JP3925977B2 - Transparent conductive film, method for producing the same, and sputtering target - Google Patents

Transparent conductive film, method for producing the same, and sputtering target Download PDF

Info

Publication number
JP3925977B2
JP3925977B2 JP03813397A JP3813397A JP3925977B2 JP 3925977 B2 JP3925977 B2 JP 3925977B2 JP 03813397 A JP03813397 A JP 03813397A JP 3813397 A JP3813397 A JP 3813397A JP 3925977 B2 JP3925977 B2 JP 3925977B2
Authority
JP
Japan
Prior art keywords
film
oxide
sputtering
sno
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03813397A
Other languages
Japanese (ja)
Other versions
JP2002012964A (en
Inventor
彰 光井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Ceramics Co Ltd
Original Assignee
AGC Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Ceramics Co Ltd filed Critical AGC Ceramics Co Ltd
Priority to JP03813397A priority Critical patent/JP3925977B2/en
Priority claimed from US09/175,964 external-priority patent/US6042752A/en
Publication of JP2002012964A publication Critical patent/JP2002012964A/en
Application granted granted Critical
Publication of JP3925977B2 publication Critical patent/JP3925977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Description

【0001】
【発明の属する技術分野】
本発明は、透明導電膜とその製造方法およびスパッタリングターゲットに関する。
【0002】
【従来の技術】
透明導電膜は高い可視光透過率と高い導電性を合わせ持ち、液晶表示素子、プラズマ発光素子などの表示素子の透明電極、太陽電池の透明電極、自動車用または建築用ガラスの熱線反射膜、CRTの帯電防止膜あるいは冷凍冷蔵ショーケースをはじめとする各種防曇用の透明発熱体として広く利用されている。
【0003】
従来、透明導電膜としては、低抵抗膜が容易に得られることから、ITO(錫ドープ酸化インジウム)が主として表示素子用電極として広く使われている。また、そのほかに、低コストの酸化亜鉛系透明導電膜や、低コストで耐薬品性の高い酸化錫系透明導電膜が知られている。
【0004】
従来の透明導電膜材料の問題点として、ITOは、その主成分であるインジウムが高価であり、低コスト化の障害になっている。酸化亜鉛系については、酸やアルカリなどに対する耐薬品性が低く、酸化亜鉛系透明導電膜の表示素子など工業製品への応用を困難にしている。
【0005】
酸化錫系については、工業的製法としてスプレー法あるいはCVD法で作製されているが、膜厚を均一に成膜するのは困難であり、また、成膜時に生成する塩素や塩化水素などの廃液あるいは排ガスによる環境汚染の問題があった。このように酸化錫系透明導電膜は前記したように有用である一方、種々の問題を有する。
また、結晶質の酸化錫系の膜は、耐擦傷性が低いという問題があった。耐擦傷性が低い理由として、膜の表面に、結晶成長のときに形成される微細な凹凸があり、これが引っかかりとなっているためと考えられる。
【0006】
ところで一般に、大面積の成膜法としては、均一な薄膜が得られやすく、環境汚染の少ないスパッタリング法が適している。
スパッタリング法には、大きく分けて高周波電源を使用する高周波(RF)スパッタリング法と、直流電源を使用する直流(DC)スパッタリング法がある。RFスパッタリング法は、ターゲットに電気絶縁性の材料を使用できる点で優れているが、高周波電源は価格も高く、構造が複雑で、大面積の成膜には好ましくない。
【0007】
DCスパッタリング法は、ターゲット材が良導電性の材料に限られるが、装置構造が簡単な直流電源を使用するので操作しやすく、工業的成膜法としてはDCスパッタリング法の方が好ましい。特開平1−97315に、スパッタリング法による酸化錫導電膜の形成方法が提案されているが、RFスパッタリング法についてのみ記載されており、DCスパッタリング法を採用するには至っていない。また、膜の比抵抗も8×10-3Ωcm以上の比較的高抵抗の膜しか得られていない。
【0008】
また、特開平7−335030に、透明導電性酸化物がIn、ZnO、SnO、およびGaからなる群より選択された1種または複数種からなる透明導電性酸化物が提案されているが、酸化錫を主成分とした複合酸化物の記載はない。
【0009】
また、特開平4−272612に、ガリウムをドープしたITOが提案されているが、酸化インジウムが主成分であり、酸化錫は主成分ではない。
【0010】
【発明が解決しようとする課題】
本発明は、従来技術の前述の欠点を解消するものであり、低抵抗で耐擦傷性の高い酸化錫系透明導電膜とその製造方法および該酸化錫系透明導電膜を形成するためのスパッタリングターゲットの提供を目的とする。
【0011】
【課題を解決するための手段
【0012
【0013
【0014
【0015】
本発明は、ガリウム、インジウム、錫をそれぞれ酸化物として含有する酸化錫系のスパッタリングターゲットであって、酸化ガリウムをGa換算でGaとInとSnOとの総量に対して0.1〜30モル%含有し、かつ酸化インジウムをIn換算でGaとInとSnOとの総量に対して0.1〜30モル%含有することを特徴とするスパッタリングターゲットを提供する。
【0016】
酸化ガリウムと酸化インジウムのいずれかが0.1モル%未満であると、成膜した膜の比抵抗が高くなり、また、膜が結晶性となる。また、いずれかが30モル%より大きくなると、膜の比抵抗が高くなる。
【0017】
得られる膜がより低抵抗となることから、酸化ガリウムの含有割合が、Ga換算でGaとInとSnOとの総量に対して1〜15モル%で、かつ酸化インジウムの含有割合が、In 換算でGaとInとSnOとの総量に対して1〜15モル%であることが好ましい。
【0018】
また、より低抵抗の膜が得られることから、アンチモンおよび/またはテルルを、アンチモンはSb換算で、テルルはTeO換算で、SbとTeOとGaとInとSnOとの総量に対して10モル%以下含むことが好ましい。10モル%より多くなるとターゲットおよび得られる膜の抵抗が高くなる傾向にある。さらに、ターゲットの密度(緻密さ)が低下し、スパッタリング時の放電が不安定になる傾向にある。
安定なスパッタリング放電を行ううえでは、スパッタリングターゲットの比抵抗は1Ωcm以下であることが好ましい。
【0019】
ターゲット中の酸化ガリウムは、酸化物状態で存在している。ここで、酸化物状態とは、三酸化ガリウム(Ga)の状態、あるいは、酸化インジウム(In)および/または酸化錫(SnO)との複合酸化物の状態を意味している
【0020】
ターゲット中の酸化インジウムは、酸化物状態で存在している。ここで、酸化物状態とは、In(SnOまたはGaが固溶していてもよい)の状態、あるいはSnOおよび/またはGaとの複合酸化物の状態を意味している
