230410A (en) Spatial optical modulation element
CN1030111C (en) Liquid crystal light valve with crystalline state silicon film light-proof layer and its making method
US5446563A (en) Photoconductor coupled liquid crystal light valve with impurity doping which varies in the thickness direction
US5444558A (en) Spatial light modulator with photoconductor of hydrogenated amorphous silicon with 0.1-1.0 ppm boron
JPH1020328A (en) Spatial light modulation element
JP2809540B2 (en) Photoconductive liquid crystal light valve and method of manufacturing the same
KR950014322B1 (en) Spatial light modulator
JP2778613B2 (en) Spatial light modulator
JPH0933942A (en) Spatial optical modulation element and its production
JP2768589B2 (en) Optical writing liquid crystal light valve
CN1332243C (en) Column shaped structure nano-silicon/non crystal silicon carbon composite photoconductive layer liquid crystal light valve and its preparation method
JPS6052057A (en) Insulated gate field-effect type thin film transistor
JPS59170820A (en) Optical writing type liquid-crystal light valve element
KR0150945B1 (en) Liquid crystal light valve
JP2769395B2 (en) LCD light valve
JPH03221924A (en) Space optical modulator
JPH10170948A (en) Spatial optical modulation element and its production