【0021】
酸化ガリウムおよび酸化インジウムは、酸化物状態で存在することが透明膜を作製しやすい。
【0022】
スパッタリングターゲット中の酸化ガリウムおよび酸化インジウムが酸化物状態で存在する場合、その酸化物の結晶粒子の最大粒径は200μm以下であることが好ましい。粒径が200μmより大きい酸化物粒子が存在すると、スパッタリングの放電が不安定となるため好ましくない。
【0023】
本発明のターゲットには他の成分が本発明の目的、効果を損なわない範囲において含まれていても支障ないが可及的に少量にとどめることが望ましい。
【0024】
膜の組成は、ターゲットの組成と基本的には、ほぼ一致するが、成膜時のスパッタリング条件等により膜の組成はターゲットの組成からずれることもある。
【0025】
本発明のターゲットは、たとえば常圧焼結法, ホットプレス法などの一般にセラミックスを作製する方法で作製できるが、緻密なターゲットを作製できることから、空気などの酸素を含む雰囲気下で焼結することが好ましい。
たとえば空気中で1300〜1600℃の温度条件で常圧焼結する。あるいは、800〜1100℃の条件で非酸化雰囲気でホットプレスする。
【0026】
また、本発明のターゲットは、高い導電性を有していることから、大面積の成膜が可能で、成膜速度が速い直流スパッタリングに充分対応できる他、高周波スパッタリング等いずれのスパッタリング法にも対応できる。
【0027】
本発明による透明導電膜は、膜厚が3nm〜5μmの範囲、好ましくは、3〜300nmの範囲にあることが好ましい。
【0028】
膜厚が5μmを超えると成膜時間が長くなり、コスト増加を招く。膜厚が3nmより薄いと比抵抗が高くなる。
【0029】
本発明による透明発熱体においては、外観を調整する目的で、透明導電膜層と基体の間に1層以上のアンダーコート膜を設けて、あるいは透明導電膜層の上に1層以上のオーバーコート膜を設けて、光の干渉現象や膜の吸収を利用して透過・反射色調や可視光線反射率の調整することが可能である。
【0030】
本発明は、また、スパッタリング法により基体上に酸化錫を主成分とする透明導電膜を製造する方法において、スパッタリングターゲットとして、前記のスパッタリングターゲットを用いることを特徴とする透明導電膜の製造方法を提供する。
【0031】
本発明においては、酸化性ガスを含む雰囲気下でスパッタリングすることが好ましい。
酸化性ガスとは、O、HO、CO、COなどの酸素原子含有ガスを意味する。酸化性ガスの濃度は、膜の導電性、光透過率などの膜の特性に大きく影響する。したがって、酸化性ガスの濃度は装置、基板温度、背圧などの使用する条件で、最適化する必要がある。
【0032】
スパッタリング法としては、DC方式、RF方式などあらゆる放電方式で行うことができるが、工業的な生産性の優れたDCスパッタリング法が好ましい。
【0033】
成膜される基体としては、ガラス、セラミックス、プラスチック、金属などが挙げられる。成膜中の基体の温度は、特に制約されないが、非晶質膜を得やすいという点で、300℃以下であることが好ましい。また、成膜後、基体を後加熱(熱処理)することもできる。
【0034】
【作用】
ターゲットを製造する際、酸化ガリウムおよび酸化インジウムは、主成分である酸化錫を焼結するときの焼結を促進する助剤として働く。このとき、酸化ガリウムと酸化インジウムがお互いの作用を強め合う。また、酸化ガリウムと酸化インジウムは、ターゲットに導電性を付与する添加物としても働く。この場合も、酸化ガリウムと酸化インジウムがお互いの作用を強め合い、より低抵抗化する。
【0035】
また、本発明の透明導電膜においても、ターゲットと同様に酸化ガリウムと酸化インジウムは、膜に導電性を付与する添加物として働く。この場合も、酸化ガリウムと酸化インジウムがお互いの作用を強め合い、より低抵抗化する。また、酸化ガリウムと酸化インジウムは、膜を不純物効果により非晶質化するように働く。
【0036】
また、アンチモンおよびテルルは、膜およびターゲット中のキャリア電子を増加するように働き、膜およびターゲットを低抵抗化する。
【0037】
【実施例】
(例1〜15)
Ga粉末、In粉末およびSnO粉末を用意し、これら粉末を表1に示す割合で、乾式ボールミルで混合した。
【0038】
この混合粉末をゴム型に充填し、冷間等方プレス装置(CIP装置)で加圧成形し、その後、空気中で1500℃の温度で焼成した。この焼結体(ターゲット)の密度および比抵抗を表1に示す。密度はアルキメデス法で、比抵抗は、3×3×30mmの角柱サンプルを切り出し、4端子法で測定した。
【0039】
つぎに、前述の焼結体を直径6インチ、厚さ5mmの寸法に切り出し、ターゲットを作製した(以下、GITターゲットと呼ぶ)。
これら各種GITターゲットを用いて、マグネトロンDC(直流)スパッタリング装置を使用して、Ga−In−SnO系膜(以下、GIT膜と呼ぶ)の成膜を、投入電力:500W、導入ガス:Ar−CO2 混合ガス、圧力:4×10-3Torr、基板温度:無加熱の条件で行った。基体には、ソーダライムガラスを用いた。幾何学的膜厚はおよそ10nmとなるように行った。
【0040】
例1〜15では、CO濃度の最適値は、10〜40体積%(導入ガスのアルゴンとCO2の合計に対する割合)であった。得られた各種の膜の比抵抗と透過率を表2に示す。
【0041】
表2の膜組成は、ICP法で測定した。この場合、ターゲットの組成と、膜の組成はほぼ一致していた。
【0042】
X線回折計により、膜の同定を行った。例1〜15すべて、X線回折パターンはフラットであり、膜は非晶質であった。図1に、例2で得られた膜のX線回折パターンを代表して示す。
【0043】
(例16〜19)
Sb粉末またはTeO粉末を加えた系についても検討した。粉末の混合割合は表1に示すとおりである。例1〜15と同様に、ターゲットを作製した。この焼結体(ターゲット)の密度および比抵抗を表1に示す。
【0044】
例1〜15と同様の条件で、マグネトロンDC(直流)スパッタリング装置を使用して、成膜を行った。このときの膜の比抵抗と透過率を表2に示す。
【0045】
表2の膜組成は、ICP法で測定した。この場合、膜中のSbおよびTeO は、ターゲットの原料仕込み量と比較すると膜の組成はかなり少なくなっていた。
【0046】
X線回折計により、膜の同定を行った。例16〜19すべて、X線回折パターンはフラットであり、膜は非晶質であった。
【0047】
【表1】
【0048】
【表2】
【0049】
【発明の効果】
本発明の透明導電膜は、耐薬品性に富む、酸化錫が主成分であり、高い耐酸性、耐アルカリ性などの耐薬品性が優れる。
【0050】
さらに、膜が非晶質なので表面の凹凸がなく、滑らかであるので耐擦傷性に富み、かつ、導電性であるので、絶縁物のオーバーコートに用いることにより、高耐久の帯電防止膜としての効果を有する。特に基板加熱しなくても、透明な膜が得られるので、プラスチックフィルムなどの保護膜機能を兼ね備えた帯電防止膜に利用できる。
【0051】
また、本発明のターゲットは、導電性であり、成膜速度が速いDCスパッタリング法が採用可能である、しかもターゲットは緻密質であり、安定した放電でスパッタリングできる。
【図面の簡単な説明】
【図1】本発明の例2における膜のX線回折パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive film, a method for producing the same, and a sputtering target.
[0002]
[Prior art]
The transparent conductive film has both high visible light transmittance and high conductivity, such as a liquid crystal display element, a transparent electrode of a display element such as a plasma light emitting element, a transparent electrode of a solar cell, a heat ray reflective film of glass for automobiles or buildings, a CRT. It is widely used as a transparent heating element for various types of anti-fogging, such as an antistatic film or a refrigerated showcase.
[0003]
Conventionally, ITO (tin-doped indium oxide) has been widely used as a display element electrode because a low resistance film can be easily obtained as a transparent conductive film. In addition, a low-cost zinc oxide-based transparent conductive film and a low-cost, highly chemical-resistant tin oxide-based transparent conductive film are also known.
[0004]
As a problem of the conventional transparent conductive film material, ITO is expensive because indium which is the main component thereof is expensive, which is an obstacle to cost reduction. Zinc oxide-based materials have low chemical resistance against acids and alkalis, making it difficult to apply to industrial products such as display elements of zinc oxide-based transparent conductive films.
[0005]
Tin oxide is produced by spraying or CVD as an industrial manufacturing method, but it is difficult to form a uniform film thickness, and waste liquids such as chlorine and hydrogen chloride generated during film formation are difficult. Or there was a problem of environmental pollution by exhaust gas. As described above, the tin oxide-based transparent conductive film is useful as described above, but has various problems.
Further, the crystalline tin oxide film has a problem of low scratch resistance. The reason why the scratch resistance is low is considered to be that there are fine irregularities formed at the time of crystal growth on the film surface, which are caught.
[0006]
In general, as a large area film forming method, a uniform thin film is easily obtained and a sputtering method with less environmental pollution is suitable.
Sputtering methods are roughly classified into a high frequency (RF) sputtering method using a high frequency power source and a direct current (DC) sputtering method using a direct current power source. The RF sputtering method is excellent in that an electrically insulating material can be used as a target. However, a high-frequency power source is expensive and complicated in structure, which is not preferable for film formation over a large area.
[0007]
In the DC sputtering method, the target material is limited to a material having good conductivity. However, the DC sputtering method is preferable as an industrial film forming method because a direct current power source having a simple device structure is used. JP-A-1-97315 proposes a method for forming a tin oxide conductive film by a sputtering method, but only describes an RF sputtering method and has not yet adopted a DC sputtering method. Further, only a relatively high resistance film having a specific resistance of 8 × 10 −3 Ωcm or more can be obtained.
[0008]
JP-A-7-33030 discloses a transparent conductive oxide comprising one or more transparent conductive oxides selected from the group consisting of In 2 O 3 , ZnO, SnO 2 and Ga 2 O 3. Although proposed, there is no description of complex oxides mainly composed of tin oxide.
[0009]
JP-A-4-272612 proposes ITO doped with gallium, but indium oxide is the main component and tin oxide is not the main component.
[0010]
[Problems to be solved by the invention]
The present invention eliminates the above-mentioned drawbacks of the prior art, a low resistance and high scratch resistance tin oxide-based transparent conductive film, a method for producing the same, and a sputtering target for forming the tin oxide-based transparent conductive film The purpose is to provide.
[0011]
[Means for Solving the Problems ]
[0012 ]
[0013 ]
[0014 ]
[0015]
The present invention, the total amount of gallium, indium, a sputtering target of tin oxide containing tin as each oxide, a Ga 2 O 3 and In 2 O 3 and SnO 2 gallium oxide in terms of Ga 2 O 3 containing 0.1 to 30 mol% with respect to, and containing 0.1 to 30 mol% based on the total amount of the indium oxide and Ga 2 O 3 and in 2 O 3 and SnO 2 in in 2 O 3 in terms of A sputtering target is provided.
[0016]
When either gallium oxide or indium oxide is less than 0.1 mol%, the specific resistance of the formed film becomes high, and the film becomes crystalline. Moreover, when either becomes larger than 30 mol%, the specific resistance of a film | membrane will become high.
[0017]
Since the resulting film becomes lower resistance, the content of gallium oxide, 1-15 mol% relative to the total amount of Ga 2 O 3 and In 2 O 3 and SnO 2 in terms of Ga 2 O 3, and content of indium oxide is preferably 1 to 15 mol% relative to the total amount of Ga 2 O 3 and in 2 O 3 and SnO 2 in in 2 O 3 conversion.
[0018]
Further, since a lower resistance film can be obtained, antimony and / or tellurium, antimony in terms of Sb 2 O 5 , tellurium in terms of TeO 2 , Sb 2 O 5 , TeO 2 , Ga 2 O 3 and In it preferably contains 10 mol% or less based on the total amount of the 2 O 3 and SnO 2. If it exceeds 10 mol%, the resistance of the target and the resulting film tends to increase. Furthermore, the density (denseness) of the target decreases, and the discharge during sputtering tends to become unstable.
In order to perform stable sputtering discharge, the specific resistance of the sputtering target is preferably 1 Ωcm or less.
[0019]
Gallium oxide in the target, that exist in the oxide state. Here, the oxide state means a state of gallium trioxide (Ga 2 O 3 ) or a state of a composite oxide with indium oxide (In 2 O 3 ) and / or tin oxide (SnO 2 ). It is .
[0020]
Indium oxide in the target, that exist in the oxide state. Here, the oxide state is a state of In 2 O 3 (SnO 2 or Ga 2 O 3 may be dissolved), or a state of a composite oxide with SnO 2 and / or Ga 2 O 3. Means .
[0021]
Gallium oxide and indium oxide are not easy to prepare a transparent film be present in oxide state.
[0022]
When gallium oxide and indium oxide in the sputtering target are present in an oxide state, the maximum particle diameter of the oxide crystal particles is preferably 200 μm or less. The presence of oxide particles having a particle size larger than 200 μm is not preferable because sputtering discharge becomes unstable.
[0023]
The target of the present invention may contain other components as long as the objects and effects of the present invention are not impaired, but it is desirable to keep the amount as small as possible.
[0024]
The composition of the film is basically the same as the composition of the target, but the composition of the film may deviate from the composition of the target depending on the sputtering conditions during film formation.
[0025]
The target of the present invention can be produced by a method for producing ceramics in general, for example, an atmospheric pressure sintering method, a hot press method, etc. However, since a dense target can be produced, it is sintered in an atmosphere containing oxygen such as air. Is preferred.
For example, atmospheric pressure sintering is performed in air at a temperature of 1300 to 1600 ° C. Alternatively, hot pressing is performed in a non-oxidizing atmosphere under conditions of 800 to 1100 ° C.
[0026]
In addition, since the target of the present invention has high conductivity, it is possible to form a film with a large area, and can sufficiently cope with direct current sputtering with a high film forming speed, and also can be applied to any sputtering method such as high frequency sputtering. Yes.
[0027]
The transparent conductive film according to the present invention has a thickness in the range of 3 nm to 5 μm, preferably in the range of 3 to 300 nm.
[0028]
When the film thickness exceeds 5 μm, the film formation time becomes long, resulting in an increase in cost. When the film thickness is thinner than 3 nm, the specific resistance increases.
[0029]
In the transparent heating element according to the present invention, for the purpose of adjusting the appearance, one or more undercoat films are provided between the transparent conductive film layer and the substrate, or one or more overcoats are formed on the transparent conductive film layer. It is possible to adjust the transmission / reflection color tone and the visible light reflectance by using a light interference phenomenon and film absorption by providing a film.
[0030]
The present invention also provides a method for producing a transparent conductive film, wherein the sputtering target is used as a sputtering target in a method for producing a transparent conductive film containing tin oxide as a main component on a substrate by a sputtering method. provide.
[0031]
In the present invention, sputtering is preferably performed in an atmosphere containing an oxidizing gas.
The oxidizing gas means an oxygen atom-containing gas such as O 2 , H 2 O, CO, CO 2 or the like. The concentration of the oxidizing gas greatly affects film characteristics such as film conductivity and light transmittance. Therefore, it is necessary to optimize the concentration of the oxidizing gas under the use conditions such as the apparatus, the substrate temperature, and the back pressure.
[0032]
The sputtering method can be performed by any discharge method such as a DC method and an RF method, but a DC sputtering method with excellent industrial productivity is preferable.
[0033]
Examples of the substrate on which the film is formed include glass, ceramics, plastic, and metal. The temperature of the substrate during the film formation is not particularly limited, but is preferably 300 ° C. or less from the viewpoint of easily obtaining an amorphous film. Further, after the film formation, the substrate can be post-heated (heat treatment).
[0034]
[Action]
In manufacturing the target, gallium oxide and indium oxide serve as an auxiliary for promoting the sintering when the main component tin oxide is sintered. At this time, gallium oxide and indium oxide strengthen each other's action. In addition, gallium oxide and indium oxide also function as an additive that imparts conductivity to the target. Also in this case, gallium oxide and indium oxide strengthen each other's action and lower resistance.
[0035]
Also in the transparent conductive film of the present invention, gallium oxide and indium oxide function as additives for imparting conductivity to the film, as in the target. Also in this case, gallium oxide and indium oxide strengthen each other's action and lower resistance. Further, gallium oxide and indium oxide work to make the film amorphous by the impurity effect.
[0036]
Further, antimony and tellurium work to increase carrier electrons in the film and the target, thereby reducing the resistance of the film and the target.
[0037]
【Example】
(Examples 1-15)
Ga 2 O 3 powder, In 2 O 3 powder and SnO 2 powder were prepared, and these powders were mixed at a ratio shown in Table 1 by a dry ball mill.
[0038]
This mixed powder was filled into a rubber mold, pressure-formed with a cold isotropic press device (CIP device), and then fired at a temperature of 1500 ° C. in air. Table 1 shows the density and specific resistance of the sintered body (target). The density was measured by the Archimedes method, and the specific resistance was measured by cutting a 3 × 3 × 30 mm prism sample and measuring by the 4-terminal method.
[0039]
Next, the above-mentioned sintered body was cut into a size of 6 inches in diameter and 5 mm in thickness to produce a target (hereinafter referred to as a GIT target).
Using these various GIT targets, a magnetron DC (direct current) sputtering apparatus is used to form a Ga 2 O 3 —In 2 O 3 —SnO 2 -based film (hereinafter referred to as a GIT film). 500 W, introduced gas: Ar—CO 2 mixed gas, pressure: 4 × 10 −3 Torr, substrate temperature: unheated. Soda lime glass was used for the substrate. The geometric film thickness was about 10 nm.
[0040]
In Examples 1 to 15, the optimum value of the CO 2 concentration was 10 to 40% by volume (ratio to the sum of argon and CO 2 of the introduced gas). Table 2 shows the specific resistance and transmittance of the various films obtained.
[0041]
The film composition shown in Table 2 was measured by the ICP method. In this case, the composition of the target and the composition of the film were almost the same.
[0042]
The film was identified by an X-ray diffractometer. In all Examples 1 to 15, the X-ray diffraction pattern was flat and the film was amorphous. FIG. 1 representatively shows the X-ray diffraction pattern of the film obtained in Example 2.
[0043]
(Examples 16 to 19)
A system to which Sb 2 O 5 powder or TeO 2 powder was added was also examined. The mixing ratio of the powder is as shown in Table 1. Targets were prepared as in Examples 1-15. Table 1 shows the density and specific resistance of the sintered body (target).
[0044]
Film formation was performed using a magnetron DC (direct current) sputtering apparatus under the same conditions as in Examples 1 to 15. Table 2 shows the specific resistance and transmittance of the film.
[0045]
The film composition shown in Table 2 was measured by the ICP method. In this case, the composition of the film of Sb 2 O 5 and TeO 2 in the film was considerably smaller than that of the target raw material charged.
[0046]
The film was identified by an X-ray diffractometer. In all Examples 16 to 19, the X-ray diffraction pattern was flat and the film was amorphous.
[0047]
[Table 1]
[0048]
[Table 2]
[0049]
【The invention's effect】
The transparent conductive film of the present invention is rich in chemical resistance, mainly composed of tin oxide, and excellent in chemical resistance such as high acid resistance and alkali resistance.
[0050]
Furthermore, since the film is amorphous, there are no surface irregularities, and since it is smooth, it has excellent scratch resistance, and it is conductive. Has an effect. In particular, since a transparent film can be obtained without heating the substrate, it can be used as an antistatic film having a protective film function such as a plastic film.
[0051]
In addition, the target of the present invention is conductive and can employ a DC sputtering method having a high film formation rate. Further, the target is dense and can be sputtered with a stable discharge.
[Brief description of the drawings]
FIG. 1 shows an X-ray diffraction pattern of a film in Example 2 of the present invention.

Claims (5)

ガリウム、インジウム、錫をそれぞれ酸化物として含有する酸化錫系のスパッタリングターゲットであって、酸化ガリウムをGa換算でGaとInとSnOとの総量に対して0.1〜30モル%含有し、かつ酸化インジウムをIn換算でGaとInとSnOとの総量に対して0.1〜30モル%含有することを特徴とするスパッタリングターゲット。 Gallium, indium, a sputtering target of tin oxide containing tin as each oxide, the total amount of Ga 2 O 3 and In 2 O 3 and SnO 2 gallium oxide in terms of Ga 2 O 3 0 containing .1~30 mol%, and indium oxide and characterized in that it contains 0.1 to 30 mol% relative to the total amount of Ga 2 O 3 and in 2 O 3 and SnO 2 in in 2 O 3 in terms of Sputtering target. 酸化ガリウムの含有割合が、Ga換算でGaとInとSnOとの総量に対して1〜15モル%で、かつ酸化インジウムの含有割合が、In換算でGaとInとSnOとの総量に対して1〜15モル%である請求項1記載のスパッタリングターゲット。Content of gallium oxide, 1-15 mol% relative to the total amount of Ga 2 O 3 and In 2 O 3 and SnO 2 in terms of Ga 2 O 3, and the content of indium oxide, In 2 O 3 2. The sputtering target according to claim 1, which is 1 to 15 mol% in terms of the total amount of Ga 2 O 3 , In 2 O 3 and SnO 2 in terms of conversion. アンチモンおよび/またはテルルを、アンチモンはSb換算で、テルルはTeO換算で、SbとTeOとGaとInとSnOとの総量に対して10モル%以下含む請求項1または2記載のスパッタリングターゲット。Antimony and / or tellurium, antimony is Sb 2 O 5 in terms, with respect to the total amount of tellurium in TeO 2 terms, and Sb 2 O 5 and TeO 2 and Ga 2 O 3 and In 2 O 3 and SnO 2 10 The sputtering target according to claim 1 or 2 containing at most mol%. Ga粉末、In粉末およびSnO粉末を含む混合粉末を成形後、焼成して、酸化ガリウムをGa換算でGaとInとSnOとの総量に対して0.1〜30モル%含有し、かつ酸化インジウムをIn換算でGaとInとSnOとの総量に対して0.1〜30モル%含有する、スパッタリングターゲットの製造方法。A mixed powder containing Ga 2 O 3 powder, In 2 O 3 powder and SnO 2 powder is molded and fired, and gallium oxide is converted into Ga 2 O 3 in terms of Ga 2 O 3 , In 2 O 3 and SnO 2 . containing 0.1 to 30 mol% based on the total amount, and the indium oxide 0.1 to 30 mol% content relative to the total amount of Ga 2 O 3 and in 2 O 3 and SnO 2 in in 2 O 3 conversion A manufacturing method of a sputtering target. スパッタリング法により基体上に酸化錫を主成分とする透明導電膜を製造する方法において、スパッタリングターゲットとして、請求項1〜3のいずれか1項記載のスパッタリングターゲットを用いることを特徴とする透明導電膜の製造方法。  In the method of manufacturing the transparent conductive film which has a tin oxide as a main component on a base | substrate by sputtering method, the transparent conductive film characterized by using the sputtering target of any one of Claims 1-3 as a sputtering target. Manufacturing method.
JP03813397A 1997-02-21 1997-02-21 Transparent conductive film, method for producing the same, and sputtering target Expired - Fee Related JP3925977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03813397A JP3925977B2 (en) 1997-02-21 1997-02-21 Transparent conductive film, method for producing the same, and sputtering target

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP03813397A JP3925977B2 (en) 1997-02-21 1997-02-21 Transparent conductive film, method for producing the same, and sputtering target
EP98904403A EP1004687B1 (en) 1997-02-21 1998-02-20 SUBSTRATE COATED WITH A TRANSPARENT CONDUCTIVE FILM and SPUTTERING TARGET FOR THE DEPOSITION OF SAID FILM
DE69820639T DE69820639T2 (en) 1997-02-21 1998-02-20 Substrate is coated with a transparent, conductive film and sputtering target to deposit the film
PCT/JP1998/000708 WO1998037255A1 (en) 1997-02-21 1998-02-20 Transparent conductive film, sputtering target and substrate equipped with the transparent conductive film
US09/175,964 US6042752A (en) 1997-02-21 1998-10-21 Transparent conductive film, sputtering target and transparent conductive film-bonded substrate

Publications (2)

Publication Number Publication Date
JP2002012964A JP2002012964A (en) 2002-01-15
JP3925977B2 true JP3925977B2 (en) 2007-06-06

Family

ID=12516947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03813397A Expired - Fee Related JP3925977B2 (en) 1997-02-21 1997-02-21 Transparent conductive film, method for producing the same, and sputtering target

Country Status (4)

Country Link
EP (1) EP1004687B1 (en)
JP (1) JP3925977B2 (en)
DE (1) DE69820639T2 (en)
WO (1) WO1998037255A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002492B1 (en) 2002-08-02 2010-12-17 이데미쓰 고산 가부시키가이샤 Sputtering target, sintered body, conductive film formed by using them, organic el device, and substrate used for the organic el device
CN1938791B (en) 2004-09-13 2010-12-29 住友金属矿山株式会社 Transparent conductive film, process for producing the same, transparent conductive base material and luminescent device
JP2006289901A (en) * 2005-04-14 2006-10-26 Asahi Glass Co Ltd Reflection preventing film and display unit
WO2011044985A1 (en) * 2009-10-15 2011-04-21 Umicore Tin oxide ceramic sputtering target and method of producing it
WO2013027391A1 (en) * 2011-08-22 2013-02-28 出光興産株式会社 In-ga-sn based oxide sintered compact

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750568B2 (en) * 1987-01-20 1995-05-31 三井金属鉱業株式会社 Transparent conductive film and material for producing the transparent conductive film
JPH04272612A (en) * 1991-02-26 1992-09-29 Kojundo Chem Lab Co Ltd Transparent electrode
JPH04277408A (en) * 1991-03-01 1992-10-02 Kojundo Chem Lab Co Ltd Transparent electrode
JP2707478B2 (en) * 1992-08-24 1998-01-28 新日本製鐵株式会社 High corrosion resistant multi-layer electroplated steel sheet
US5473456A (en) * 1993-10-27 1995-12-05 At&T Corp. Method for growing transparent conductive gallium-indium-oxide films by sputtering
US5407602A (en) * 1993-10-27 1995-04-18 At&T Corp. Transparent conductors comprising gallium-indium-oxide
JP3583163B2 (en) * 1994-06-14 2004-10-27 出光興産株式会社 Conductive laminate
JPH08264022A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film

Also Published As

Publication number Publication date
EP1004687A4 (en) 2001-05-23
EP1004687B1 (en) 2003-12-17
EP1004687A1 (en) 2000-05-31
DE69820639D1 (en) 2004-01-29
WO1998037255A1 (en) 1998-08-27
DE69820639T2 (en) 2004-10-14
JP2002012964A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US6042752A (en) Transparent conductive film, sputtering target and transparent conductive film-bonded substrate
JP3836163B2 (en) Method for forming high refractive index film
JP5101763B2 (en) Sputter target of zinc-tin alloy
JP3806521B2 (en) Transparent conductive film, sputtering target, and substrate with transparent conductive film
JP3179287B2 (en) Conductive transparent substrate and method for producing the same
JP3447163B2 (en) Transparent conductive laminate
US5045235A (en) Transparent conductive film
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
WO2007142330A1 (en) Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
JP2000256061A (en) Transparent conductive material, transparent conductive glass and transparent conductive film
JPH06318406A (en) Conductive transparent base member and manufacture thereof
JP2005256175A (en) Target and method of producing high refractive index film by the target
JP2003073820A (en) Sputtering target based on titanium dioxide
JP3163015B2 (en) Transparent conductive film
JP3925977B2 (en) Transparent conductive film, method for producing the same, and sputtering target
JP3721080B2 (en) Sputtering target and manufacturing method thereof
JPH05334924A (en) Manufacture of transparent conductive film
JPH06290641A (en) Noncrystal transparent conductive membrane
JP2004149400A (en) Heat insulating glass and method for manufacture the same
KR20070096017A (en) S n o2 sputtering target and process for producing same
JPH06293956A (en) Zinc oxide transparent conductive film, its formation and sputtering target used therefor
JP3501614B2 (en) ITO sintered body, method of manufacturing the same, and method of forming ITO film using the ITO sintered body
JPH1040740A (en) Transparent conductive film and transparent conductive material
JPH08283935A (en) Target and production of high refractive index film using the same
JPH0726371A (en) Sputtering target and low refractivity film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees